

Control FPWIN Pro

Programming

NNis

Smart Solutions by NAIS

BEFORE BEGINNING

This manual and everything described in it are copyrighted. You may not copy this manual, in whole or part, without written consent of Matsushita Electric Works (Europe) AG.

Matsushita Electric Works (Europe) AG pursues a policy of continuous improvement of the design and performance of its products, therefore, we reserve the right to change the manual/product without notice. In no event will Matsushita Electric Works (Europe) AG be liable for direct, special, incidental, or consequential damage resulting from any defect in the product or its documentation, even if advised of the possibility of such damages.

LIMITED WARRANTY

If physical defects caused by distribution are found, Matsushita Electric Works (Europe) AG will replace/repair the product free of charge. Exceptions include:

- When physical defects are due to different usage/treatment of the product other than described in the manual.
- When physical defects are due to defective equipment other than the distributed product.
- When physical defects are due to modifications/repairs by someone other than Matsushita Electric Works (Europe) AG.
- When physical defects are due to natural disasters.

MS–DOS and Windows are registered trademarks of Microsoft Corporation. IBM Personal Computer AT is registered trademark of the International Business Machines Corporation.

Important Symbols

The following symbols are used in this manual:

Whenever the warning triangle is used, especially important safety instructions are given. If they are not adhered to, the results could be:

- personal injury and/or
- significant damage to instruments or their contents, e.g. data

A Note contains important additional information or indicates that you should proceed with caution.

Example An Example contains an illustrative example of the previous text section.

Table of Contents

Part I

Chapter 1 Basics

1.1	Operan	ds	2
	1.1.1	Inputs/Outputs	2
	1.1.2	Internal Relays	2
	1.1.3	Special Internal Relays	2
	1.1.4	Timers and Counters	3
	1.1.5	Data Registers (DT)	3
	1.1.6	Special Data Registers (DT)	4
	1.1.7	File Registers (FL)	4
	1.1.8	Link Relays and Registers (L/LD)	4
1.2	Address	ses	6
	1.2.1	Matsushita Addresses	6
	1.2.2	IEC Addresses	7
	1.2.3	Specifying Relay Addresses	9
	1.2.4	Timer Contacts (T) and Counter Contacts (C)	9
	1.2.5	External Input (X) and Output Relays (Y)	9
	1.2.6	Word Representation of Relays (WX, WY, WR, and WL)	10
1.3	Constants		11
-	1.3.1	Decimal Constants	11
	1.3.2	Hexadecimal Constants	11
	1.3.3	BCD Constants	11
1.4	Data Tv	/pes	12
	1.4.1	BOOL	12
	1.4.2	INTEGER	12
	1.4.3	DOUBLE INTEGER	13
	1.4.4	STRING	13
	1.4.5	WORD	13
	1.4.6	DOUBLE WORD	13
	1.4.7	ARRAY	14
	1.4.8	ТІМЕ	18
	1.4.9	REAL	18
1.5	NC TO	OL Library	20

i

Part II IEC Functions and Function Blocks

Chapter 2 Conversion Functions

(E_)BOOL_TO_INT	BOOL to INTEGER	26
(E_)BOOL_TO_DINT	BOOL to DOUBLE INTEGER	27
(E_)BOOL_TO_WORD	BOOL to WORD	28
(E_)BOOL_TO_DWORD	BOOL to DOUBLE WORD	29
(E_)BOOL_TO_STRING	BOOL to STRING	30
(E_)INT_TO_BOOL	INTEGER to BOOL	31
(E_)INT_TO_DINT	INTEGER to DOUBLE INTEGER	32
(E_)INT_TO_WORD	INTEGER to WORD	33
(E_)INT_TO_DWORD	INTEGER to DOUBLE WORD	34
(E_)INT_TO_REAL	INTEGER to REAL	35
(E_)INT_TO_TIME	INTEGER to TIME	36
(E_)INT_TO_BCD	INTEGER to BCD	37
(E_)INT_TO_STRING	INTEGER to STRING	38
(E_)DINT_TO_BOOL	DOUBLE INTEGER to BOOL	39
(E_)DINT_TO_INT	DOUBLE INTEGER to INTEGER	40
(E_)DINT_TO_WORD	DOUBLE INTEGER to WORD	41
(E_)DINT_TO_DWORD	DOUBLE INTEGER to DOUBLE WORD	42
(E_)DINT_TO_TIME	DOUBLE INTEGER to TIME	43
(E_)DINT_TO_REAL	DOUBLE INTEGER to REAL	44
(E_)DINT_TO_BCD	DOUBLE INTEGER to BCD	45
(E_)DINT_TO_STRING	DOUBLE INTEGER to STRING	46
(E_)WORD_TO_BOOL	WORD to BOOL	47
(E_)WORD_TO_INT	WORD to INTEGER	48
(E_)WORD_TO_DINT	WORD to DOUBLE INTEGER	49
(E_)WORD_TO_DWORD	WORD to DOUBLE WORD	50
(E_)WORD_TO_TIME	WORD to TIME	51
(E_)WORD_TO_STRING	WORD to STRING	52
(E_)DWORD_TO_BOOL	DOUBLE WORD to BOOL	53
(E_)DWORD_TO_INT	DOUBLE WORD to INTEGER	54
(E_)DWORD_TO_DINT	DOUBLE WORD to DOUBLE INTEGER	55
(E_)DWORD_TO_WORD	DOUBLE WORD to WORD	56
(E_)DWORD_TO_TIME	DOUBLE WORD to TIME	57
(E_)DWORD_TO_STRING	DOUBLE WORD to STRING	58
(E_)REAL_TO_INT	REAL to INTEGER	59
(E_)REAL_TO_DINT	REAL to DOUBLE INTEGER	60

ii CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

(E_)REAL_TO_TIME	REAL to TIME	61
(E_)REAL_TO_STRING	REAL to STRING	62
(E_)TIME_TO_INT	TIME to INTEGER	64
(E_)TIME_TO_DINT	TIME to DOUBLE INTEGER	65
(E_)TIME_TO_WORD	TIME to WORD	66
(E_)TIME_TO_DWORD	TIME to DOUBLE WORD	67
(E_)TIME_TO_REAL	TIME to REAL	68
(E_)TIME_TO_STRING	TIME to STRING	69
(E_)TRUNC_TO_INT	Truncate (cut off) decimal digits of REAL input variable, convert to INTEGER	70
(E_)TRUNC_TO_DINT	Truncate (cut off) decimal digits of REAL input variable, convert to DOUBLE INTEGER	71
(E_)BCD_TO_INT	BCD to INTEGER	72
(E_)BCD_TO_DINT	BCD to DOUBLE INTEGER	73

Chapter 3 Numerical Functions

(E_)ABS	Absolute value	76

Chapter 4 Arithmetic Functions

(E_)MOVE	Move value to specified destination	78
E_ADD	Add	79
E_SUB	Subtract	80
E_MUL	Multiply	81
E_DIV	Divide	82
(E_)MOD	Modular arithmetic division, remainder stored in output variable	83
(E_)SQRT	Square root	84
(E_)SIN	Sine	85
(E_)ASIN	Arcsine	86
(E_)COS	Cosine	87
(E_)ACOS	Arccosine	88
(E_)TAN	Tangent	89
(E_)ATAN	Arctangent	90
(E_)LN	Natural logarithm	91
(E_)LOG	Logarithm	92
(E_)EXP	Exponent of input variable to base e	93
(E_)EXPT	Raises 1st input variable by the power of the 2nd input variable	94

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Chapter 5 Process Data Type Functions

Add TIME	98
Subtract TIME	99
Multiply TIME by INTEGER	100
Multiply TIME by DOUBLE INTEGER	101
Multiply TIME by REAL	102
Divide TIME by INTEGER	103
Divide TIME by DOUBLE INTEGER	104
Divide TIME by REAL	105
	Subtract TIME Multiply TIME by INTEGER Multiply TIME by DOUBLE INTEGER Multiply TIME by REAL Divide TIME by INTEGER Divide TIME by DOUBLE INTEGER

Chapter 6 Bitshift Functions

(E_)SHL	Shift bits to the left	108
(E_)SHR	Shift bits to the right	109
(E_)ROL	Rotate bits to the left	110
(E_)ROR	Rotate bits to the right	111

Chapter 7 Bitwise Boolean Functions

(E_)AND	Logical AND operation	114
E_OR	Logical OR operation	115
E_XOR	Exclusive OR operation	116
(E_)NOT	Bit inversion	117

Chapter 8 Selection Functions

(E_)MAX	Maximum value	120
(E_)MIN	Minimum value	121
(E_)LIMIT	Limit value for input variable	122
(E_)MUX	Select value from multiple channels	123
(E_)SEL	Select value from one of two channels	125

v

Chapter 9 Comparison Functions

E_GT	Greater than	128
E_GE	Greater than or equal to	129
E_EQ	Equal to	130
E_LE	Less than or equal to	131
E_LT	Less than	132
E_NE	Not equal	133

Chapter 10 Bistable Function Blocks

(E_)SR	Set/reset	136
(E_)RS	Reset/set	138

Chapter 11 Edge Detection

(E_)R_TRIG	Rising edge trigger	. 142
(E_)F_TRIG	Falling edge trigger	. 143

Chapter 12 Counter

(E_)CTU	Up counter	146
(E_)CTD	Down counter	148
(E_)CTUD	Up/down counter	150

Chapter 13 Timer

(E_)TP	Timer with defined period	154
(E_)TON	Timer with switch-on delay	156
(E_)TOF	Timer with switch-off delay	158

Part III Matsushita Instructions

Chapter 14 Counter, Timer Function Blocks

CT_FB	Counter	164
TM_1ms_FB	Timer for 1ms intervals	167
TM_10ms_FB	Timer for 10ms intervals	170
TM_100ms_FB	Timer for 100ms intervals	173
TM_1s_FB	Timer for 1s intervals	176

Chapter 15 Data Transfer Instructions

F0_MV	16-bit data move	180
F1_DMV	32-bit data move	181
F2_MVN	16-bit data inversions and move	182
F3_DMVN	32-bit data inversions and move	183
F5_BTM	Bit data move	184
F6_DGT	Digit data move	186
F10_BKMV	Block transfer	189
F11_COPY	Block copy	191
F12_EPRD	EEPROM read from memory	193
P13_EPWT	EEPROM write to memory	195
F15_XCH	16-bit data exchange	197
F16_DXCH	32-bit data exchange	198
F17_SWAP	Higher/lower byte in 16-bit data exchange	199
F144_TRNS	Serial communication (RS232C)	200
F147_PR	Parallel printout	208

Chapter 16 Arithmetic Instructions

F20_ADD	16-bit addition	212
F21_DADD	32-bit addition	213
F22_ADD2	16-bit addition, destination can be specified	214
F23_DADD2	32-bit addition, destination can be specified	215
F40_BADD	4-digit BCD addition	216
F41_DBADD	8-digit BCD addition	217
F42_BADD2	4-digit BCD addition, destination can be specified	218
F43_DBADD2	8-digit BCD addition, destination can be specified	219

vi CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

F157_CADD	Time addition	220
F25_SUB	16-bit subtraction	222
F26_DSUB	32-bit subtraction	223
F27_SUB2	16-bit subtraction, destination can be specified	224
F28_DSUB2	32-bit subtraction, destination can be specified	225
F45_BSUB	4–digit BCD subtraction	226
F46_DBSUB	8–digit BCD subtraction	227
F47_BSUB2	4-digit BCD subtraction, destination can be specified	228
F48_DBSUB2	8-digit BCD subtraction, destination can be specified	229
F158_CSUB	Time subtraction	230
F30_MUL	16-bit multiplication, destination can be specified	232
F31_DMUL	32-bit multiplication, destination can be specified	234
F50_BMUL	4-digit BCD multiplication, destination can be specified	235
F51_DBMUL	8-digit BCD multiplication, destination can be specified	237
F32_DIV	16-bit division, destination can be specified	238
F33_DDIV	32-bit division, destination can be specified	240
F52_BDIV	4-digit BCD division, destination can be specified	242
F53_DBDIV	8-digit BCD division, destination can be specified	244
F35_INC	16-bit increment	246
F36_DINC	32-bit increment	247
F55_BINC	4–digit BCD increment	248
F56_DBINC	8–digit BCD increment	249
F37_DEC	16-bit decrement	250
F38_DDEC	32-bit decrement	251
F57_BDEC	4–digit BCD decrement	252
F58_DBDEC	8–digit BCD decrement	253
F87_ABS	16-bit data absolute value	254
F88_DABS	32-bit data absolute value	255

Chapter 17 Data Comparison Instructions

F60_CMP	16-bit data compare	258
F61_DCMP	32-bit data compare	260
F62_WIN	16-bit data band compare	262
F63_DWIN	32-bit data band compare	264
F64_BCMP	Block data compare	266

Chapter 18 Logic Operation Instructions

16-bit data AND	270
16-bit data OR	272
16-bit data exclusive OR	274
16-bit data exclusive NOR	276
	16-bit data OR 16-bit data exclusive OR

Chapter 19 Data Shift and Rotate Instructions

Left shift register	280
Right shift of 16-bit data in bit units	281
Left shift of 16-bit data in bit units	282
Right shift of one hexadecimal digit (4 bits) of 16-bit data	283
Left shift of one hexadecimal digit (4 bits) of 16-bit data	284
Right shift of one word (16 bits) of 16–bit data range	285
Left shift of one word (16 bits) of 16-bit data range	287
Right shift of one hex. digit (4 bits) of 16-bit data range	289
Left shift of one hex. digit (4 bits) of 16-bit data range	291
LEFT/RIGHT shift register	293
16-bit data right rotate	295
16-bit data left rotate	297
16-bit data right rotate with carry-flag data	299
16-bit data left rotate with carry-flag data	301
	Left shift of one hexadecimal digit (4 bits) of 16-bit data Right shift of one word (16 bits) of 16-bit data range Left shift of one word (16 bits) of 16-bit data range Right shift of one hex. digit (4 bits) of 16-bit data range

Chapter 20 Data Conversion Instructions

F70_BCC	Block check code calculation	304
F71_HEX2A	$HEX \to ASCII \text{ conversion } \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	307
F72_A2HEX	$ASCII \to HEX \text{ conversion } \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	310
F73_BCD2A	$BCD \to ASCII \text{ conversion } \ldots \ldots \ldots \ldots \ldots \ldots$	313
F74_A2BCD	$ASCII \to BCD \text{ conversion } \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	316
F75_BIN2A	16–bit BIN \rightarrow ASCII conversion	319
F76_A2BIN	ASCII \rightarrow 16-bit BIN conversion	322
F77_DBIN2A	32–bit BIN \rightarrow ASCII conversion	325
F78_DA2BIN	$ASCII \to 32-bit \; BIN \; conversion \; \ldots \ldots \ldots \ldots$	328
F80_BCD	16-bit decimal \rightarrow 4-digit BCD conversion	331
F81_BIN	4–digit BCD \rightarrow 16–bit decimal conversion	333
F82_DBCD	32–bit decimal \rightarrow 8–digit BCD conversion	335
F83_DBIN	32–bit decimal \rightarrow 8–digit BCD conversion	337

viii

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

ix

F84_INV	16-bit data invert (one's complement)	339
F85_NEG	16-bit data two's complement	340
F86_DNEG	32-bit data two's complement	341
F89_EXT	16-bit data sign extension	342
F90_DECO	Decode hexadecimal -> bit state	344
F91_SEGT	16-bit data 7-segment decode	346
F92_ENCO	Encode bit state -> hexadecimal	348
F93_UNIT	16-bit data combine	350
F94_DIST	16-bit data distribution	352
F95_ASC	$Character \rightarrow ASCII \ transfer \ \ldots \ldots$	355
F96_SRC	Table data search (16-bit search)	358
F138_HMSS	h:min:s \rightarrow s conversion	360
F139_SHMS	$s \rightarrow h: min: s \ conversion \ \ldots \ldots$	361
F327_INT	Floating point data \rightarrow 16-bit integer data (the largest integer not exceeding the floating point data)	362
F328_DINT	Floating point data \rightarrow 32-bit integer data (the largest integer not exceeding the floating point data)	364
F333_FINT	Rounding the first decimal point down	366
F334_FRINT	Rounding the first decimal point off	368
F335_FSIGN	Floating point data sign changes (negative/positive conversion)	370
F337_RAD	Conversion of angle units (Degrees \rightarrow Radians)	372
F338_DEG	Conversion of angle units (Radians \rightarrow Degrees)	374

Chapter 21 Bit Manipulation Instructions

F130_BTS	16-bit data bit set	378
F131_BTR	16-bit data bit reset	379
F132_BTI	16-bit data bit invert	380
F133_BTT	16-bit data test	381
F135_BCU	Number of ON bits in 16-bit data	383
F136_DBCU	Number of ON bits in 32-bit data	384

Chapter 22 Process Control Instructions

F355_PID	PID processing instruction	386

Chapter 23 Timer Instructions

TM_1s	Timer for 1s intervals	394
TM_100ms	Timer for 100ms intervals	396
TM_10ms	Timer for 10ms intervals	398
TM_1ms	Timer for 1ms intervals	400
F137_STMR	Auxiliary timer (sets the ON-delay timer for 0.01s units)	402
F183_DSTM	Special 32-bit timer	403

Chapter 24 Counter Instructions

СТ	Counter	406
F118_UDC	UP/DOWN counter	409

Chapter 25 High–Speed Counter Special Instructions

F0_MV	High-speed counter control	412
F162_HC0S	High-speed counter output set	418
F163_HC0R	High-speed counter output reset	419
F164_SPD0	Pulse output control; Pattern output control	420
F165_CAM0	Cam control	421
F166_HC1S	Sets Output of High-speed counter (4 Channels)	422
F167_HC1R	Resets Output of High-speed Counter (4 Channels)	424
F168_SPD1	Positioning pulse instruction	426
F169_PLS	Pulse width modulation >= 40 Hz	432
F170_PWM	Pulse width modulation	435

Chapter 26 Basic Sequence Instructions

Leading edge differential	440
Trailing edge differential	441
Keep output ON or OFF depending on input variables	442
Set, Reset	443
	Trailing edge differential Keep output ON or OFF depending on input variables

Chapter 27 Control Instructions

MC	Master control relay	448
MCE	Master control relay end	449
JP	Jump	450
LOOP	Loop	451
LBL	Label	452
ICTL	Interrupt control	453

Chapter 28 Special Instructions

Carry–flag set	456
Carry–flag reset	457
Partial I/O update	458
Self-diagnostic error set	460
Message display	462
	Carry–flag reset Partial I/O update Self–diagnostic error set

Appendix A High–Speed Counter, Pulse and PWM Output

A.1	High–Sp	beed Counter, Pulse and PWM Output	464
	A.1.1	High-speed counter function	464
	A.1.2	Pulse output function	464
	A.1.3	PWM output function	464
A.2	Specific	ations and Restricted Items	466
	A.2.1	Specifications	466
	A.2.2	Functions and Restrictions	467
A.3	High–Sp	beed Counter Function	469
	A.3.1	Types of Input Modes	469
	A.3.2	I/O Allocation	470
A.4	Pulse O	utput Function	471
	A.4.1	SDT Variables	471
	A.4.2	Positioning Function F168	471
	A.4.3	Pulse Output Function F169	472
	A.4.4	High–Speed Counter Control Instruction F0_MV	473
	A.4.5	Elapsed Value Change and Read Instruction F1_DMV	474

A.5	Sample I A.5.1	Program for Positioning Control	
	A.5.2	Relative Value Positioning Operation (Minus Direction)	
	A.5.3	Absolute Value Positioning Operation	478
	A.5.4	Home Return Operation (Minus Direction)	479
	A.5.5	Home Return Operation (Plus Direction)	480
	A.5.6	JOG Operation (Plus Direction)	481
	A.5.7	JOG Operation (Minus Direction)	481
	A.5.8	Emergency Stop	482

Appendix B Special Data Registers

B.1	Special Data Registers FP0	484
B.2	Special Data Registers FP–M/FP1	492

Appendix C Special Internal Relays

C.1	Special Internal Relays		 	 	 	 		 	 			 		 	 5	80

Appendix D Relays, Memory Areas and Constants

D.1	Relays	514
D.2	Memory Areas	516
D.3	Constants	518

Appendix E System Registers

E.1	System Registers for FP0	522
E.2	System Registers for FP–M/FP1	531

Appendix F Glossary

Index

Record of Changes

Part I

Chapter 1

Basics

1.1 Operands

In FPWIN Pro the following operands are available:

- in– and outputs (X/Y) as well as internal memory areas
- internal relays
- special internal relays
- timers and counters
- data registers
- special data registers
- file registers
- link registers and relays

The number of operands which are available depends on the PLC–type and its configuration. To see how many of the respective operands are available, see your hardware description.

1.1.1 Inputs/Outputs

The amount of inputs/outputs available depends on the PLC and unit type. Each input terminal corresponds to one input **X**, each output terminal corresponds to one output **Y**.

In system register 20 you set whether an output can be used once or more during the program.

Outputs which do not exist physically can be used like flags. These flags are non-holding, which means their contents will be lost, e.g. after a power failure.

1.1.2 Internal Relays

Internal Relays are memory areas where you can store interim results. Internal relays are treated like internal outputs.

In system register no. 7 you define which internal relays are supposed to be holding/non-holding. Holding means that its values will be retained even after a power failure.

The number of available internal relays depends on the PLC type (see hardware description of your PLC).

1.1.3 Special Internal Relays

Special internal relays are memory areas which are reserved for special PLC functions. They are automatically set/reset by the PLC and are used:

• to indicate certain system states, e.g. errors

- as an impulse generator
- to initialize the system
- as ON/OFF control flag under certain conditions such as when some flags get a certain status if data are ready for transmission in a PLC network.

The number of special internal relays available depends on the PLC type (see hardware description of your PLC).

Special internal relays can only be read.

1.1.4 Timers and Counters

Timers and Counters use one common memory and address area.

Define in system registers 5 and 6 how the memory area is to be divided between timers and counters and which timers/counters are supposed to be holding or non-holding. Holding means that even after a power failure all data will be saved, which is not the case in non-holding registers.

Entering a number in system register 5 means that the first counter is defined. All smaller numbers define timers.

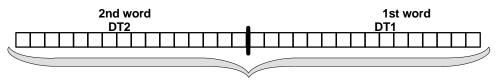
For example, if you enter zero, you define counters only. If you enter the highest value possible, you define timers only.

In the default setting the holding area is defined by the start address of the counter area. This means all timers are holding and all counters are non-holding. You can of course customize this setting and set a higher value for the holding area, which means some of the timers, or if you prefer, all of them can be defined as holding.

In addition to the timer/counter area, there is a memory area reserved for the set value (SV) and the elapsed value (EV) of each timer/counter contact. The size of both areas is 16 bits (WORD). In the SV and EV area one INTEGER value from 0 to 32,767 can be stored.

Timer/Counter No.	SV	EV	Relay
TM0	SV0	EV0	Т0
			•
TM99	SV99	EV99	T99
CT100	SV100	EV100	C100
	•	•	•

While a timer or counter is being processed, the respective acual value can be read and under certain conditions be edited.


r

After changing the settings in system register 5, do not forget to adjust the addresses of the timers/counters in your PLC program because they correspond to the TM/CT numbers.

1.1.5 Data Registers (DT)

Data registers have a width of 16 bits. You can use them, for example, to write and read constants/parameters. If an instruction requires 32 bits, two 16-bit data registers are used. If this

is the case, enter the address of the first data register with the prefix DDT instead of DT. The next data register (word) will be used automatically (see example 1.2.1).

32 bit data register

Data registers can be holding or non-holding. Holding means that even after a power failure all data will be saved. Set the holding/non-holding areas in system register 8 by entering the start address of the holding area.

The amount of data registers available depends on the PLC type (see hardware description).

1.1.6 Special Data Registers (DT)

Special data registers are like the special internal relays reserved for special functions and are in most cases set/reset by the PLC.

The register has a width of 16 bits (data type = WORD). The amount of special data registers available depends on the PLC type (see hardware description).

Most special data registers can only be read. Here some exceptions:

- actual values of the high–speed counter (DT9044 and DT9045; for FP0–T32CP DT90044 and DT90045)
- control flag of the high–speed counter DT9052 (DT90053 for FP0–T32CP)
- real-time clock (DT9054 to DT9058; FP0-T32CP: DT90054 to DT90058)
- interrupts and scan time (DT9027, DT9023–DT9024; FP0–T32CP: DT90027, DT90023–DT90024)...

1.1.7 File Registers (FL)

Some PLC types (see hardware description) provide additional data registers which can be used to increase the number of data registers. File registers are used in the same way as data registers. Set the holding/non-holding area in system register 9. Holding means that even after a power failure all data will be saved.

1.1.8 Link Relays and Registers (L/LD)

Link relays have a width of 1 bit (BOOL). In system registers 10–13 and 40–55, set the:

- transmission area
- amount of link relay words to be sent
- holding/non-holding area

Link registers have a width of 16 bits (WORD). In system registers 10-13 and 40-55, set the:

- transmission area
- amount of link relay words to be sent
- holding/non-holding area

1.2 Addresses

In the List of Global Variables, enter the physical address in the field "Address" for each global variable used in the PLC program.

The operand and the address number are part of the address. In FPWIN Pro you can use either Matsushita and/or IEC addresses. The following abbreviations are used:

Meaning	Matsushita	IEC
Input	Х	I
Output	Y	Q
Memory (internal memory area)	R	MO
Timer relay	Т	M1
Counter relay	С	M2
Set value	SV	M3
Elapsed value	EV	M4
Data register	DT/DDT	M5
Link relay	L	M6
Link register	LD	M7
File register	FL	M8

You find the register numbers (e.g. DT9000/DT90000) in your hardware description. The next two sections show how Matsushita and IEC addresses are composed.

1.2.1 Matsushita Addresses

A Matsushita address represents the hardware address of an in-/output, register, or counter.

For example, the hardware address of the 1st input and the 4th output of a PLC is:

- X0 (X = input, 0 = first relay)
- Y3 (Y = output, 3 = fourth relay)

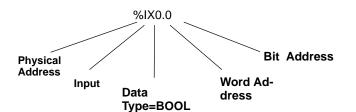
Use the following Matsushita abbreviations for the memory areas. You find the register numbers in your hardware description.

Memory Area	Abbr.	Example
Memory (internal memory area)	R	R9000: self diagnostic error
Timer relay	Т	T200: timer relay no. 200 (settings in system register 5+6)
Counter relay	С	C100: counter relay no. 100 (settings in system register 5+6)
Set value	SV	SV200 (set value for counter relay 200)
Elapsed value	EV	EV100 (elapsed value for timer relay 100)
Data register	DT	DT9001/DT90001 (signals power failure)
Link relay	L	L1270
Link register	LD	LD255
File register	FL	FL8188

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

1.2.2 IEC Addresses

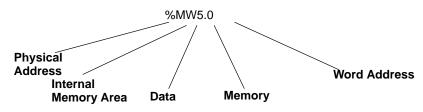
The composition of an IEC-1131 address depends on:


- operand type
- data type
- slot no. of the unit (word address)
- relay no. (bit address)
- PLC type

In– and Outputs are the most important components of a programmable logic controller (PLC). The PLC receives signals from the input relays and processes them in the PLC program. The results can either be stored or sent to the output relays, which means the PLC controls the outputs.

A PLC provides special memory areas, in short "M", to store interim results, for example.

If you want to read the status of the input 1 of the first module and control the output 4 of the second module, for example, you need the physical address of each in–/output. Physical FPWIN Pro addresses are composed of the per cent sign, an abbreviation for in–/output, an abbreviation for the data type and of the word and bit address:


Example IEC address for an input

The per cent sign is the indicator of a physical address. "I" means input, "X" means data type BOOL. The first zero represents the word address (slot no.) and the second one the bit address. Note that counting starts with zero and that counting word and bit addresses differs among the PLC types.

Each PLC provides internal memory areas (M) to store interim results, for example. When using internal memory areas such as data registers, do not forget the additional number (here 5) for the memory type:

Example IEC address for an internal memory area

Bit addresses do not have to be defined for data registers, counters, timers, or the set and actual values.

According to IEC 1131, abbreviations for **in– and output** are "I" and "O", respectively. Abbreviations for the **memory areas** are as follows:

Memory Type	No.	Example
Internal Relay (R)	0	%MX0.900.0 = internal relay R9000
Timer (T)	1	%MX1.200 = counter no. 200
Counter (C)	2	%MX2.100 = counter no. 100
Set Value counters/timers (SV)	3	%MW3.200 = set value of the counter no. 200
Elapsed Value counters/timers (EV)	4	%MW4.100 = elapsed value of the timer no. 100
Data Registers (DT, DDT)	5	%MW5.9001 = data register DT9001 %MD5.90001 = 32-bit data register DDT90001

r

Tables with hardware addresses can be found in the hardware description of your PLC.

The following data types are available:

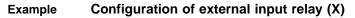
Data Type	Abbreviation	Range of Values	Data Width
BOOL	BOOL	0 (FALSE), 1 (TRUE)	1 bit
INTEGER	INT	-32,768 to 32,768	16 bits
DOUBLE INTEGER	DINT	-2,147,438,648 to 2,147,438,647	32 bits
WORD	WORD	0 to 65,535	16 bits
DOUBLE WORD	DWORD	0 to 4,294,987,295	32 bits
TIME 16-bit	TIME	T#0.00s to T#327.67s	16 bits*
TIME 32-bit	TIME	T#0,00s to T#21 474 836.47s	32 bits*
REAL	REAL	-1,175494 x 10 ⁻³⁸ to -3,402823 x 10 ⁻³⁸ and 1,175494 x 10 ⁻³⁸ to 3,402823 x 10 ⁻³⁸	32 bits

*depends on your PLC

r

Please take into account that not all data types can be used with each IEC command.

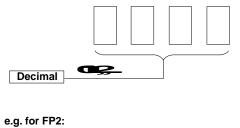
Numbering of in–/output addresses depends on the type of PLC used (see respective hardware description). For FP0/FP1/FP–M the addresses **are not serially numbered**. Counting restarts with zero at the first output. Supposing you have one FP1–C24 with 16 inputs and 8 outputs, the resulting addresses are: for the input: %IX0.0 – %IX0.15, and for the output: %QX0.0 – %QX0.7. In other words the counting for the word and bit number begins at zero for the outputs.


r

• Find the tables with all memory areas in your hardware description.

- When using timers, counters, set/elapsed values, and data registers, the bit address does not have to be indicated.
- You can also enter the register number (R9000, DT9001/90001) or the Matsushita address, e.g. "X0" (input 0), instead of the IEC address.

1.2.3 Specifying Relay Addresses

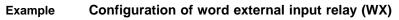

External input relay (X), external output relay (Y), internal relay (R), link relay (L) and pulse relay (P)The lowest digit for these relay's adresses is expressed in hexadecimals and the second and higher digits are expressed in decimals as shown below.

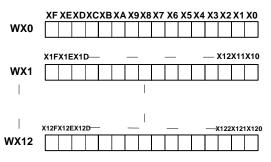
		6, X5, X4, X3, X2, X1, X0
X2F,	•••••••••••••••••••••••••••••••••••••••	, X20
	•	
	•	
VELOE	• • •	VE100
,		, X5100 , X5110

1.2.4 Timer Contacts (T) and Counter Contacts (C)

Addresses of timer contacts (T) and counter contacts (C) correspond to the TM and CT instruction numbers and depend on the PLC type.

T0, T1	T2999
C3000, C3001	C3072


- r
- Since addresses for timer contacts (T) and counter contacts (C) correspond to the TM and CT instruction numbers, if the TM and CT instruction sharing is changed by system register 5, timer and counter contact sharing is also changed.


1.2.5 External Input (X) and Output Relays (Y)

- The external input relays available are those actually allocated for input use.
- The external output relays actually allocated for output can be used for turning ON or OFF external devices. The other external output relays can be used in the same way as internal relays.
- I/O allocation is based on the combination of I/O and intelligent modules installed.

1.2.6 Word Representation of Relays (WX, WY, WR, and WL)

The external input relay (X), external output relay (Y), internal relay (R) and link relay (L) can also be expressed in word format. The word format treats 16-bit relay groups as one word. The word expressions for these relays are word external input relay (WX), word external output relay (WY), word internal relay (WR) and word link relay (WL), respectively.

Since the contents of the word relay correspond to the state of its relays (components), if some relays are turned ON, the contents of the word change.

1.3 Constants

A constant represents a fixed value. Depending on the application, a constant can be used as a addend, multiplier, address, in-/output number, set value, etc.

There are 3 types of constants:

- decimal
- hexadecimal
- BCD

1.3.1 Decimal Constants

Decimal constants can have a width of either 16 or 32 bits.

Range 16 bit: -32,768 to 32,768

Range 32 bit: -2,147,483,648 to 2,147,483,648

Constants are internally changed into 16-bit binary numbers including character bit and are processed as such. Simply enter the decimal number in your program.

1.3.2 Hexadecimal Constants

Hexadecimal constants occupy fewer digit positions than binary data. 16 bit constants can be represented by 4–digit, 32–bit constants by 8–digit hecadecimal constants.

Range 16 bit: 8000 to 7FFF

Range 32 bit: 80000000 to 7FFFFFFF

Enter e.g.: 16#7FFF for the hexadecimal value 7FFF in your program.

1.3.3 BCD Constants

BCD is the abbreviation for Binary Coded Decimal.

Range 16 bit: 0 to 9999

Range 32 bit: 0 to 99999999

Enter BCD constants in the program either as:

binary: 2#0001110011100101 or hexadecimal: 16#9999

1.4 Data Types

FPWIN Pro provides elementary and user defined data types.

Elementary data types

Data Type	Abbreviation	Value Range	Data Width
BOOL	BOOL	0 (FALSE) or 1 (TRUE)	1 bit
INTEGER	INT	-32,768 to 32,768	16 bits
DOUBLE INTEGER	DINT	-2,147,483,648 to 2,147,483,647	32 bits
WORD	WORD	0 to 65,535	16 bits
DOUBLE WORD	DWORD	0 to 4,294,967,295	32 bits
TIME 16- bit	TIME	T#0,00s to T#327.67s	16 bits*
TIME 32 -bit	TIME	T#0,00s to T#21 474 836,47s	32 bits*
REAL	REAL	-1,175494 x 10 ⁻³⁸ to -3,402823 x 10 ⁻³⁸ and 1,175494 x 10 ⁻³⁸ to 3,402823 x 10 ⁻³⁸	32 bits

*depends on your PLC

A data type has to be assigned to each variable.

User defined data types

We differentiate between **array** and **D**ata **U**nit **T**ypes (DUT). An array consists of several elementary data types which are all of the same type. A DUT consists of several elementary data types but of different data types. Each represents a new data type.

1.4.1 BOOL

Variables of the data type BOOL are binary switches. They either have the status 0 or 1 and have a width of 1 bit.

The status 0 corresponds to FALSE and means that the variable has the status OFF.

The status 1 corresponds to **TRUE** and means that the variable has the status ON.

The default initial value, e.g. for the variable declaration in the POU header or in the List of Global Variables = 0 (FALSE). In this case the variable has the status FALSE at the moment the PLC program starts. If it should be TRUE at the start, reset the initial value to TRUE.

1.4.2 INTEGER

Variables of the data type INTEGER are integral natural numbers (without comma) and in WORD format. The range for INTEGER values is -32,768 to 32,768 (decimal).

The default initial value, e.g. for the variable declaration in the POU header or in the List of Global Variables = 0 (FALSE). You can enter INTEGER numbers in DEC, HEX– or BIN format:

Decimal	Hexadecimal	Binary
1,234	16#4D2	2#10011010010
-1,234	16#FB2E	2#111101100101110

12

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

1.4.3 DOUBLE INTEGER

Variables of the data type DOUBLE INTEGER are 32–bit natural numbers without commas and in DOUBLD WORD format. The range for INTEGER values is –2,147,483,648 and 2,147,483,648 decimal.

The default initial value, e.g. for the variable declaration in the POU header or in the List of Global Variables, = 0 (FALSE). You can enter DOUBLE INTEGER numbers in DEC, HEX- or BIN format:

Decimal	Hexadecimal	Binary
123,456,789	16#75BCD15	2#111010110111100110100010101
-123,456,789	16#F8A432EB	2#1111100010100100001100101110

1.4.4 STRING

The data type STRING consists of a series, i.e. string, of ASCII characters. You can store a maximum of 255 characters in one string. Each character of the string is stored in a byte.

- r
- The data type STRING is only available for the FP–SIGMA, FP2/2SH, FP3 and FP10SH.
 - For the PLCs FP0, FP1 and FP–M you can only enter the data type STRING as a constant in the POU body (see F95_ASC of the Matsushita Library).
 - For detailed information, see Online Help in FPWIN Pro.

1.4.5 WORD

A variable of the data type WORD consists of 16 bits. The states of 16 in–/outputs can be represented by one word (WORD), for example.

The default initial value, e.g. for the variable declaration in the POU header or in the List of Global Variables, = 0 (FALSE). Enter WORD values in (DEC), HEX– or BIN format:

Decimal	Hexadecimal	Binary
1,234	16#4D2	2#10011010010
-1,234	16#FB2E	2#1111101100101110

1.4.6 DOUBLE WORD

A variable of the data type DOUBLE WORD consists of 32 bits. The states of 32 in-/outputs can be represented by one DOUBLE WORD, for example.

The default initial value, e.g. for the variable declaration in the POU header or in the List of Global Variables, = 0 (FALSE). Enter numbers in (DEC), HEX– or BIN format:

Decimal	Hexadecimal	Binary
123,456,789	16#75BCD15	2#111010110111100110100010101
-123,456,789	16#F8A432EB	2#1111100010100100001100101110

1.4.7 ARRAY

An array is a combination of variables, all of which have the same data type. This combination represents a variable itself, and therefore it has to be declared. This means that in order to make an array available for the entire project, it has to be declared in the List of Global Variables. If an array is used within a POU only, declare it in the POU header only.

Data types valid for arrays are:

- BOOL
- INT
- DINT
- WORD
- DWORD
- TIME
- REAL

Arrays may be:

- 1-dimensional
- 2-dimensional
- 3-dimensional

Example 1–dimensional ARRAY

Declaration in the global variable list:

Identifier	Address	Туре	Initial
onedim_array	%MW5,0	ARRAY [015] OF INT 📑	1,2,3,4,5,10(6),7

Declare in the global variable list:

- identifier (name for calling up the array in the program)
- initial address where array is saved in the memory
- number of elements and data type of an array
- initial values of individual array elements and
- comment

The declared array can be imagined as follows:

Initialize Arrays with Values

The initialisation of arrays with values starts with the first array element (*element 1*) and ends with the last array element (*element 16*). The initialisation values are entered one after another into the field *initial* and are separated from each other by commas.

If subsequent array elements are initialised with the same value, the abbreviated writing *number(value)* is possible.

* number stands for the number of array elements

* value stands for the initialisation value

In the example, *element 1* was initialised with value 1, *element 2* with value 2 etc.

Use Array Elements in the Program

You may use a 1-dimensional array element by entering identifier[Var1].

* identifier (name of the array, see field Identifier)

* *Var1* is a variable of the type INT or a constant which has to be located in the value range of the array declaration. For this example Var1 is assigned to the range 0...15

In the example you call up the third array element (*Element 3*) with *onedim_array[2]*. If you wish to assign a value to this element in an IL program for example, you enter the following:

LD current_temperature ST onedim_array[2]

Addresses of Array Elements

The array elements of the 1–dimensional array are subsequently saved in the PLC's memory starting with *element 1*. This means for the example described above:

Matsushita Address	IEC-Address	Array Element	Array Element Name
DTO	%MW5.0	element 1	onedim_array(0)
DT1	%MW5.1	element 2	onedim_array(1)
DT2	%MW5.2	element 3	onedim_array(2)
DT3	%MW5.3	element 4	onedim_array(3)
DT4	%MW5.4	element 5	onedim_array(4)
DT13	%MW5.13	element 14	onedim_array(13)
DT14	%MW5.14	element 15	onedim_array(14)
DT15	%MW5.15	element 16	onedim_array(15)

Example 2–dimensional ARRAY

Declaration in the global variable list:

Identifier	Address	Туре	Initial
twodim_array	%MX0.0.0	ARRAY [35,16] OF BOOL 🗿	FALSE,TRUE,16(FALSE)

twodim_array[3,1] twodim_array[3,2] element 1 element 2 1 2 3 4 5 6 twodim_array[4,6] FÀLSE FALSE FALSE FALSE FALSE 3 TRUE element 12 FALSE FALSE FALSE FALSE FALSE FALSE 4 FALSE FALSE FALSE FALSE FALSE FALSE 5 twodim array[5,6] element 18

The declared array can be imagined as follows:

Initialize arrays with values

The initialisation of arrays with values starts with the first array element (*element 1*) and ends with the last array element (*element 18*). The initialisation values are entered one after another into the field *initial* and are separated from each other by commas.

If subsequent array elements are initialised with the same value, the abbreviated writing *number(value)* is possible.

- * number stands for the number of array elements
- * value stands for the initialisation value

In the example *element 1* was initialised with the value FALSE, *element 2* with the value TRUE and the remaining array elements are initialised with FALSE.

Use array elements in the program

You may use a 2-dimensional array element by entering identifier[Var1Var2].

* identifier (name of the array, see field Identifier)

* *Var1* and *Var2* are variables of the type INT or constants which have to be located in the value range of the array declaration. For this example Var1 is assigned to the range 3...5 and Var2 to the range 1...6.

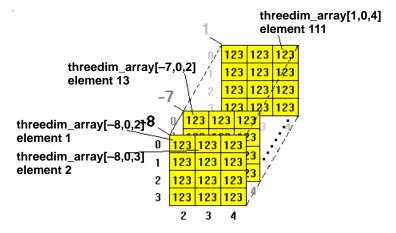
In the example you call up the element 12 with *twodim_array[4,6]*. If you wish to assign a value to this element in an IL program for example, you enter the following:

LD	current_temperature
ST	twodim_array[4,6]

Addresses of array elements

The array elements of the 2–dimensional array are subsequently saved in the PLC's memory starting with *element 1*. The following storage occupation results for the example described above:

Matsushita Address	IEC-Address	Array Element	Array Element Name
R0	%MX0.0.0	element 1	twodim_array[3,1]
R1	%MX0.0.1	element 2	twodim_array[3,2]
R2	%MX0.0.2	element 3	twodim_array[3,3]
R5	%MX0.0.5	element 6	twodim_array[3,6]
R6	%MX0.0.6	element 7	twodim_array[4,1]


Matsushita Address	IEC-Address	Array Element	Array Element Name
R7	%MX0.0.7	element 8	twodim_array[4,2]
RF	%MX0.0.15	element 16	twodim_array[5,4]
R10	%MX0.1.0	element 17	twodim_array[5,5]
R11	%MX0.1.1	element 18	twodim_array[5,6]

Example 3–dimensional ARRAY

Declaration in the global variable list:

Identifier	Address	Туре	Initial
threedim_array	%MW5.0	ARRAY [-81,03,24] OF WORD	

The declared array can be imagined as follows:

Initialize arrays with values

The initialisation of arrays with values starts with the first array element (*element 1*) and ends with the last array element (*element 120*). The initialisation values are entered one after another into the field *initial* and are separated from each other by commas. If subsequent array elements are initialised with the same value, the abbreviated writing *number(value)* is possible.

- * number stands for the number of array elements
- * value stands for the initialisation value

In the example all array elements were initialised with the value 123.

Use array elements in the program

Access to a 3-dimensional array is possible by entering identifier[Var1,Var2,Var3,Var4].

* *identifier* is the name of the array, (see field Identifier)

* *Var1, Var2* and *Var3* are variables of the type INT or constants which have to be located in the value range of the array declaration (see field Type). For this example Var1 is assigned to the range 8...1 and Var2 to the range 0...3 and Var3 to the range 2...4.

In the example you call up element 15 with *threedim_array[-7,0,4]*. If you wish to assign a value to this element in an IL program, for example, you enter the following:

LD	current_temperature
ST	threedim_array[-7,0,4]

Addresses of array elements

The array elements of the 3–dimensional array are subsequently saved in the PLC's memory starting with *element 1*. The following storage occupation results for the example described above:

Matsushita Address	IEC-Address	Array Element	Array Element Name
DT0	%MW5.0	element 1	threedim_array[-8,0,2]
DT1	%MW5.1	element 2	threedim_array[-8,0,3]
DT2	%MW5.2	element 3	threedim_array[-8,0,4]
DT3	%MW5.3	element 4	threedim_array[-8,1,2]
DT4	%MW5.4	element 5	threedim_array[-8,1,3]
DT10	%MW5.10	element 11	threedim_array[-8,3,3]
DT11	%MW5.11	element 12	threedim_array[-8,3,4]
DT12	%MW5.12	element 13	threedim_array[-7,0,2]
DT13	%MW5.13	element 14	threedim_array[-7,0,3]
DT117	%MW5.117	element 118	threedim_array[1,3,2]
DT118	%MW5.118	element 119	threedim_array[1,3,3]
DT119	%MW5.119	element 120	threedim_array[1,3,4]

1.4.8 TIME

For variables of the data type TIME(32 Bit), you can indicate an interval of 0,01 to 21 474 836,47 seconds. The resolution amounts to 10ms.

Default (32–bit) = T#0 (corresponds to 0 seconds)

Times with negative signs cannot be processed. T#–2s is e.g. interpreted as T#10m53s350ms.

Example

T#321,12s T#321120ms T#0,01s T#3d5h10m3s100ms

1.4.9 REAL

Variables of the data type REAL are real numbers or floating point constants. The value range for REAL values is between $-1,175494 \times 10^{-38}$ to $-3,402823 \times 10^{-38}$ and $1,175494 \times 10^{-38}$ to

 $3,402823 \times 10^{-38}$. The default for the initial value, e.g. for the variable declaration in the POU header or in the global variable list = 0.0 You can enter REAL values in the following format: [+–] Integer.Integer [(Ee) [+–] Integer]

Example

R

The REAL value always has to be entered with a decimal point (e.g. 123.0).

1.5 **NC_TOOL Library**

The NC_TOOL Library contains advanced address, information and copy functions available for all PLCs to make programming easier. Below please find a selection of these functions. For more detailed information and examples, see Online help.

Program can be adversely effected! These functions can cause substantial problems by accessing incorrect memory areas if they are not used in the sense they were meant for. Especially other parts of the program can be adversely effected.

Name	Function
Address functions	
Adr_Of_Var_I	Address of a variable at the input of a Matsushita function
Adr_Of_Var_O	Address of a variable at the output of a Matsushita function
AdrLast_Of_Var_I	Address of a variable at the input of a Matsushita function
AdrLast_Of_Var_O	Address of a variable at the output of a Matsushita function
Adr_Of_VarOffs_I	Address of a variable with offset at the input of a Matsushita function
Adr_Of_VarOffs_O	Address of a variable with offset at the output of a Matsushita function
AdrDT_Of_Offs_I	DT address from the address offset for the input of a Matsushita function
AdrDT_Of_Offs_0	DT address from the address offset for the output of a Matsushita function
AdrFL_Of_Offs_I	FL address from the address offset for the input of a Matsushita function
AdrFL_Of_Offs_0	FL address from the address offset for the output of a Matsushita function
Functions that yield	information on variables
(E_)AreaOffs_OfVar	Yields memory area and address offset of a variable (with Enable)
(E_)Is_AreaDT	Yields TRUE if the memory area of a variable is a DT area (with Enable)
(E_)Is_AreaFL	Yields TRUE if the memory area of a variable is an FL area (with Enable)
(E_)Size_Of_Var	Yields the size of a variable in words (with Enable)
(E_)Elem_OfArray1D	Yields the number of elements in an array (with Enable)
(E_)Elem_OfArray2D	Yields the number of elements of the 1st and 2nd dimension of an array (with Enable)
(E_)Elem_OfArray3D	Yields the number of elements of the 1st, 2nd and 3rd dimension of an array (with Enable)
Additional Copy Fun	ctions
(E_)Any16_ToBool16	Copies ANY16 to a variable with 16 elements of the data type BOOL (with Enable)
(E_)Bool16_ToAny16	Copies a variable with 16 elements of the data type BOOL to ANY16 (with Enable)
(E_)Any32_ToBool32	Copies ANY32 to a variable with 32 elements of the data type BOOL (with Enable)
(E_)Bool32_ToAny32	Copies a variable with 32 elements of the data type BOOL to ANY32 (with Enable)
(E_)Any16_ToSpecDT	Copies ANY16 to the special data register DT(9000+Offs) or DT(90000+Offs) (with Enable)
(E_)SpecDT_ToAny16	Copies the special data register DT(9000+Offs) or DT(90000+Offs) to ANY16 (with Enable)
(E_)Any32_ToSpecDT	Copies ANY32 to the special data register DT(9000+Offs) or DT(90000+Offs) (with Enable)

Name	Function
(E_)SpecDT_ToAny32	Copies the special data register DT(9000+Offs) or DT(90000+Offs) to ANY32 (with Enable)
(E_)AreaOffs_ToVar	Copies the content of an address specified by memory area and address offset to a variable (with Enable)
(E_)Var_ToAreaOffs	Copies the value of a variable to an address specified by memory area and address offset to a variable (with Enable)

Part II IEC Functions and Function Blocks

IEC programming

For information on IEC programming and its advantages, please refer to the First Steps and IEC presentations on the installation CD for FPWIN Pro.

The difference between functions with and without enable

Functions with an enable input and output are identified by the prefix E_.

The ENO status (TRUE or FALSE) of the first Function (FUN) or the first function block (FB) determines whether it will be executed and whether their outputs will be written to or not .

If a subsequent FUN or FB uses one of these outputs as an input, the compiler creates a temporary variable. Since other temporary variables can occupy this address, the value is undefined at this position if it has not been written to, i.e. if ENO is FALSE.

To avoid this, make sure all FUNs or FBs in a network are executed only if the previous FUN/FB has been executed, too. The compiler simply checks that the subsequent FUN or FB has no EN input and that an AND Function is not involved.

Chapter 2

Conversion Functions

(E_)BOOL_TO_INT BOOL to INTEGER

Description BOOL_TO_INT converts a value of the data type BOOL into a value of the data type INT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input	input data type
	INT	output	converion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Boolean_value	BOOL 🛃	FALSE	
•	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use a constants for the input variables.

Body The *Boolean_value* of the data type BOOL is converted into a value of the data type INTEGER. The converted value is written into *INT_value*.

- LD Boolean_value BOOL_TO_INT INT_value
- ST IF Boolean_value THEN

INT_value:=BOOL_TO_INT(Boolean_value);

(E_)BOOL_TO_DINT BOOL to DOUBLE INTEGER

Description BOOL_TO_DINT converts a value of the data type BOOL into a value of the data type DINT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	Boolean_value	BOOL 🗗	FALSE	
	VAR 🛓	DINT_value	DINT 📑	0	

This example uses variables. You may also use a constants for the input variables.

Body The *Boolean_value* of the data type BOOL is converted into a DOUBLE INTEGER value. The converted value is written into *DINT_value*.

ST IF Boolean_value THEN

DINT_value:=BOOL_TO_DINT(Boolean_value);

(E_)BOOL_TO_WORD BOOL to WORD

Description BOOL_TO_WORD converts a value of the data type BOOL into a value of the data type WORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input	input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	Boolean_value	BOOL 🗗	FALSE	
	VAR 🛓	WORD_value	WORD 📑	0	

This example uses variables. You may also use a constants for the input variables.

Body The *Boolean_value* of the data type BOOL is converted into a value of the data type WORD. The converted value is written into *WORD_value*.

- LD Boolean_value BOOL_TO_WORD WORD_value
- ST IF Boolean_value THEN

WORD_value:=BOOL_TO_WORD(Boolean_value);

(E_)BOOL_TO_DWORD BOOL to DOUBLE WORD

Description BOOL_TO_DWORD converts a value of the data type BOOL into a value of the data type DWORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input	input data type
	DWORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Boolean_value	BOOL 🗗	FALSE	
1	VAR 🛓	DWORD_value	DWORD 편	0	

This example uses variables. You may also use a constants for the input variables.

Body The *Boolean_value* of the data type BOOL is converted into a value of the data type DOUBLE INTEGER. The converted value is written into *DWORD_value*.

LD

Boolean_value
 BOOL_TO_DWORD
 DWORD_value
 DWORD_value

ST IF Boolean_value THEN

DWORD_value:=BOOL_TO_DWORD(Boolean_value);

(E_)BOOL_TO_STRING BOOL to STRING

Description The function BOOL_TO_STRING converts a value of the data type BOOL to a value of the data type STRING[1]. The resulting string is represented by '0' or '1'.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input	input data type
	STRING	output	conversion result

When using the data type STRING, make sure that the length of the result string is equal to or greater than the length of the source string.

Example In this example the function BOOL_TO_STRING is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	input_value	BOOL	TRUE	example value
1	VAR 🗄	result_string	STRING[1]	Ŧ "	result: here '1'

The input variable *input_value* of the data type BOOL is intialized by the value TRUE. The output variable *result_string* is of the data type STRING[1]. It can store a maximum of one character. You can declare a character string that has more than one character, e.g. STRING[5]. From the 5 characters reserved, only 4 are used. Instead of using the variable *input_value*, you can write the constants TRUE or FALSE directly to the function's input contact in the body.

- Body The *input_value* of the data type BOOL is converted into STRING[1]. The converted value is written to *result_string*. When the variable *input_value* = TRUE, *result_string* shows '1'.
 - LD BOOL_TO_STRING result_value
 - IL LD input_value BOOL_TO_STRING ST result_string

(E_)INT_TO_BOOL INTEGER to BOOL

Description INT_TO_BOOL converts a value of the type INT into a value of the type BOOL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	BOOL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	INT_value	INT 📑	0	
1	VAR 🛓	Boolean_value	BOOL 🗗	FALSE	

This example uses variables. You may also use a constants for the input variables.

- Body INT_value (16 bit) of the data type INTEGER is converted into a Boolean value. The result is written into *Boolean_value*.
 - LD INT_TO_BOOL INT_value a_Int Boolean_value
 - ST Boolean_value:=INT_TO_BOOL(INT_value);

If *INT_value* has the value 0, the conversion result will be 0 (FALSE), in any other case it will be 1 (TRUE).

(E_)INT_TO_DINT INTEGER to DOUBLE INTEGER

Description INT_TO_DINT converts a value of the type INT into a value of the type DINT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	INT_value	INT 🗗	0	
1	VAR 🛓	DINT_value	DINT 📑	0	

In this example the input variable (*INT_value*) has been declared. However, you may enter a constant directly at the input contact of the function.

- Body *INT_value* of the data type INTEGER is converted into a value of the data type DOUBLE INTEGER. The result will be written into *DINT_value*

 - ST DINT_value:=INT_TO_DINT(INT_value);

(E_)INT_TO_WORD INTEGER to WORD

Description INT_TO_WORD converts a value of the type INT into a value of the type WORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	INT_value	INT 📑	0	
1	VAR 🛓	WORD_value	WORD 📑	0	

This example uses variables. You may also use a constants for the input variables.

Body *INT_value* of the data type INTEGER is converted into a value of the data type WORD. The result is written in *WORD_value*.

ST WORD_value:=INT_TO_WORD(INT_value);

1 Provension of the second second

The bit combination of the input variable is assigned to the output variable.

(E_)INT_TO_DWORD INTEGER to DOUBLE WORD

Description INT_TO_DWORD converts a value of the type INT into a value of the type DWORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	DWORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	INT_value	INT 📑	0	
1	VAR 🛓	DWORD_value	DWORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *INT_value* of the data type INTEGER is converted into a value of the data type DOUBLE WORD (32 bit). The result is written in *DWORD_value*.

- LD INT_TO_DWORD DWORD_value
- ST DWORD_value:=INT_TO_DWORD(INT_value);

(E_)INT_TO_REAL INTEGER to REAL

Description INT_TO_REAL converts a value of the data type INTEGER into a value of the data type REAL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	REAL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR	土 DINT_value	DINT	Ŧ 0	
1	VAR	▲ INT_value	INT	Ŧ 0	

This example uses variables. You may also use a constant for the input variable.

Body *INT_value* of the data type INTEGER is converted into a value of the data type REAL.The converted value is stored in *REAL_value*.

LD	<u>. 'a 18a 18a 18a 18a 18a 18a 18a 19a 18a 18a 18a 18a 1</u>	
	INT TO REAL	
	INT_value — a_IntREAL_value	

ST REAL_value:=INT_TO_REAL(INT_value);

(E_)INT_TO_TIME INTEGER to TIME

Description INT_TO_TIME converts a value of the type INT into a value of the type TIME. The resolution is 10ms, e.g. when the INTEGER value = 350, the TIME value = 3s500ms.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	INT	input	input data type
	TIME	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	INT_value	INT 📑	0	
1	VAR 🛓	time_value	тіме 📑	T#Os	

This example uses variables. You may also use a constant for the input variable.

Body *INT_value* of the data type INTEGER is converted into a value of the data type TIME. The result will be written into the output variable *time_value*.

חו	· · · · · · · · · <u>· · · · · · · · · · </u>
	INT TO TIME
	 INT_value — a_Int time_value · · ·

ST time_value:=INT_TO_TIME(INT_value);

(E_)INT_TO_BCD INTEGER to BCD

Description INT_TO_BCD converts a binary value of the type INTEGER in a BCD value (binary coded decimal integer) of the type WORD in order to be able to output BCD values in word format.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types			Function
	INT in		input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	INT_value	INT 📑	0	
1	VAR 🛓	BCD_value_16bit	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *INT_value* of the data type INTEGER is converted into a BCD value of the data type WORD. The converted value is written into *BCD_value_16bit*.

- LD INT_TO_BCD BCD_value_16bit
- ST BCD_value_16bit:=INT_TO_BCD(INT_value);

lí è

Since the output variable is of the type WORD and 16 bits wide, the value of the input variable should have a maximum of 4 decimal places and should thus be located between 0 and 9999.

)INT_TO_STRING INTEGER to STRING

Description The function INT_TO_STRING converts a value of the data type INT to a value of the data type STRING[6]. The resulting string is right justified within the range '-32768' to '32767'. The plus sign is omitted in the positive range. Leading zeros are filled with empty spaces (e.g. out of -12 of STRING ' –12').

> For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data

ta types	Data type	I/O	Function
	INT	input	input data type
	STRING[6]	output	conversion result

When using the data type STRING, make sure that the length of the result i de string is equal or greater than the length of the source string.

- In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	VAR 🛓	input_value	INT 📑	1234	example value		
1	VAR 🗄	result_string	STRING[6] Ŧ	u	result: here ' 1234'		

The input variable *input value* of the data type INT is intialized by the value 1234. The output variable result_string is of the data type STRING[6]. It can store a maximum of 6 characters. Instead of using the variable input_value, you can enter a constant directly at the function's input contact in the body.

- Body The input_value of the data type INT is converted into STRING[6]. The converted value is written to result_string. When the variable input_value = 1234, result string shows ' 1234'.
 - LD INT_TO_STRING input_value — —result_string
 - ST result_string:= INT_TO_STRING(input_value);

(E_)DINT_TO_BOOL DOUBLE INTEGER to BOOL

Description DINT_TO_BOOL converts a value of the data type DINT into a value of the data type BOOL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
DINT		input	input data type
	BOOL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	DINT_value	DINT 📑	0	
1	VAR 🛓	Boolean_value	BOOL 편	FALSE	

This example uses variables. You may also use a constant for the input variable.

Body DINT_value of the data type DOUBLE INTEGER is converted into a value of the data type BOOL. The converted value in written in *Boolean_value*.

- LD DINT_TO_BOOL Boolean_value
- ST Boolean_value:=DINT_TO_BOOL(DINT_value);

If the variable DINT_value has the value 0, the conversion result = FALSE, in any other case it will be TRUE.

(E_)DINT_TO_INT DOUBLE INTEGER to INTEGER

Description DINT_TO_INT converts a value of the data type DINT into a value of the data type INT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DINT input		input data type
	INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR :	DINT_value	DINT	Ŧ 0	
	VAR <u>:</u>	INT_value	INT	₹ 0	

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER (32 bit) is converted into a value of the data type INTEGER (16 bit). The converted value is written in *INT_value*.

- LD DINT_TO_INT ____INT_value _____ a_Dint ____INT_value .
- ST INT_value:=DINT_TO_INT(DINT_value);

The value of the input variable should be between –32768 and 32767.

(E_)DINT_TO_WORD DOUBLE INTEGER to WORD

Description DINT_TO_WORD converts a value of the data type DINT into a value of the data type WORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DINT input		input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	DINT_value	DINT 📑	0	
1	VAR ±	WORD_value	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER (32 bit) is converted into a value of the data type WORD (16 bit). The converted value is written in *WORD_value*.

LD

DI	NT	v		e _		1000		DII int	NT_	_тс)_V	vo	RD	1		•	_\	NO	RD)_v	alu	Je
	•	•	•	•		•	•	•						•		•	•	•	•	•	•	•
34	2	÷.	2	34	0	34	6	34	6	34	2	34	3	34	2	÷.	4	÷.	-	34	0	÷.

ST WORD_value:=DINT_TO_WORD(DINT_value);

The first 16 bits of the input variable are assigned to the output variable.

(E_)DINT_TO_DWORD DOUBLE INTEGER to DOUBLE WORD

Description DINT_TO_DWORD converts a value of the data type DINT into a value of the data type DWORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DINT in		input data type
	DWORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	enable	BOOL 📑	FALSE	
1	VAR 🛓	DINT_value	DINT 📑	0	
2	VAR 🛓	DWORD_value	DWORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER is converted into a value of the data type DOUBLE WORD. The converted value is written in *DWORD_value*.

- LD DINT_TO_DWORD DWORD_value
- ST DWORD_value:=DINT_TO_DWORD(DINT_value);

The combination of the input variable is assigned to the output variable.

(E_)DINT_TO_TIME DOUBLE INTEGER to TIME

Description DINT_TO_TIME converts a value of the data type DINT into a value of the data type TIME. A value of 1 corresponds to a time of 10ms, e.g. an input value of 123 is converted to a TIME T#1s230.00ms.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DINT	input	input data type
	TIME	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	DINT_value	DINT 📑	600	
1	VAR 🛓	time_value	TIME 📑	T#Os	result: T# 6s 0.00ms

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER is converted to value of the data type TIME. The result is written into the output variable *time_value*.

LD			
		DINT_TO_TIME	
		- 01-1	
	·DINT_value —	a_unt	time_value ·

ST time_value:=DINT_TO_TIME(DINT_value);

(E_)DINT_TO_REAL DOUBLE INTEGER to REAL

Description DINT_TO_REAL converts a value of the data type DOUBLE INTEGER into a value of the data type REAL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

<u>6.35</u>

Data types	Data type	I/O	Function
	DINT	input	input data type
	REAL	output	conversion result

Example In this example the function DINT_TO_REAL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR	보 DINT_value		10	
2	VAR	BEAL_value	REAL 7	0.0	

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER is converted into a value of the data type REAL. The converted value is stored in *REAL_value*.

- LD DINT_TO_REAL _____REAL_value
- ST REAL_value:=DINT_TO_REAL(DINT_value);

(E_)DINT_TO_BCD DOUBLE INTEGER to BCD

Description DINT_TO_BCD converts a value of the data type DINT into a BCD value of the data type DWORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DINT	input	input data type
	DWORD	output	conversion result

Example In this example the function DINT_TO_BCD is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	DINT_value	DINT 📑	0	
· · ·	VAR 🛓	BCD_value_32bit	DWORD 편	0	

This example uses variables. You may also use a constant for the input variable.

Body *DINT_value* of the data type DOUBLE INTEGER is converted into a BCD value of the data type DOUBLE WORD. The converted value is written in *BCD_value_32bit*.

- LD DINT_TO_BCD BCD_value_32bit
- ST BCD_value_32bit:=DINT_TO_BCD(DINT_value);

i P

The value for the input variable should be between 0 and 99999999.

)DINT_TO_STRING **DOUBLE INTEGER to STRING**

Description The function DINT_TO_STRING converts a value of the data type DINT to a value of the data type STRING[11]. The resulting string is right justified within the range '-2147483648' to '2147483647'. The plus sign is omitted in the positive range. Leading zeros are filled with empty spaces (e.g. out of -12 of STRING ' –12').

> For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Da

ata types	Data type	I/O	Function
	DINT	input	input data type
	STRING	output	conversion result

When using the data type STRING, make sure that the length of the result re string is equal or greater than the length of the source string.

- In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	input_value	DINT 📑	12345678	example value
1	VAR 🗄	result_string	STRING[11] 📑	u	result: here ' 12345678'

The input variable *input value* of the data type DINT is initialized by the value 12345678. The output variable result_string is of the data type STRING[11]. It can store a maximum of 11 characters.

Instead of using the variable *input value*, you can enter a constant directly at the function's input contact in the body.

- The input_value of the data type DINT is converted into STRING[11]. The Body converted value is written to result_string. When the variable input_value = 12345678, result_string shows ' 12345678'.
 - LD DINT_TO_STRING input value — -result_string
 - ST result_string:=DINT_TO_STRING(input_value);

(E_)WORD_TO_BOOL WORD to BOOL

Description WORD_TO_BOOL converts a value of the type WORD into a value of the type BOOL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	BOOL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	WORD _value	WORD 📑	0	
1	VAR 🛓	Boolean_value	BOOL 📑	FALSE	

This example uses variables. You may also use a constant for the input variable.

Body *WORD_value_16bit* of the data type WORD is converted into a Boolean value (11– bit). The result will be written in *Boolean_value*.

- LD WORD_TO_BOOL Boolean_value
- ST Boolean_value:=WORD_TO_BOOL(WORD_value);

If the value of *WORD*_value = 0 (16#0000), the conversion result will be = 0 (FALSE), in any other case = 1 (TRUE).

(E_)WORD_TO_INT WORD to INTEGER

Description WORD_TO_INT converts a value of the type WORD into a value of the type INT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	WORD_value	WORD 📑	0	
_	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use a constant for the input variable.

- Body *WORD_value* of the data type WORD is converted into a value of the data type INTEGER. The result will be written in *INT_value*.
 - LD WORD_TO_INT WORD_Value WORD_Value INT_value
 - ST INT_value:=WORD_TO_INT(WORD_value);
- The bit combination of *WORD*_value is assigned to *INT*_value.

(E_)WORD_TO_DINT WORD to DOUBLE INTEGER

Description WORD_TO_DINT converts a value of the type WORD into a value of the type DINT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

Class		5	Identifier	Туре		Initia	Comment
0	VAR	Ŧ	WORD _value	WORD	Ŧ	0	
1	VAR	ŧ	DINT_value	DINT	Ŧ	0	

This example uses variables. You may also use a constant for the input variable.

Body *WORD_value* of the data type WORD is converted into a value of the data type INTEGER. The result will be written in *DINT_value*.

םו	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•
LD										١V	ΝŪ	R	רו	n.	n	IN	г		.						
	. '	wo	DR	D_	va	lue	è —	_						Ŭ.			<u> </u>			-0	DIN	т_	va	lue	e٠
	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•	·	·	·	·	·	•

ST DINT_value:=WORD_TO_DINT(WORD_value);

(E_)WORD_TO_DWORD WORD to DOUBLE WORD

Description WORD_TO_DWORD converts a value of the type WORD into a value of the type DWORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	DWORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
O	VAR ±	WORD _value	WORD 📑	0	
1	VAR 🛓	DWORD_value	DWORD 편	0	

This example uses variables. You may also use a constant for the input variable.

Body *WORD_value* of the data type WORD is converted into a value of the data type DOUBLE WORD. The result will be written in *DWORD_value*.

חו	
LD	WORD TO DWORD
	· WORD value — a WordDWORD value ·

ST DWORD_value:=WORD_TO_DWORD(WORD_value);

The bit combination of *WORD_value* is assigned to *DWORD_value*.

(E_)WORD_TO_TIME WORD to TIME

Description WORD_TO_TIME converts a value of the type WORD into a value of the type TIME.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	TIME	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

input variable $12345 \Rightarrow$ output variable: T#123.45s or input variable 16#0012 \Rightarrow output variable: T#180ms

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR	+ WORD_value	WORD	Ŧ	
1	VAR	± time_value	TIME	Ŧ T#Os	

This example uses variables. You may also use a constant for the input variable.

Body *WORD_value* of the data type WORD (16–bit) is converted into a value of the data type TIME (16–bit). The result will be written into the output variable *time_value*.

- LD WORD_value a_Word time_value
- ST time_value:=WORD_TO_TIME(WORD_value);

(E_)WORD_TO_STRING WORD to STRING

Description The function WORD_TO_STRING converts a value of the data type WORD to a value of the data type STRING[7]. In accordance with IEC–1131, the hexadecimal representation of the result string is '16#xxxx', whereby xxxx is the hexadecimal representation of the input value. Possible values for the result string are in the range from '16#0000' to '16#FFFF', whereby leading zeros are filled with the character zero.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

es	Data type	I/O	Function
	WORD	input	input data type
	STRING	output	conversion result

When using the data type STRING, make sure that the length of the result string is equal or greater than the length of the source string.

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	VAR 🛓	input_value	WORD 🖣	16#AE4	example value		
1	VAR 🛓	result_string	STRING[7] Ŧ		result: here '16#0AE4'		

The input variable *input_value* of the data type WORD is intialized by the value 16#AE4. The output variable *result_string* is of the data type STRING[7]. It can store a maximum of 7 characters.

Instead of using the variable *input_value*, you can enter a constant directly at the function's input contact in the body.

- Body The *input_value* of the data type WORD is converted into STRING[7]. The converted value is written to *result_string*. When the variable *input_value* = 16#AE4, *result_string* shows '16#0AE4'.
 - LD word_to_string result_string
 - ST result_string:=WORD_TO_STRING(input_value);

(E_)DWORD_TO_BOOL DOUBLE WORD to BOOL

Description DWORD_TO_BOOL converts a value of the data type DOUBLE WORD into a value of the data type BOOL.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	BOOL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	DWORD _value	DWORD Ŧ	0	
1	VAR 🛓	Boolean_value	BOOL 편	FALSE	

This example uses variables. You may also use a constant for the input variable.

Body *DWORD_value* of the data type DOUBLE WORD is converted into a Boolean value (1 bit). the converted value is written in *Boolean_value*.

- LD DWORD_TO_BOOL Boolean_value
- ST Boolean_value:=DWORD_TO_BOOL(DWORD_value);

If the variable *DWORD_value* has the value 0 (16#00000000), the conversion result will be FALSE, in any other case it will be TRUE.

(E_)DWORD_TO_INT DOUBLE WORD to INTEGER

Description DWORD_TO_INT converts a value of the data type DWORD into a value of the data type INT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	DWORD _value	DWORD Ŧ	0	
1	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use constants for the input variables.

Body *DWORD_value* of the data type DOUBLE WORD (32–bit) is converted into an INTEGER value (16–bit). The converted value is written in *INT_value*.

- LD ______ DWORD_TO_INT ____INT_value
- ST INT_value:=DWORD_TO_INT(DWORD_value);

The first 16 bits of the input variable are assigned to the output variable.

(E_)DWORD_TO_DINT DOUBLE WORD to DOUBLE INTEGER

Description DWORD_TO_DINT converts a value of the data type DOUBLE WORD into a value of the data type DOUBLE INTEGER.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	∨AR ±	DWORD_value	DWORD Ŧ	0	
1	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *DWORD_value* of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value. The converted value is written in *DINT_value*.

- ST DINT_value:=DWORD_TO_DINT(DWORD_value);

The bit combination of the input variable will be assigned to the output variable.

(E_)DWORD_TO_WORD DOUBLE WORD to WORD

Description DWORD_TO_WORD converts a value of the data type DOUBLE WORD into a value of the data type WORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	∨AR ±	DWORD _value	DWORD Ŧ	0	
	VAR 🛓	WORD_value	WORD 편	0	

This example uses variables. You may also use a constant for the input variable.

Body *DWORD_value* of the data type DOUBLE WORD (32–bit) is converted into a value of the data type WORD (16–bit). The converted value is written in *WORD_value*.

- ST WORD_value:=DWORD_TO_WORD(DWORD_value);

The first 16 bits of the input variable are assigned to the output variable.

(E_)DWORD_TO_TIME DOUBLE WORD to TIME

Description DWORD_TO_TIME converts a value of the data type DWORD into a value of the data type TIME. A value of 1 corresponds to a time of 10ms, e.g. the input value 12345 (16#3039) is converted to a TIME T#2m3s450.00ms.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	TIME	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	DWORD_value	DWORD 편	16#F	
1	VAR 🛓	time_value	TIME 📑	T#Os	result: T# 150.00 ms

This example uses variables. You may also use a constant for the input variable.

Body *DWORD_value* of the data type DWORD (32 bits) is converted into a value of the data type TIME (16 bits). The result is written into the output variable *time_value*.

LD	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	D	W(DR	D_	va	Iue	⊇ —	•	a,					то	_T	IM	E		ŀ	—ti	me	e_r	val	lue	
	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:

ST time_value:=DWORD_TO_TIME(DWORD_value);

(E_)DWORD_TO_STRING DOUBLE WORD to STRING

Description The function DWORD_TO_STRING converts a value of the data type DWORD to a value of the data type STRING[11]. In accordance with IEC–1131, the hexadecimal representation of the result string is '16#xxxxxxx', whereby xxxxxxx is the hexadecimal representation of the input value. Possible values for the result string are in the range from '16#00000000' to '16#FFFFFFFF', whereby leading zeros are filled with the character zero.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

es	Data type	I/O	Function
	DWORD	input	input data type
	STRING	output	conversion result

When using the data type STRING, make sure that the length of the result string is equal or greater than the length of the source string.

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class Identifier		Туре	Initial	Comment
0	VAR 🛓	input_value	DWORD 📑	16#3ABDE4	example value
1	VAR 🛓	result_string	STRING[11] 🖣		result: here '16#003ABDE4'

The input variable *input_value* of the data type DWORD is initialized by the value 16#3ABDE4. The output variable *result_string* is of the data type STRING[11]. It can store a maximum of 11 characters.

Instead of using the variable *input_value*, you can enter a constant directly at the function's input contact in the body.

- Body The *input_value* of the data type DWORD is converted into STRING[11]. The converted value is written to *result_string*. When the variable *input_value* = 16#3ABDE4, *result_string* shows '16#003ABDE4'.
 - LD DWORD_TO_STRING -----result_string
 - ST result_string:=DWORD_TO_STRING(input_value);

(E_)REAL_TO_INT REAL to INTEGER

Description REAL_TO_INT converts a value of the data type REAL into a value of the data type INTEGER.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types

Data type I/O		Function
REAL	input	input data type
INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	REAL_value	REAL 7	0.0	
1	VAR ±	INT_value	INT Ŧ	0	

This example uses variables. You may also use a constant for the input variable.

Body *REAL_value* of the data type REAL is converted into a value of the data type INTEGER. The converted value is stored in *INT_value*.

- LD REAL_value ______ REAL_TO_INT _____INT_value .
- ST INT_value:= REAL_TO_INT(REAL_value);

)REAL_TO_DINT **REAL to DOUBLE INTEGER**

Description REAL_TO_DINT converts a value of the data type REAL into a value of the data type DOUBLE INTEGER.

> For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0. i de la companya de l

Data tuna I/O Eurotian

Data types	Data type	I/O	Function
	REAL	input	input data type
	DINT	output	conversion result

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class		Identifier	Туре	3	Initial	Comment
0	VAR	4	REAL_value	REAL	Ŧ	0.0	
1	VAR	Ŧ	DINT_value	DINT	Ŧ	0	

This example uses variables. You may also use a constant for the input variable.

REAL_value of the data type REAL is converted into a value of the data type Body DOUBLE INTEGER. The converted value is stored in DINT_value.

- LD REAL_TO_DINT REAL_value — a_real -DINT_value ·
- ST DINT_value:= REAL_TO_DINT(REAL_value);

(E_)REAL_TO_TIME REAL tO TIME

Description REAL_TO_TIME converts a value of the data type REAL to a value of the data time TIME. 10ms of the data type TIME correspond to 1.0 REAL unit, e.g. when REAL = 1.0, TIME = 10ms; when REAL = 100.0, TIME = 1s. The value of the data type real is rounded off to the nearest whole number for the conversion.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types	Data type	I/O	Function
	REAL	input	input data type
	TIME	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	result_time		T#Os	

Body By clicking on the view icon while in the online mode, you can see the result 0.00ms immediately. Since the value at the REAL input contact is less than 0.5, it is rounded down to 0.0.

חו			ca acta acta acta acta a
		REAL TO TIME	
	0,499	a_Real	result_time=T#0,00ms ·
	0.500.5		ta pia pia pia pia p

ST result_time:= REAL_TO_TIME(0.499);

re

(E_)REAL_TO_STRING REAL to STRING

Description The function REAL_TO_STRING converts a value from the data type REAL into a value of the data type STRING[15], which has 7 spaces both before and after the decimal point. The resulting string is right justified within the range '-999999.0000000' to '9999999.0000000'. The plus sign is omitted in the positive range. Leading zeros are filled with empty spaces (e.g. out of −12.0 of STRING ' −12.0').

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types	Data type	I/O	Function
	REAL	input	input data type
	STRING	output	conversion result

- When using the data type STRING, make sure that the length of the result string is equal or greater than the length of the source string.
 - The function requires approximately 160 steps of program memory. For repeated use you should integrate it into a user function that is only stored once in the memory.
- **Example** In this example the function REAL_TO_STRING is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier Type		Initial	Comment
0	VAR 🛓	input_value	REAL 📑	-123.4560166	example value
1	VAR 🛓	result_string	STRING[15] 🖣	11	result: here '123.4560166'

The input variable *input_value* of the data type REAL is intialized by the value –123.4560166. The output variable *result_string* is of the data type STRING[15]. It can store a maximum of 15 characters.

Instead of using the variable *input_value*, you can enter a constant directly at the function's input contact in the body.

- Body The *input_value* of the data type REAL is converted into STRING[15]. The converted value is written to *result_string*. When the variable *input_value* = 123.4560166, *result_string* shows ' -123.4560166'.
 - LD REAL_TO_STRING _____result_string

IL LD input_value REAL_TO_STRING ST result_string

(E_)TIME_TO_INT TIME to INTEGER

Description TIME_TO_INT converts a value of the type TIME into a value of the type INT.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	input	input data type
	INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

Input variable: T#12.34s \Rightarrow output variable: 1234

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time _value	тіме 🖪	T#Os	
1	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body *Time_value* of the data type TIME is converted into a value of the data type INTEGER. The result will be written into the output variable *INT_value*.

ID	· · · · · · · · · · · · · · · · · · ·	
20		
	<pre>-time_value a_Time INT_value</pre>	

ST INT_value:=TIME_TO_INT(time_value);

(E_)TIME_TO_DINT TIME to DOUBLE INTEGER

Description TIME_TO_DINT converts a value of the data type TIME into a value of the data type DINT. The time 10ms corresponds to the value 1, e.g. an input value of T#1m0s is converted to the value 6000.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time_value	тіме 📑	T#100ms	
1	VAR 🛓	DINT_value	DINT 📑	0	result: 10

This example uses variables. You may also use a constant for the input variable.

Body *time_value* of the data type TIME is converted to value of the data type DOUBLE INTEGER. The result is written into the output variable *DINT_value*.

ST DINT_value:=TIME_TO_DINT(time_value);

(E_)TIME_TO_WORD TIME to WORD

Description TIME_TO_WORD converts a value of the type TIME into a value of the type WORD.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	input	input data type
	WORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

Input variable: T#12.34s \Rightarrow output variable: 1234 or input variable: T#1.00s \Rightarrow output variable: 16#0064

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time_value	тіме 📑	T#Os	
1	VAR 🛓	WORD_value	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

LD *Time_value* of the data type TIME is converted into a value of the data type WORD. The result will be written into the output variable *WORD value*.

			·	·		·	·	·	·	·	•	·	·	·	·	·	·						
·	·	·	·	·	·	·		Т	ïМ	Е	TC	۱ (NC	R)	·	·	·	·	·	·	·	·
٠ti	me	<u>_</u>	va	lue	è —	_	a,	_Ti	me	e 7	-	_				⊢		٧O	RE	2	/al	ue	•

ST WORD_value:=TIME_TO_WORD(time_value);

(E_)TIME_TO_DWORD TIME to DOUBLE WORD

Description TIME_TO_DWORD bzw. E_TIME_TO_DWORD converts a value of the data type TIME into a value of the data type DWORD. The time 10ms corresponds to the value 1, e.g. an input value of T#1s is converted to the value 100 (16#64).

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	input	input data type
	DWORD	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time_value	тіме 📑	T#120ms	
1	VAR 🛓	DWORD_value	DWORD 📑	0	result: 16#C

This example uses variables. You may also use a constant for the input variable.

Body *time_value* of the data type TIME is converted to a value of the data type DWORD and written into the output variable *DWORD_value*.

LD	.																									
	·	·	·	·	·	·	·		TI	MB		то	D	W(DR	D		•	·						•	
	∙t	i m	e_	va	lue	≥ —	_	а	_Ti	me	€.		-					_	-0	W	OF	RD,	_v?	alu	Je	·
	·	·	·	·	·	·	·	•	·	·	•	·	•	•	•	•	•	•	·	·	·		·	·	·	·
	۱.					·	·			·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	

ST DWORD_value:=TIME_TO_DWORD(time_value);

(E_)TIME_TO_REAL TIME to REAL

Description TIME_TO_REAL converts a value of the data type TIME to a value of the data time REAL. 10ms of the data type TIME correspond to 1.0 REAL unit, e.g. when TIME = 10ms, REAL = 1.0; when TIME = 1s, REAL = 100.0. The resolution amounts to 10ms.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types

LD

Data type	I/O	Function
TIME	input	input data type
REAL	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR	± input_time	TIME	₹ T#1h1m1s	
1	VAR		REAL	₹ 0.0	result:here 366100,0

This example uses variables. You may also use a constant for the input variable.

- input_time _____a_Time _____result_real
- ST result_real:=TIME_TO_REAL(input_time);

(E_)TIME_TO_STRING TIME to STRING

Description The function TIME_TO_STRING converts a value of the data type TIME to a value of the data type STRING[20]. In accordance with IEC–1131, the result string is displayed with a short time prefix and without underlines. Possible values for the result string's range are from 'T#000d00h00m00s000ms' to 'T#248d13h13m56s470ms'.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

When using the data type STRING, make sure that the length of the result string is equal to or greater than the length of the source string.

Data types

Data type	I/O	Function			
TIME	input	input data type			
STRING	output	conversion result			

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	input_value	TIME 📑	T#1h30m45s	example value
1	VAR 🛓	result_string	STRING[20] 🖣	11	result: here 'T#000d01h30m45s000ms'

The input variable *input_value* of the data type TIME is intialized by the value T#1h30m45s. The output variable *result_string* is of the data type STRING[20]. It can store a maximum of 20 characters.

Instead of using the variable *input_value*, you can enter a constant directly at the function's input contact in the body.

- Body The *input_value* of the data type TIME is converted into STRING[20]. The converted value is written to *result_string*. When the variable *input_value* = T#1h30m45s, *result_string* shows 'T#000d01h30m45s000ms'.
 - LD TIME_TO_STRING _____result_string
 - ST result_string:=TIME_TO_STRING(input_value);

(E_)TRUNC_TO_INT Truncate (cut off) decimal digits of REAL input variable, convert to INTEGER

Description TRUNC_TO_INT cuts off the decimal digits of a REAL number and delivers an output variable of the data type INTEGER.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

- r
- The first 16 bits of the input variable are assigned to the output variable.
- Cutting off the decimal digits decreases a positive number towards zero and increases a negative number towards zero.

Data type I/O Function								
	REAL	ii	nput	input data type				
INT output		output	conversion res	ult				
Error flags	No.	IEC	address	Set	lf			
	R9007 %MX0.900.7		(0.900.7	permanently	permanently - input variable does not have the data type RE			
	R9008	%MX0.900.8		for an instant	– output vari	able is gre	ater than a 16-bit INTEGER	
	R9009	%MX	(0.900.9	for an instant	- output vari	able is zer	0	
Example	In this example the function is programmed in ladder diagram (LD) and structure text (ST). The same POU header is used for both programming languages. Ye can find an instruction list (IL) example in the online help.							
POU In the POU header, all input and output variables are declared to programming this function.				e declared that are used f				
	C	lass	Identifier	Туре		Initial	Comment	
	- o 🗸	AR	± REAL_va	llue REAL	Ŧ	0.0	number betw32768.99 +32767.99	
	1 🗸	AR	± INT_valu	e INT	Ŧ	D	number betw32767+32768	
	This example uses variables. You may also use a constant for the input variable							
Body	The decimal digits of <i>REAL_value</i> are cut off. The result is stored as a 16–b INTEGER in <i>INT_value</i> .							
LD	REAL_value a_RealINT_value							
ST	INT_va	lue	:=TRUNC	_TO_INT(R	EAL_valu	e);		

• This function is only available for the FP0.

(E_)TRUNC_TO_DINT Truncate (cut off) decimal digits of REAL input variable, convert to DOUBLE INTEGER

Description TRUNC_TO_DINT cuts off the decimal digits of a REAL number and delivers an output variable of the data type DOUBLE INTEGER.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

r

• This function is only available for the FP0.

• Cutting of the decimal digits decreases a positive number towards zero and increases a negative number towards zero.

Data types	Data ty	pe I/O	Function	
	REAL	input	input data type	
DINT output		conversion res	ult	
Error flags No. IEC add		IEC address	Set	lf
R9007 %		%MX0.900.7	permanently	 input variable does not have the data type REAL
	R9008	%MX0.900.8	for an instant	 output variable is greater than a 32-bit DINT
R900B %MX0.900.B		for an instant	 – output variable is zero 	

Example In this example the function is programmed in ladder diagram (LD). You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	REAL_value	REAL Ŧ	0.0	number betw2147483.000 +2147483.000
1	VAR ±	DINT_value		0	number betw2147483 +2147483

This example uses variables. You may also use a constant for the input variable.

Body The decimal digits of *REAL_value* are cut off. The result is stored as a 32–bit DOUBLE INTEGER in *DINT_value*.

ID	
20	REAL value a RealDINTDINT value a RealDINT value a RealDINT valueDINT va
	· REAL_value — a_RealDINT_value

(E_)BCD_TO_INT BCD to INTEGER

Description BCD_TO_INT converts binary coded decimal numbers (BCD) into binary values of the type INTEGER.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	WORD	input	input data type
	INT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	BCD_value_16bit	WORD 📑	0	
1	VAR 🛓	INT_value	INT 📑	0	

This example uses variables. You may also use a constant for the input variable.

BCD constants can be indicated in FPWIN Pro as follows:

2#0001100110010101 or 16#1995

- Body *BCD_value_16bit* of the data type WORD is converted into an INTEGER value. The converted value is written into output variable *INT_value*.
 - LD BCD_value_16bit _____a_bcd ____INT_value
 - ST INT_value:=BCD_TO_INT(BCD_value_16bit);

(E_)BCD_TO_DINT BCD to DOUBLE INTEGER

Description BCD_TO_DINT converts a BCD value (binary coded decimal integer) of the data type DOUBLE WORD in a binary value of the data type DOUBLE INTEGER in order to process a BCD value in double word format.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	DWORD	input	input data type
	DINT	output	conversion result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	BCD_value_32bit	DWORD 📑	0	
	VAR 🛓	DINT_value	DINT 📑	0	

This example uses variables. You may also use a constant for the input variable.

BCD constants can be indicated in FPWIN Pro as follows: 2#000110010101010001100110010101 or 16#19951995

Body BCD_value_32bit of the data type DOUBLE WORD is converted into a DOUBLE INTEGER value. The converted value is written into DINT_value.

- LD BCD_value_32bit _____a_Dbcd ____DINT_value
- ST DINT_value:=BCD_TO_DINT(BCD_value_32bit);

Chapter 3

Numerical Functions

(E_)ABS		ļ į	Absolu	te valu	e			
Description	ABS calcul saved in th				mulator	into an absolute	value. The i	result is
	For the difference between the normal IEC function and the function with an enablinput, see page 24. You can find an example for the "function with enable" in the Online Help.							
Data types	Data type	I/O	Function					
	INT, DINT, REAL	input	input data type					
	INT, DINT, REAL	output as input	absolute value					
Example POU	text (ST). T	The same instructio	POU he n list (IL	eader is .) examp	used for ble in the	ladder diagram both programm online help. bles are declare	ing languag	es. You
header	programmi		•		put vana	Dies ale declare		1360 101
	Class	Identifier		Туре	Initial	Comment		
		input_valu		INT 🗗 INT 🗗				
	This exam	ple uses v	ariables	. You ma	ay also u	se a constant fo	r the input v	ariable.

- Body *input_value* of the data type INTEGER is converted into an absolute value of the data type INTEGER. The converted value is written in *absolute_value*.

 - ST absolute_value:=ABS(input_value);

Chapter 4

Arithmetic Functions

(E_)MOVE Move value to specified destination

Description MOVE assigns the unchanged value of the input variable to the output.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

Data type	I/O	Function
all data types	input	source
all data types	output as input	destination

When using the data type STRING, make sure that the length of the result string is equal to or greater than the length of the source string.

- **Example** In this example the function MOVE is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	Input_value	INT 📑	0	all types allowed
1	VAR 🛓	output_value	INT 📑	0	all types allowed

This example uses variables. You may also use constants for the input variables.

Body *Input_value* is assigned to *output_value* without being modified.

IL LD input_value MOVE ST output_value

E_ADD

Add

Description E_ADD adds the input variables IN1 + IN2 + ... and writes the addition result into the output variable. E_ADD operates just like the standard operator ADD (see Online Help).

Data types	Data type	I/O	Function
	INT, DINT, REAL	1st input	augend
	INT, DINT, REAL	2nd input	addend
	INT, DINT, REAL	output as input	sum

1 er

• The number of input contacts a_NumN lies in the range of 2 to 28.

• Only the FP0 can process the data type REAL.

- **Example** In this example the function E_ADD is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	enable	BOOL 편	FALSE	
1	VAR 🛓	summand_1	INT 📑	0	
2	VAR 🛓	summand_2	INT 📑	0	
3	VAR 🛓	sum	INT 📑	0	

This example uses variables. You may also use constants for the input variables.

Body If *enable* is set (TRUE), *summand_1* is added to *summand_2*. The result is written in *sum*.

LD

	•	·	en	зb	le	·	·	·		·	·	·	·	·	·	·	·	·	
- 1	_		-		⊢	_	_			-1		Е	A	DD		·	·	·	·
	•	·	•	•	•	·	·	·	·	L	E	ΝĒ	Ē	ΞNI	o ¦	Ŀ.	·		·
	•	·	·	su	ım	ma	ano	±_`	1 —	_	a,	_N	um	ηN.		_	-9	un	n٠
	•	·	·	su	ım	ma	ano	±_;	2 —	_	a,	N	um	ηN.		·	·	•	•
								•			•		•	•		•			

IL LD enable E_ADD summand_1,summand_2,sum

E_SUB

Subtract

Description E_SUB operates just as the standard operator SUB (see Online Help).

Data types

Data type	I/O	Function
INT, DINT, REAL	1st input	minuend
INT, DINT, REAL	2nd input	subtrahend
INT, DINT, REAL	output as input	result

Only the FP0 can process the data type REAL.

Example In this example the function E_SUB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	enable	BOOL 🗗	FALSE	
1	VAR 🛓	minuend	INT 于	0	
2	VAR 🛓	subtrahend	INT 于	0	
3	VAR 🛓	result	INT 于	0	

This example uses variables. You may also use constants for the input variables

Body If *enable* is set, *subtrahend* (data type INT) is subracted from *minuend*. The result will be written in *result* (data type INT).

E_SUB minuend,subtrahend,result

E_MUL	Multiply
-------	----------

Description E_MUL multiplies the values of the input variables with each other and writes the result into the output variable. E_MUL operates just as the standard operator MUL (see Online Help).

Data types	Data type	I/O	Function
	INT, DINT, REAL	1st input	multiplicand
	INT, DINT, REAL	2nd input	multiplicator
	INT, DINT, REAL	output as input	result

The input variables have to be of the same data type.

i P

• The number of input contacts a_NumN lies in the range of 2 to 28.

• Only the FP0 can process the data type REAL.

Example In this example the function E_MUL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	10	Identifier	Туре	1	Initial	Comment
0	VAR	±	enable	BOOL	Ŧ	FALSE	
1	VAR	Ŧ	multiplicand	INT	Ŧ	D	
2	VAR	ŧ	multiplicator	INT	Ŧ	D	
3	VAR	ŧ	result	INT	Ŧ	٥	

This example uses variables. You may also use constants for the input variables

Body If *enable* is set (TRUE), the *multiplicant* is multiplied with the *multiplicator*. The result will be written in *result*.

LD

ī.

	·	·	er	hat ∥	le I	·	·	·	·	·	•	•	•	·	•	•	•	•	•
- 1			_							_	•	•	•	•	•	. •	•	•	•
	·	•	·	•	•	·	·	·	·			Е	M	UΕ		·	•	•	·
	·	•	·	•	·	·	·	·	·		Е	NĒ	- E	ΞN	0	H-	•	·	·
	·	·	·	П	hult	tipl	lica	and	4 –		a,	_N	lun	ηN		┝	-r	es	ult
	·	·	·	m	hult	ipl	ica	ato	r —	_	a	_N	lun	hΝ		ŀ	·	·	·

IL	LD	enable
	E_MUL	multiplicant, multiplicator, result

E_DIV

Divide

Description E_DIV divides the value of the first input variable by the value of the second. E_DIV operates just as the standard operator DIV (see Online Help).

Data types

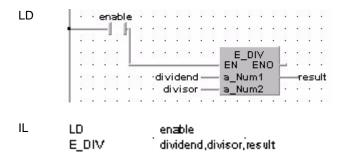
Data type	I/O	Function
INT, DINT, REAL	1st input	dividend
INT, DINT, REAL	2nd input	divisor
INT, DINT, REAL	output as input	result

The input variables have to be of the same data type.

r

• Only the FP0 can process the data type REAL.

• With FP1–C14/C16 E_DIV cannot be used for a 32–bit division (DINT) as this will cause a compiler error.


Example In this example the function E_DIV is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier Type		Initial	Comment
0	VAR ±	enable	BOOL 🗗	FALSE	
1	VAR 🛓	dividend	INT 📑	0	
2	VAR 🛓	divisor	INT 📑	0	
3	VAR 🛓	result	INT 📑	0	

This example uses variables. You may also use constants for the input variables.

Body If *enable* is set (TRUE), *dividend* is divided by *divisor*. The result is written in *result*.

(E_)MOD Modular arithmetic division, remainder stored in output variable

Description MOD divides the value of the first input variable by the value of the second. The rest of the integral division (5 : 2 : 2 + rest = 1) is written into the output variable. The remainder of the integral division is written in the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data typeI/OFunctionINT, DINT1st inputdividendINT, DINT2nd inputdivisorINT, DINToutput as
inputremainder

With FP1–C14/C16 E_DIV cannot be used for a 32–bit division (DINT) as this will cause a compiler error.

Example In this example the function MOD is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initia	Comment
0	VAR ±	dividend	INT 🗗	11	
1	VAR 🛓	divisor	INT 🗗	4	
2	VAR ±	remainder	INT Ŧ		11 divided by 4 = 2 with remainder of 3 3 is written into output variable

Body This example uses variables. You may also use constants for the input variables. *Dividend* (11) is divided by *divisor* (4). The remainder (3) of the division is written in *remainder*.

IL

1	LD	dividend	
	MOD	divisor	
	ST	remainder	

(E_)SQR	RT		Square root							
Description			•	of an input variable of the data type REA e output variable.	L (value					
		ee page 24.		mal IEC function and the function with an an example for the "function with enable						
is in the second se	This function is only available for the FP0.									
Data types	Data ty	pe I/O	Function							
	REAL	input	input value							
	REAL output as input		square root of i	square root of input value						
Error flags	No.	IEC addres	s Set	lf						
	R9007	%MX0.900.7	permanently	- input variable does not have the data type REAL or input variable is not > 0.0						
	R9008	%MX0.900.8	for an instant							
	R900B	%MX0.900.11	permanently	- output variable is zero						
	R9009	%MX0.900.9	for an instant	 processing result overflows the output variable 						

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class		Identifier	Туре		Initial	Comment
0	VAR	±	input_value	REAL	Ŧ	0.0	number >= 0
1	VAR	ŧ	output_value	REAL	Ŧ	0.0	number >= 0

This example uses variables. You may also use a constant for the input variable.

The square root of *input_value* is calculated and written into *output_value*. Body

LD

h	·	·	·	·	·	·	·	·	·	·	·	۰.	·	·	·	·	·	·	·	·
J	·	•			•			·	- 9	sQ	RT		·						•	
	·	iп	pu	t_`	val	lue	<u>-</u>	_	a	N	Jm			-0	utp	but	_v	alı	Je	•
	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·
	·							·	·	·	·	·	·							

ST output_value:= SQRT(input_value);

(E_)SIN		s	bine					
Description					riable and writes the result int cified in radians (value < 5270	•		
		e page 24. Y			EC function and the function wi ample for the "function with e			
1 I I I I I I I I I I I I I I I I I I I	in th	-	able increas	es. T	decreases as the angle data therefore, we recommend end 2π .	•		
	• This	function is	only availab	le fo	r the FP0.			
Data types	Data typ	be I/O	Function					
	REAL	input	input value					
	REAL output as input		SINE of input v	alue				
Error flags	No.	IEC address	Set	lf				
	R9007	%MX0.900.7	permanently	– inp	out variable does not have the data typ)e		
	R9008	%MX0.900.8	for an instant	RE	AL or input variable is \geq 52707176			
	R900B	%MX0.900.11	permanently	– ou	tput variable is zero			
	R9009	%MX0.900.9	for an instant		ocessing result overflows the output iable			
Example		on list (IL).			programmed in ladder diagra header is used for both p			
POU header		OU header, a ming this fun	•	outpu	It variables are declared that	are used for		
	C	lass Identifie	я Туре	Initial	Comment			
	0 VAR ▲ input_value REAL ▼ 0.0 angle data in radians 1 VAR ▲ output_value REAL ▼ 0.0 sine							
	This exa	imple uses va	ariables. You	may	also use a constant for the in	put variable.		
Body	The sine	e of <i>input_val</i>	ue is calculat	ted a	nd written into <i>output_value</i> .			
LD	· · · · · · · · · · · · · · · · · · ·			· · · · value	· · · · · ·			
IL	LD Sin St	_ input_val						

(E_)ASI	N	ļ	Arcsine					
Description				The input variable and writes the angle of the function returns a value from $-\pi/2$ to				
		ee page 24. Y		mal IEC function and the function with an an example for the "function with enable"				
is	This fu	nction is onl	y available f	for the FP0.				
Data types	Data ty	pe I/O	Function					
	REAL	input	input value bet	ween –1 and +1	1			
	REAL	output as input	arcsine of input value in radians					
Error flags	No.	IEC address	Set	lf				
	R9007	%MX0.900.7	permanently	- input variable does not have the data type REAL or input variable is not > -1.0 and				
	R9008	%MX0.900.8	for an instant	≤ 1.0				
	R900B	%MX0.900.11	permanently	- output variable is zero				
	 processing result overflows the output variable 							
Example	text (ST). The same	POU header	grammed in ladder diagram (LD) and stru is used for both programming language mple in the online help.				

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier Type		Initial	Comment
0	VAR 💌	input_value	REAL 편	0.0	
1	VAR 🛓	output_value	REAL 편	0.0	

This example uses variables. You may also use a constant for the input variable.

Body The arc sine of *input_value* is calculated and written into *output_value*.

LD ASIN output_value a_Real output_value

ST output_value:=ASIN(input_value);

(E_)COS	6	c	Cosine					
Description					writes the result into the output lians (value <52707176).			
		page 24. Y			and the function with an enable ne "function with enable" in the			
is	in the	input varia		es. Therefore, v	as the angle data specified ve recommend to enter			
	• This f	unction is	only availab	le for the FP0.				
Data types	Data type	e I/O	Function					
	REAL	input	input value, an	gle data in radians				
	REAL	REAL output as input cosine of input value						
Error flags	No. IE	No. IEC address Set If						
-	R9007 %MX0.900.7 permanently – input variable does not have the data type							
	R9008 %MX0.900.8for an instantREAL or input variable is \geq 52707176							
	DOODD	5MX0.900.11	permanently	– output variable is	zero			
	Boooo	MX0.900.9	for an instant		overflows the output			
Example POU header	instructior languages In the PO	n list (IL). s.	The same	POU header is	d in ladder diagram (LD) and used for both programming are declared that are used for			
	Class	Ide	entifier Typ	e Initial	Comment			
	0 VAR		ut_value RE/		angle data in radians			
	1 VAR	± out	put_value RE	AL 🖸 0.0	cosine			
	This exam	nple uses va	ariables. You	may also use a	constant for the input variable.			
Body	The cosin	e of <i>input_</i> \	<i>alue</i> is calcu	lated and writter	n into <i>output_value</i> .			
LD	input_valu	COS e - a_Real	output_va	 alue 				
ST	output_	value:=CC)S(input_v	ralue);				

(E_)ACC)S	A	Arccosine							
Description				the input variable and writes the angle he function returns a value from 0.0 to						
	For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.									
19	This function is only available for the FP0.									
Data types	Data ty	pe I/O	Function							
	REAL	input	input value bet	ween -1 and +1	_					
	REAL	output as input	arccosine of input value in radians							
-			_							
Error flags	No.	IEC address	Set	lf						
	R9007	%MX0.900.7	permanently	- input variable does not have the data type						
	R9008	%MX0.900.8	for an instant	REAL or input variable is not ≥ -1.0 and ≤ 1.0						
	R900B	%MX0.900.11	permanently	– output variable is zero						
	R9009	%MX0.900.9	for an instant	 processing result overflows the output variable 						

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	input_value	REAL Ŧ		number between -1 and +1
1		output_value	REAL Ŧ		angle datat in radians 0.0 to pi

This example uses variables. You may also use a constant for the input variable.

Body The arc cosine of *input_value* is calculated and written into *output_value*.

LD ACOS input_value <u>a_Real</u> output_value ST output_value:=ACOS(input_value);

(E_)TAN		т	angent		
Description	TAN calculates the tangent of the input variable and writes the result into the output variable. The angle data has to be specified in radians (value < 52707176).				
	For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.				
187 I	in the	input varia		ion decreases as the angle data specified es. Therefore, we recommend to enter and $\leq 2\pi$.	
	• This f	unction is	only availab	le for the FP0.	
Data types	Data type	e I/O	Function		
	REAL	input	input value in r	adians	
	REAL	output as input	tangent of input value		
Error flags	No. IE	EC address	Set	If	
-	R9007 %	6MX0.900.7	permanently	 input variable does not have the data type 	
	Doooo	6MX0.900.8	for an instant	REAL or input variable is not \geq 52707176	
	DOODD	6MX0.900.11	permanently	– output variable is zero	
	Doooo	6MX0.900.9	for an instant	 processing result overflows the output variable 	
Example		n list (IL).		N is programmed in ladder diagram (LD) and POU header is used for both programming	
POU header		U header, a ning this fun	•	output variables are declared that are used for	
	Cla	iss Identifi	er Type	Initia Comment	
				0.0 angle data in radians 0.0 tangent	
	This exam	nple uses va	ariables. You	may also use a constant for the input variable.	
Body	The tangent of <i>input_value</i> is calculated and written into <i>output_value</i> .				
LD	input_valuea_Realoutput_value				
IL	LD Tan St	input_va			

(E_)ATAN

Arctangent

Description ATAN calculates the arctangent of the input variable (value \pm 52707176) and writes the angle data in radians into the output variable. The function returns a value greater than $-\pi/2$ and smaller than $\pi/2$.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types

Data type	I/O	Function
REAL	input	input value between -52707176 and +52707176
REAL	output as input	arctangent of input value in radians

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	- input variable does not have the data type
R9008	%MX0.900.8	for an instant	REAL or input variable is not \geq 52707176
R900B	%MX0.900.11	permanently	 – output variable is zero
R9009	%MX0.900.9	for an instant	 processing result overflows the output variable

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	input_value	REAL 📑	0.0	
1	VAR 🛓	output_value	REAL 📑	0.0	

This example uses variables. You may also use a constant for the input variable.

Body The arc tangent of *input_value* is calculated and written into *output_value*.

- LD ATAN input_value _____a_Real ____output_value
- ST output_value:=ATAN(input_value);

)LN

Natural logarithm

Description LN calculates the logarithm of the input variable (value > 0.0) to the base **e** (Euler's number = 2.7182818) and writes the result into the output variable. This function is the reverse of the EXP function.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

r

This function is only available for the FP0.

Data types

Data type	I/O	Function
REAL	input	input value
REAL	output as input	natural logarithm of input value

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	- input variable does not have the data type
R9008	%MX0.900.8	for an instant	REAL or input variable is not > 0.0
R900B	%MX0.900.11	permanently	 output variable is zero
R9009	%MX0.900.9	for an instant	 processing result overflows the output variable

Example In this example the function LN is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	input_value	REAL 편	0.0	number > 0.0
1	VAR 🛓	output_value	REAL 🛨	0.0	number unequal 0

This example uses variables. You may also use a constant for the input variable.

- Body The logarithm of *input_value* is calculated to the base **e** and written into *output_value*.
 - LD input_value a_Real output_value

IL	LD	input_value
	LN	
	ST	output_value

(E_)LN

(E_)LOG Logarithm

Description LOG calculates the logarithm of the input variable (value > 0.0) to the base 10 and writes the result into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types

Data type	I/O	Function
REAL	input	input value
REAL	output as input	logarithm of input value

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	- input variable does not have the data type
R9008	%MX0.900.8	for an instant	REAL or input variable is not > 0.0
R900B	%MX0.900.11	permanently	 – output variable is zero
R9009	%MX0.900.9	for an instant	 processing result overflows the output variable

Example In this example the function LOG is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	input_value	REAL 📑	0.0	number>0.0
1	VAR 🛓	output_value	REAL 📑	0.0	number unequal 0

This example uses variables. You may also use a constant for the input variable.

- Body The logarithm of *input_value* is calculated to the base 10 and written into *output_value*.
 - LD LD input_value LOG LOG LOG ST output_value

Data types

EXP Exponent of input variable to base e

Description EXP calculates the power of the input variable to the base **e** (Euler's number = 2.7182818) and writes the result into the output variable. The input variable has to be greater than –87.33 and smaller than 88.72. This function is the reverse of the LN function.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data type	I/O	Function
REAL	input	input value between -87.33 and +88.72
REAL	output as input	exponent of input variable to base e

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	- input variable does not have the data type
	R9008	%MX0.900.8	for an instant	REAL or input variable is not > –87.33 and < 88.72
	R900B	%MX0.900.11	permanently	 output variable is zero
	R9009	%MX0.900.9	for an instant	 processing result overflows the output variable

Example In this example the function EXP is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initia	Comment
(C	VAR ±	input_value	REAL 🛃	0.0	
1	VAR 🛓	output_value	REAL 🛃	0.0	number >0

This example uses variables. You may also use a constant for the input variable.

Body The power of *input_value* is calculated to the base **e** and written into *output_value*.

LD EXP IL LD input_value EXP ST output_value

(E_)EXPT Raises 1st input variable by the power of the 2nd input variable

Description EXPT raises the first input variable to the power of the second input variable (OUT = $IN1^{IN2}$) and writes the result into the output variable. Input variables have to be within the range -1.70141×10^{38} to 1.70141×10^{38} .

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

Data types

Data type	I/O	Function
REAL	1st input	input value
REAL	2nd input	exponent of the input value
REAL	output as 1st input	result

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	 – first and the second input variable do not have the data type REAL
R9008	%MX0.900.8	for an instant	·····
R900B	%MX0.900.11	permanently	 – output variable is zero
R9009	%MX0.900.9	for an instant	 processing result overflows the output variable

Example In this example the function EXPT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	input_value_1	REAL Ŧ	0.0	number from -1.70141 × 10^38 to 1.70141 × 10^38
1	VAR 🛓	input_value_2	REAL 🖣		number from -1.70141 × 10^38 to 1.70141 × 10^38
2	VAR 🛓	output_value	REAL 🖣	0.0	number from -1.70141 × 10^38 to 1.70141 × 10^38

In this example the input variables have been declared. Instead, you may enter constants directly at the input contacts of the function.

Body *input_value_1* is raised to the power of *input_value_2*. The result is written into *output_value*.

LD input_value_1 aReal input_value_2 aNum

IL	LD	input_value_1
	EXPT	input_value_2
	ST	output_value

Chapter 5

Process Data Type Functions

TIME

(E_)ADD	D_TIME	A	Add TIME	
Description	ADD_TIME output varia		times of the two input variables and writes the sum	in the
		page 24. Y	ween the normal IEC function and the function with an o ou can find an example for the "function with enable"	
Data types	Data type	I/O	Function	I
	TIME	1st input	augend	l
	TIME	2nd input	addend	l

sum

output

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	time_value_1	тіме 📑	T#Os	
1	VAR 🛓	time_value_2	тіме 📑	T#Os	
2	VAR 🛓	time_value_3	тіме 📑	T#Os	

In this example the input variables (time_value_1 and time_value_2) have been declared. Instead, you may enter constants directly at the input contacts of a function.

time_value_1 and time_value_2 are added. The result is written in time_value_3. Body

LD									·						·	·	·	·	·	·	·	·	·
LD	·	·	·	·	·	·	·	·		AI	DD	Т	IM	Е		·	·	·	·	·	·	·	·
									Ti			_					—ti						
	٠ti	me	י_≘	val	lue	2	2 —	_	Ti	me	2					·	·	·	•	·	·	·	·
	·	·	·	·	·	·	·	·	•	·	·	·	·	·	·	•	·	·	·	·	·	·	·

ST time_value_3:=ADD_TIME(time_value_1, time_value_2);

(E_)SUB_TIME

Subtract TIME

Description SUB_TIME subtracts the value of the second input variable from the value of the first and writes the result into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	1st input	minuend
	TIME	2nd input	subtrahend
	TIME	output	result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	minuend	тіме 📑	T#Os	
1	VAR 🛓	subtrahend	тіме 📑	T#Os	
2	VAR 🛓	result	тіме 📑	T#Os	

In this example the input variables (*minuend* and *subtrahend*) have been declared. Instead, you may enter constants directly at the input contacts of a function.

Body Subtrahend is subtracted from *minuend*. The result will be written in *result*.

ST result:= SUB_TIME(minuend, subtrahend);

(E_)MUL_TIME_INT Multiply TIME by INTEGER

Description MUL_TIME_INT multiplies the values of the two input variables with each other and writes the result into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	1st input	multiplicand
	INT	2nd input	multiplicator
	TIME	output	result

Example In this example the function MUL_TIME_INT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time_value_1	тіме 📑	T#Os	
1	VAR 🛓	multiplicator	INT 📑	0	
2	VAR 🛓	time_value_2	тіме 📑	T#Os	

In this example the input variables (*time_value_1* and *multiplicator*) have been declared. Instead, you may enter constants directly at the input contacts of a function.

Body *time_value_1* is multiplied with *multiplicator*. The result is written in *time_value_2*.

LD

•	. •	•	. •	•	. •	•	. •	•	. •	•	. •		. •	•		•	٠.	•	. •		. •		. •	•
			1							мι	JE	т	MB	31	NT.		1	10	1		1		1	-
٠t	im	e_	va	lue	e_'	1 –		Ti										_	-ti	im	e_	va	lue	2_2
•	m	ult	ipl	ica	ato	г —	_	Ir	nt										S,	•		•		•

IL

time_value_1	
multiplicator	
time_value_2	
	multiplicator

(E_)MUL_TIME_DINT Multiply TIME by DOUBLE INTEGER

Description MUL_TIME_DINT multiplies the values of the input variables and writes the result to the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	1st input	dividend
	DINT	2nd input	divisor
	TIME	output	result

Example In this example the function MUL_TIME_DINT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	time_value_1	тіме 📑	T#1s 500ms	
1	VAR 🛓	multiplier	DINT 📑	5	
2	VAR 🛓	time_value_2	тіме 📑	T#0s	result: T#7s 500ms

In this example, the input variables *time_value* and *multiplier* have been declared. However, you can write a constant directly at the input contact of the function instead.

Body *time_value_1* is multiplied by *multiplier*. The result is written in *time_value_2*.

LD

IL LD time_value_1 MUL_TIME_DINT multiplier ST time_value_2

(E_)MUL_TIME_REAL Multiply TIME by REAL

Description MUL_TIME_REAL multiplies the value of the first input variable of the data type TIME by the value of the second input variable of the data type REAL. The REAL value is rounded off to the nearest whole number. The result is written into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

r	
<u> </u>	

This function is only available for the FP0.

Data types

Data type	I/O	Function
TIME	1st input	multiplicand
REAL	2nd input	multiplicator
TIME	output	result

- **Example** In this example the function MUL_TIME_REAL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR :	mul_result	TIME	T#Os	

Body The constant *T#1h30m* is multiplied by the value 3.5, which is rounded off to 4.0 in the actual calculation. The result is written in *mul_result*. By clicking on the view icon while in the online mode, you can see the result *T#6h0m0s0.00ms* immediately.

LD		MUL_TIME_REAL Time Real	mul_result = T#6h0m0s0.00ms
IL	LD MUL_TIME_REAL ST	. T#1h30m 3.5 mul_result	. T#6h0m0s0.00ms

(E_)DIV_TIME_INT Divide TIME by INTEGER

Description DIV_TIME_INT divides the value of the first input variable by the value of the second input variable and writes the result into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	input	dividend
	INT	input	divisor
	TIME	output	result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class		Identifier	Туре	Initial	Comment
0	VAR	4	time_value_1	TIME T	T#Os	
1	VAR	Ŧ	time_value_2	TIME 📑	T#Os	
2	VAR	Ŧ	INT_value	INT 📑	0	

In this example the input variables (*time_value_1* and *INT_value*) have been declared. Instead, you may enter constants directly at the input contacts of a function.

Body *Time_value_1* is divided by *INT_value*. The result is written in *time_value_2*.

LD		DIV_TIME_INT Time									
	· · INT_value — Int			•				•			1
			•	• •	•	•	•	•	•	े	•

ST time_value_2:=DIV_TIME_INT(time_value_1, INT_value);

(E_)DIV_TIME_DINT Divide TIME by DOUBLE INTEGER

Description DIV_TIME_DINT divides the value of the first input variable by the value of the second and writes the result into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	TIME	1st input	dividend
	DINT	2nd input	divisor
	TIME	output	result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	time_value_1	тіме 📑	T#2h	
1	VAR 🛓	time_value_2	тіме 📑	T#Os	result: T#20m
2	VAR 🛓	DINT_value	DINT 📑	6	

In this example, the input variables *time_value_1* and *DINT_value* have been declared. However, you can write a constant directly at the input contact of the function instead.

Body *time_value_1* is divided by *DINT_value*. The result is written in *time_value_2*.

חו	
20	····· DIV_TIME_DINT
	·time_value_1 — Time
	· · ·DINT_value — Dint · · · · · · · · · ·

ST time_value_2:=DIV_TIME_DINT(time_value_1, INT_value);

(E_)DIV_TIME_REAL Divide TIME by REAL

Description DIV_TIME_REAL divides the value of the first input variable of the data type TIME by the value of the second input variable of the data type REAL. The REAL value is rounded off to the nearest whole number. The result is written into the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is only available for the FP0.

 Data type
 I/O
 Function

 TIME
 input
 dividend

 REAL
 input
 divisor

 TIME
 output
 result

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

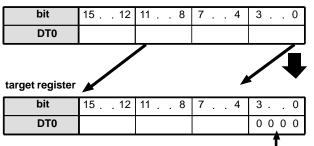
	Class	Identifier	Туре	Initial	Comment
0	VAR ±	input_time	TIME 🗗	T#10s	
1	VAR 🛓	input_real	REAL 🕇	0.0	
2	VAR 🛓	div_result	TIME 🕇	T#0s	result: here T#5s0.00ms

Body The value of variable *input_time* is divided by the value of the variable *input_real*. The result is written in *div_result*. In this example the input variables have been declared in the POU header. However, you may enter constants directly at the contact pins of the function.

_	· input_time	DIV_TIME_REAL Time	Ľ		liv		251	⊥lt
	 input_real — 	Real	Ŀ	1	•		•	
				÷.	1.1	÷.		

ST div_result:=DIV_TIME_REAL(input_time, input_real);

Chapter 6


Bitshift Functions

(E_)SHL

Shift bits to the left

Description SHL shifts a bit value by a defined number of positions (N) to the left and fills the vacant positions with zeros.

source register (N = 4 bits)

these 4 bits are filled up with zeros

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

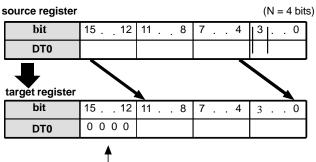
ypes	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	input value
	BOOL, WORD, DWORD	2nd input	number of bits by which the input value is shifted to the left
	BOOL, WORD, DWORD	output as input	result

Example In this example the function SHL is programmed in ladder diagram (LD).

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	source_register	WORD 📑	0	
1	VAR 🛓	target_register	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.


Body The value for *source_register* are shifted N (3) bits to the left. The resulting vacant bits are filled with zeros. The result is written in *target_register*.

LD ·source_register _____aBit____target_register

(E_)SHR

Shift bits to the right

Description SHR shifts a bit value by a defined number of positions (N) to the right and fills the vacant positions with zeros.

the 4 most significant bits are filled up with zeros

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	input value
	BOOL, WORD, DWORD	2nd input	number of bits by which the input value is shifted to the right
	BOOL, WORD, DWORD	output as input	result

If the second input variable N (the number of bits to be shifted) is of the data type DWORD, then only the lower 16 bits are taken into account.

Example In this example the function SHR is programmed in instruction list (IL).

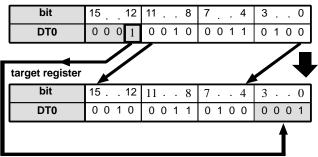
POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	source_register	WORD 🗗	0	
1	VAR 🛓	target_register	WORD 편	0	

This example uses variables. You may also use a constant for the input variable.

Body The value for *source_register* are shifted N (3) bits to the right. The resulting vacant bits are filled with zeros. The result is written in *target_register*.

IL LD source_register SHR 3 ST target_register


109 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

(E_)ROL

Rotate bits to the left

Description ROL rotates a defined number (N) of bits to the left.

source register (N = 4 bits)

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

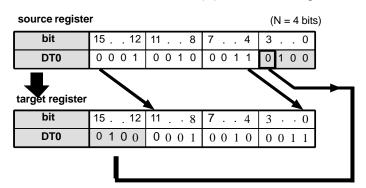
Data types	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	input value
	BOOL, WORD, DWORD	2nd input	number of bits by which the input value is rotated to the left
	BOOL, WORD, DWORD	output as input	result

Example In this example the function ROL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initia	Comment
0	VAR 🛓	source_register	WORD 📑	0	
1	VAR 🛓	target_register	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.


Body The last N bits (here 3) of *source_register* are left–rotated. The result will be written in *target_register*. This example uses variables. You may also use constants/variables.

LD	source_regi	ister aBit · · · · · · · · · · · · · · · · · · ·
IL	LD ROL ST	source_register 3 target_register

(E_)ROR

Rotate bits to the right

Description ROR rotates a defined number (N) of bits to the right.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	input value
	BOOL, WORD, DWORD	2nd input	number of bits by which the input value is rotated to the right
	BOOL, WORD, DWORD	output as input	result

Example In this example the function ROR is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initia	Comment
0	VAR ±	source_register	WORD 📑	0	
1	VAR 🛓	target_register	WORD 📑	0	

This example uses variables. You may also use a constant for the input variable.

Body The first N bits (here N = 3) of *source_register* are right–rotated. The result will be written in *target_register*.

- LD source_register aBit target_register
- IL LD source_register ROR 3 ST target_register

Chapter 7

Bitwise Boolean Functions

(E_)AND

Logical AND operation

Description The content of the accumulator is connected with the operand defined in the operand field by a logical AND operation. The result is transferred to the accumulator.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function AND as standard operator" in the Online Help.

Data types

5	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	element 1 of logical AND operation
	BOOL, WORD, DWORD	2nd input	element compared to input 1
	BOOL, WORD, DWORD	output as input	result

The number of input contacts a_BitN lies in the range of 2 to 28. All operands must be of the same data type.

- **Example** In this example the function E_AND is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
	0 VAR ±	enable	BOOL 편	FALSE	
-	1 VAR ±	operand_1	BOOL Ŧ	FALSE	Type: BOOL, WORD or DWORD
-	2 VAR ±	operand_2	BOOL Ŧ	FALSE	Type: BOOL, WORD or DWORD
-	3 ^{VAR} ±	result	BOOL Ŧ	FALSE	Type: BOOL, WORD or DWORD

Body If *enable* is set (TRUE), *operand_1* will be logically AND–linked with *operand_2*. The result will be written into the output variable *result*.

LD enable E AND EN ENO a_BitN operand_1 --result a BitN operand 2 IL LD enable E AND operand_1,operand_2,result

OR

Logical OR operation

Description The content of the accumulator is connected with the operand defined in the operand field by a logical OR operation. The result is transferred to the accumulator.

> For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function OR as standard operator" in the Online Help.

Data type:

s	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	element 1 of logical OR operation
	BOOL, WORD, DWORD	2nd input	element compared to input 1
	BOOL, WORD, DWORD	output as input	result

The number of input contacts a_BitN lies in the range of 2 to 28. All operands ll èr must be of the same data type.

- In this example the function E_OR is programmed in ladder diagram (LD) and Example instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier Type		Initial	Comment
 0	var ±	enable	BOOL 편	FALSE	
1	VAR 🛓	operand_1	BOOL 편	FALSE	type: BOOL, WORD or DWORD
2	VAR 🛓	operand_2	BOOL 편	FALSE	type: BOOL, WORD or DWORD
з	VAR 🛓	result	BOOL 편	FALSE	type: BOOL, WORD or DWORD

In this example the input variables (operand 1, operand 2 and enable) have been declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

If enable is set (TRUE), operand_1 and operand_2 are linked with a logical OR. Body The result will be written in result. This example uses variables. You may also use constants for the input variables

LD

LD	· · enable		
	· · operand		result
	· · operand	1_2 a_BitN	· · · ·
IL	LD	enable	
	E_OR	operand_1,operan	d_2,result

E_XOR

Exclusive OR operation

Description The content of the accumulator is connected with the operand defined in the operand field by a logical XOR operation. The result is transferred to the accumulator.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function XOR as standard operator" in the Online Help.

Data types

5	Data type	I/O	Function
	BOOL, WORD, DWORD	1st input	element 1 of logical XOR operation
	BOOL, WORD, DWORD	2nd input	element compared to input 1
	BOOL, WORD, DWORD	output as input	result

The number of input contacts a_BitN lies in the range of 2 to 28. All operands must be of the same data type.

- **Example** In this example the function E_XOR is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

		Class	Identifier	Туре	Initial	Comment
<u> </u>	0	var <u>±</u>	enable	BOOL 🛃	FALSE	
	1	VAR 🛓	operand_1	BOOL 편	FALSE	type: BOOL, WORD or DWORD
	2	VAR 🛓	operand_2	BOOL 편	FALSE	type: BOOL, WORD or DWORD
	3	VAR 🛓	result	BOOL 편	FALSE	type: BOOL, WORD or DWORD

In this example the input variables (operand_1,operand_2 and enable) have been declared. Instead, you may enter constants directly into the function (enable input e.g. for tests).

Body If *enable* is set, the Boolean variables *operand_1* and *operand_2* are logically EXCLUSIVE–OR linked and the result is written in *result*.

LD

IL

-	esult		•	•	E	E N	E	EN	ο	ŀ			•		:
	perar perar									ŀ	-r	es	ult	•	:
LD		e	nab	le											

E_XOR operand_1,operand_2,result

(E_)NOT Bit i

Bit inversion

Description NOT performs a bit inversion of input variables. The result will be written in the output variable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL, WORD, DWORD	input	input for NOT operation
	BOOL, WORD, DWORD	output as input	result

All operands are of the same data type.

Example In this example the function NOT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initia	Comment
0	VAR 🛓	input_value	WORD	۳lo	type:BOOL, WORD or DWORD
1	VAR 🛓	negation	WORD	€ļo	type:BOOL, WORD or DWORD

This example uses variables. You may also use a constant for the input variable.

- Body The bits of *input_value* are inversed (0 is inversed to 1 and vice versa). The inversed result is written in *negation.* This example uses variables. You may also use constants for the input variables.
 - LD input_value ____a_Bit ____negation ·

LD	input_value	
NOT		•
ST	negation	•
0.	·	

Chapter 8

Selection Functions

)MAX

Maximum value

MAX determines the input variable with the highest value. Description

> For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

The number of input contacts a_NumN lies in the range of 2 to 28. 1 er

Data types

I	Data type	I/O	Function
	all except STRING	1st input	value 1
	all except STRING	2nd input	value 2
	all except STRING	output as input	result, whichever input variable's value is greater

- In this example the function MAX is programmed in ladder diagram (LD) and Example instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	value_1	INT 📑	0	all types allowed
1	VAR 🛓	value_2	INT 📑	0	all types allowed
2	VAR 🛓	maximum_value	INT 📑	0	all types allowed

In this example the input variables (value 1 and value 2) have been declared. Instead, you may enter a constant directly at the input contact of a function.

value_1 and value_2 are compared with each other. The higher value of the two Body is written in maximum_value.

LD

. MAX value_1--- aNumN -maximum_value value_2 — aNumN · · · · · · · · · · ·

IL	LD	value_1
	MAX	ivadue_2
	ST	j mæimum_valuej

(E_)MIN

Minimum value

Description MIN dectects the input variable with the lowest value.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

The number of input contacts a_NumN lies in the range of 2 to 28.

Data types

Data typ	be I/O	Function
all excep STRING	t 1st input	value 1
all excep STRING	t 2nd input	value 2
all excep STRING	t output as input	result, whichever of the input variable's value is smallest

- **Example** In this example the function MIN is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	value_1	INT	10	all types allowed
1	VAR 🛓	value_2	INT 📑]0	all types allowed
2	VAR 🛓	minimum_value	INT 📑]o	all types allowed

In this example the input variables (*value_1* and *value_2*) have been declared. Instead, you may enter a constant directly at the input contact of a function.

Body *value_1* and *value_2* are compared with each other. The lower value of the two is written in *minimum_value*. This example uses variables. You may also use constants for the input variables.

LD	
	MIN
	<pre>value_1 — aNumN _ minimum_value · · ·</pre>
	·value_2 — aNumN · · · · · · · · ·

IL LD value_1 MIN value_2 ST minimum_value

(E_)LIMIT	Limit value for input variable
\/=	

Description In LIMIT the 1st input variable forms the lower and the 3rd input variable the upper limit value. If the 2nd input variable is within this limit, it will be transferred to the output variable. If it is above this limit, the upper limit value will be transferred, if it is below this limit the lower limit value will be transferred.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data type	I/O	Function
all data types	1st input	upper limit
all data types	2nd input	value compared to upper and lower limit
all data types	3rd input	lower limit
all data types	output as input	result, 2nd input value if between upper and lower limit, other- wise the upper or lower limit

Example In this example the function LIMIT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	lower_limit_val	INT 📑	o	all types allowed
1	VAR 🛓	comparison_value	INT 于	0	all types allowed
2	VAR 🛓	upper_limit_val	INT 于	0	all types allowed
3	VAR 🛓	result	INT 📑	0	all types allowed

In this example the input variables (*lower_limit_val, comparison_value* and *upper_val*) have been declared. Instead, you may enter a constant directly at the input contact of a function.

Body *lower_limit_val* and *upper_limit_val* form the range where the *comparison_value* has to be, if it has to be transferred to result. If the *comparison_value* is above the *upper_limit_val*, the value of *upper_limit_val* will be transferred to result. If it is below the *lower_limit_val*, the value of *lower_limit_val* will be transferred to result.

LD	· · · · · · · · · · · · · · · · · · ·	value — IN 🛛 🗠 · · · · ·
IL	ld Limit St	lower_limit_val comparison_value,upper_limit_val result

(E_)MUX

Select value from multiple channels

Description The function Multiplexer selects an input variable and writes its value into the output variable. The 1st input variable determines which input variable is to be written into the output variable. The function MUX can be configured for any desired number of inputs.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

i Co

- The number of input contacts aNumN lies in the range of 2 to 28.
- The difference between the functions E_MUX and E_SEL is that in E_MUX you can select between multiple channels with an integer value, while in E_SEL you can only choose between two channels with a Boolean value.
- When using the data type STRING, make sure that the length of the result string is equal to or greater than the length of the source string.

Data types	Data type	I/O	Function
	INT	1st input	selects channel for 2nd or 3rd input value to be written to
	all data types	2nd input	value 1
	all data types	3rd input	value 2
	all data types	output as 2nd and 3rd input	result

The 2nd and 3rd input variables must be of the same data type.

Example In this example the function MUX is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	channel_select	INT 🖻	0	value '0' to 'n'
1	VAR 🛓	channel_0	INT 🖻	0	all types allowed
2	VAR 🛓	channel_1	INT 🖻	0	all types allowed
3	VAR 🛓	output	INT 📑	0	all types allowed

In this example the input variables (channel_select, channel_0 and channel_1) have been declared. Instead, you may enter a constant directly at the input contact of a function.

In channel_select you find the integer value (0, 1...n) for the selection of channel_0 Body or channel_1. The result will be written in output.

LD	MUX	·					
	 channel_select — aint 				put		
	· · · channel_0 — aNumN	ŀ	·	·	·	·	·
	· · · channel_1 — aNumN	ŀ	·	·	·	·	·
		·	·	·	·	·	·

IL LD

ST

channel_select MUX channel_0,channel_1 output .

(E_)SEL		Sele	ect value from one of two channels
Description	variable is to b the second inp For the differen	e written in out variable nce betwee	the (data type BOOL) of SEL you define which input to the output variable. If the Boolean value = 0 (FALSE), will be written into the output variable, otherwise the third. In the normal IEC function and the function with an enable can find an example for the "function with enable" in the
1997 I	SEL a Boo MUX an in tween mo	blean value itegral nur re than two ng the data	een the functions SEL and MUX is that in case of e serves for the channel selection, while in case of nber (INT) does. Therefore, you can choose be- o channels with MUX. a type STRING make sure that the length of the re- o or greater than the length of the source string.
Data types	Data type	I/O	Function
	BOOL	1st input	selects channel for 2nd or 3rd input value to be written to
	all data types	2nd input	value 1
	all data types	3rd input	value 2
	all data types	output as 2nd and 3rd input	result
Example	In this examp	le the fund	ction SEL is programmed in ladder diagram (LD) and

Example In this example the function SEL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Class Identifier		Initial	Comment
0	VAR 🛓	channel_select	BOOL 🗗	FALSE	
1	VAR 🛓	channel_0	INT 于	0	all types allowed
2	VAR 🛓	channel_1	INT 于	0	all types allowed
3	VAR 🛓	output	INT 于	0	all types allowed

In this example the input variables (channel_select, channel_0 and channel_1) have been declared. Instead, you may enter a constant directly at the input contact of a function.

- Body If channel_select has the value 0, channel_0 will be written in output, otherwise channel_1. This example uses variables. You may also use constants for the input variables.
 - LD If channel_select has the value 0, channel_0 will be written into output, otherwise channel_1.

	cha	nme	ıŀ_	se	le	ct	·		·	·	·	·	·	·	·	·	·	·	·	·	·	·
ł		-1		H	_						-1		SE	EL		·	·	·	·	·	·	•
		•	·				·	·	·	·	L	al	Boo	ol		<u> </u>	-0	ut	huq	÷	·	·
		·	·	·	•	ch	an	nel	L_C) —	_	a	Ang	y .		·	·	•	·	·	·	·
		·	·	·	·	ch	an	nel	1_1	_	_	ь	Ang	y .		·	·	·	·	·	·	·
			·			·	·	·	·	•	·	•	•	•	•	•						

IL

LD	channel_select
SEL	channel_0,channel_1
ST	output

Chapter 9

Comparison Functions

Greater than

Description The content of the accumulator is compared with the operand defined in the operand field. If the accumulator is greater than the reference value, "TRUE" is stored in the accumulator, otherwise "FALSE".

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function GT as standard operator" in the Online Help.

The number of input contacts lies in the range of 2 to 28.

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is greater than reference value

The variables that are compared to each other must be of the same data type.

- **Example** In this example the function E_GT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Class Identifier		Initial	Comment
0	VAR 🛓	enable	BOOL 🗗	FALSE	
1	VAR 🛓	comparison_value	INT 📑	0	
2	VAR 🛓	reference_value	INT 📑	0	
3	VAR 🛓	result	BOOL 🗗	FALSE	

Body If enable is set (TRUE), the comparison_value is compared with the reference_value. If the comparison_value is greater than the reference_value, the value TRUE will be written into result, otherwise FALSE.

In this example the input variables (*comparison_value, reference_value* and *enable*) have been declared. Instead, you may enter constants directly at the input contacts of a function (enable input e.g. for tests).

LD

IL

E_GT

	· ·	able					· ·	н В П Е Г С С	Nu	JM JM	٨		251	ult	
ι	.D		ег	hab	le										

comparison_value, reference_value, result

¹²⁸ CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

GE

Greater than or equal to

Description The content of the accumulator is compared with the operand defined in the operand field. If the accumulator is greater or equal to the reference value, "TRUE" is stored in the accumulator, otherwise "FALSE".

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function GE as standard operator" in the Online Help.

The number of input contacts lies in the range of 2 to 28.

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is greater than or equal to reference value

The variables that are compared to each other must be of the same data type.

Example In this example the function E_GE is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	enable	BOOL 🗗	FALSE	
1	VAR 🛓	comparison_value	INT 于	0	
2	VAR 🛓	reference_value	INT 📑	0	
3	VAR 🛓	result	BOOL 🗗	FALSE	

Body If *enable* is set (TRUE), the *comparison_value* is compared with the *reference_value*. If the *comparison_value* is greater than or equal to the *reference_value*, the value TRUE will be written in *result*, otherwise FALSE.

This example uses variables. You may also use constants for the input variables.

LD E_GE Comparison_value a_Numb Comparison_value a_Numb Comparison_value a_Numb Comparison_value, reference_value, result

E_EQ Equal to

Description The content of the accumulator is compared with the operand defined in the operand field. If both values are equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function EQ as standard operator" in the Online Help.

The number of input contacts lies in the range of 2 to 28.

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is equal to reference value

The variables that are compared to each other must be of the same data type.

- **Example** In this example the function E_EQ is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	enable	BOOL 🗗	FALSE	
1	VAR 🛓	comparison_value	INT 于	0	
2	VAR 🛓	reference_value	INT 📑	0	
3	VAR 🛓	result	BOOL 🗗	FALSE	

Body If *enable* is set (TRUE), the variable *comparison_value* is compared with the variable *reference_value*. If the values of the two variables are identical, the value TRUE will be written in *result*, otherwise FALSE.

This example uses variables. You may also use constants for the input variables.

ID	
20	· · · enable · · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	EEQ ········
	· · · · · · · · · · · · · · · · · · ·
	· · · · · comparison_value — a_Numt — ()·
	<pre></pre>
IL	LD enable
	E_EQ comparison_value, reference_value, result

E_LE

Less than or equal to

Description The content of the accumulator is compared to the operand defined in the operand field. If the accumulator is less than or equal to the reference value, "TRUE" is stored in the accumulator, otherwise "FALSE".

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function LE as standard operator" in the Online Help.

r

The number of input contacts lies in the range of 2 to 28.

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is less than or equal to the reference value

The variables that are compared to each other must be of the same data type.

Example In this example the function E_LE is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	enable	BOOL 🗗	FALSE	
1	VAR 🛓	comparison_value	INT 📑	0	
2	VAR 🛓	reference_value	INT 📑	0	
3	VAR 🛓	result	BOOL 🗗	FALSE	

Body If *enable* is set (TRUE), the *comparison_value* is compared with the variable *reference_value*. If the *comparison_value* is less than or equal to the *reference_value*, TRUE will be written in *result*, otherwise FALSE.

This example uses variables. You may also use constants for the input variables.

LD	· · enable · · · · · · · · · · · · · · · · · · ·
	🕐 · · comparison_value — a_Numt — () · · ·
	· · reference_value — a_Numt · · · · · · · · · · · ·

IL LD enable E_LE comparison_value,reference_value,result

Less than

Description The content of the accumulator is compared with the operand defined in the operand field. If the accumulator is less than the reference value, "TRUE" is stored in the accumulator, otherwise "FALSE".

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function LT as standard operator" in the Online Help.

The number of input contacts lies in the range of 2 to 28.

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is less than the reference value

The variables that are compared to each other must be of the same data type.

- **Example** In this example the function E_LT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	enable	BOOL 🗗	FALSE	
1	VAR 🛓	comparison_value	INT 📑	0	
2	VAR 🛓	reference_value	INT 📑	0	
3	VAR 🛓	result	BOOL 🗗	FALSE	

Body If *enable* is set (TRUE), the *comparison_value* is compared with the *reference_value*. If the *comparison_value* is less than or equal to the *reference_value*, TRUE will be written in *result*, otherwise FALSE.

This example uses variables. You may also use constants for the input variables

LD	· enable · ·		•	• •	• •	
		ELT · EN ENO - alue a Numt				result
	comparison_va reference_va		:			
	1					
IL		enable comparison_value,refe	reno	e_va	lue,n	esult

E_NE Not equal

Description The content of the accumulator is compared with the operand defined in the operand field. If the values are not equal, "TRUE" is stored in the accumulator, otherwise "FALSE".

The number of input contacts lies in the range of 2 to 28.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function NE as standard operator" in the Online Help.

r

Data types

Data type	I/O	Function
all data types	1st input	value for comparison
all data types	2nd input	reference value
BOOL	output	result, TRUE if 2nd input value is not equal to the reference value

The variables that are compared to each other must be of the same data type.

- **Example** In this example the function E_NE is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.
 - Body If *enable* is set (TRUE), the *comparison_value* is compared with the *reference_value*. If the two values are unequal, TRUE will be written into *result*, otherwise FALSE. In this example the input variables (*comparison_value*, *reference_value* and *enable*) have been declared. However, you may enter constants directly into the function (enable input e.g. for tests).

LD		E_NE EN ENO	· ·			result	
	comparison_value reference_value				•	-02	
IL	LD enable						

E_NE comparison_value, reference_value, result

Chapter 10

Bistable Function Blocks

(E_)SR		Set/reset				
Description	on The function block SR (set/reset) or E_SR allows you to both set and re output. For the SR you declare the following:					
	SET:	set The output Q is set for each rising edge at SET.				
	RESET:	reset The output Q is reset for each rising edge detected at RESET, except if SET is set (see time chart)				
	Q:	signal output is set if a rising edge is detected at SET; is reset if a rising edge is detected at RESET, and if the SET is not set.				
Time Chart	SET					
	RESET —					
	Q					
		fference between the normal IEC function and the function with an enable page 24. You can find an example for the "function with enable" in the				

input, see page 24. You can find an example for the "function with enable" in the Online Help.

```
r
```

• Q is set if a rising edge is detected at both inputs (Set and Reset)

• Upon initialising, Q always has the status zero (reset).

Data ty	/pes
---------	------

5	Data type	I/O	Function
	BOOL	1st input	set
	BOOL	2nd input	reset
	BOOL	output	set or reset depending on inputs

In this example the function SR is programmed in ladder diagram (LD) and Example instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

> This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under copy_name, and a separate data area is reserved.

	Class	Identifier	dentifier Type Init		Comment
- 0	VAR ±	copy_name	E_SR ₹		under this identifier a copy of the E_SR function block is saved and a seperate data area is reserved
1	VAR 🛓	enable	BOOL 편	FALSE	enable input
2	VAR 🛓	set	BOOL 편	FALSE	setinput
3	VAR 🛓	reset	BOOL 편	FALSE	resetinput
4	VAR 🛓	signal_output	BOOL 🖣	FALSE	

Body If set is set (status = TRUE), signal_output will be set. If only reset is set, the signal_output will be reset (status = FALSE). If both set and reset are set, signal_output will be set.

LD

IL

÷—	· · · ·	
	- · · · · · · copy_n	ame····
· ·	·set···· ES	R
<u>+</u>	— 1 · · · L ENTER	NO
· ·	reset SET	Q ——signal_output ·
÷ – –	- RESE	T
CAL		(* Instance name of SR *)
CAL		(* Instance name of SR *) (* Assign value of set variable to SR-SET input *)
CAL	_copy_name	(* Instance name of SR *) (* Assign value of set variable to SR-SET input *) (* Assign value of reset variable to SR-RESET input

The nomination copy_name.SET or copy_name.RESET etc. has to be maintained in the IL.

(E_)RS		Reset/set
Description		tion block RS (reset/set) or E_RS allows you to both reset and set an or the RS you declare the following:
	SET:	set The output Q is set for each rising edge at SET, if RESET is not set.
	RESET:	reset The output Q is reset for each rising edge at RESET.
	Q:	signal output is set, if a rising edge is detected at SET and if RESET is not set; is reset, if a rising edge is detected at RESET.
Time Chart	Set —	
	RESET	
	Q	
	Cartha di	forenee between the normal IEC function and the function with an anable.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

r

Q is reset if a rising edge is detected at both inputs.

Data types

Data type	I/O	Function
BOOL	1st input	set
BOOL	2nd input	reset
BOOL	output	set or reset depending on inputs

Example In this example the function RS is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
- 0	VAR ±	copy_name	E_RS ₹		under this identifier a copy of the E_R_TRIG function block is saved and a seperate data area is reserved
1	VAR 🛓	enable	BOOL 📑	FALSE	enable input
2	VAR 🛓	set	BOOL 📑	FALSE	set input
3	VAR 🛓	reset	BOOL 📑	FALSE	reset input
4	VAR 🛓	signal_output	BOOL 편	FALSE	

Body If set is set (status = TRUE) the signal_output will be set. If only reset is set, the signal_output will be reset (status = FALSE). If both set and reset are set, the signal_output will be reset to FALSE.

LD

· ·	enable	•	•	•	•		 			·	÷	÷	÷	·	·	÷	÷	·	:
	·set ·					ľ	opy_ E_f	RS	1 ·				•			•			•
	reset					_	EN E SET		i F	·	•	·	-9	igi	าย —(Ć)- J	out	
							RES	ET	. :	÷	÷	÷	÷	:	:	÷	:	:	:

IL

LD	set	("load status of set_signal")
ST	copy_name.SET	(*store RS_SET_input)
LD	reset	" ("load status of reset_signal")
ST	copy_name.RESET	("store RS_RESET_input")
CAL	copy_name	("call instance"copy_name" of RS_function block")
LD	copy_name.Q	("load status of RS_Q_output")
ST	signal_output	("store signal_output_variable")

The nomination *copy_name.SET* or *copy_name.RESET* etc. has to be maintained in the IL.

Chapter 11

Edge Detection

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

(E_)R_TRIG

Rising edge trigger

Description The function block R_TRIG (rising edge trigger) or E_R_TRIG allows you to recognize a rising edge at an input. For R_TRIG declare the following:

CLK: signal input

the output Q is set for each rising edge at the signal input (clk = clock)

Q: signal output

is set when a rising edge is detected at CLK.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

The output Q of a function block (E_)R_TRIG remains set for a complete PLC cycle after the occurrence of a rising edge (status change FALSE -> TRUE) at the CLK input and is then reset in the following cycle.

Data types	Data type	I/O	Function
	BOOL	input CLK	detects rising edge for clock
	BOOL	output Q	set when rising edge detected

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
- 0		copy_name	E_R_TRIG ₹		under this identifier a copy of the E_R_TRIG function block is saved and a seperate data area is reserved
1	VAR 🛓	enable	BOOL 📑	FALSE	enable input
2	VAR 🛓	signal_input	BOOL 📑	FALSE	detection input
3	VAR 🛓	signal_output	BOOL 📑	FALSE	

Body signal_output will be set if a rising edge is detected at signal_input.

LD

· enable · · · ·	· copy_name ·										
signal_input · · ·	E_R_TRIG	·	:	:	:	.e	i.a	nel	Io		
	CLK Q						- gi	-(Ō)-	

ST copy_name(CLK:= signal_input, Q:= signal_output);

143

(E_)F_TRIG

Falling edge trigger

Description The function block F_TRIG (falling edge trigger) or E_F_TRIG allows you to recognize a falling edge at an input. For F_TRIG declare the following:

CLK: signal input

the output Q is set for each falling edge at the signal input (clk = clock)

Q: signal output

is set if a falling edge is detected at CLK.

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types	Data type	I/O	Function
	BOOL	input CLK	detects falling edge at input clock
BOOL		output Q	is set if falling edge is detected at input

The output Q of a function block (E_)F_TRIG remains set for a complete PLC cycle after the occurrence of a falling edge (status change FALSE -> TRUE) at the CLK input and is then reset in the following cycle.

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
- 0	VAR ±	copy_name	E_F_TRIG ⁼	1	under this identifier a copy of the E_F_TRIG fuction block is saved and a seperate data areais reserved
1	VAR 🛓	enable	BOOL 3	FALSE	enable input
2	VAR 🛓	signal_input	BOOL <u>1</u>	FALSE	detection input
3	VAR 🛓	signal_output	BOOL <u>3</u>	FALSE	

Body signal_output will be set if a falling edge is detected at signal_input.

LD

	∴enjable · · · ·	 copy_name 	• . •	·	•	•	·	·	·	•	·	·	
- 1		E_F_TRIG	- E	•	·	·	·	•	·	·	•	·	
	signal_input · · · L	EN EN	이는	·	•	۰s	ig	nal	<u>_9</u>	perti	put	•	
1		- CLK I	Q -	_	_	_	_	-()-	·	·	

ST copy_name(CLK:= signal_input, Q:= signal_output);

Chapter 12

Counter

(E_)CTU	J	Up counter			
Description	Description The function block CTU (count up) allows you to program counting pro CTU declare the following:				
	CU:	clock generator the value 1 is added to CV for each rising edge at CU, except if RESET is set			
	RESET:	reset CV is reset to zero for each rising edge at RESET			
	PV:	set value if PV (preset value) is reached, Q is set			
	Q:	signal output is set if CV is greater than/equal to PV			
	CV:	current value contains the addition result (CV = current value)			
Time Chart	cu				
	Q				
	RESET				
	cv				
	PV	[]]			

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

Data type	I/O	Function		
BOOL	input CU	detects rising edge, adds 1 to CV		
BOOL	input RESET	resets CV to 0 at rising edge		
INT	input PV	set value		
BOOL	output Q	set if CV >= PV		
INT	output CV	current value		

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*. A separate data area is reserved for this copy.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	copy_name	ст∪ ₹		under this identifier a copy of the CTU function block is saved and a separate data area is reserved
- 1		clock	BOOL Ŧ	FALSE	upward counter input
2	VAR 🛓	reset	BOOL 📑	FALSE	reset input (reset to 0)
· 3		set_value	INT Ŧ	0	default (PV= preset value)
4	VAR 🛓	signal_output	BOOL 📑	FALSE	
- 5	VAR ±	current_value	INT Ŧ	0	current counter value (EV=elapsed value)

Body If *reset* is set (status = TRUE), *current_value* (CV) will be reset. If a rising edge is detected at *clock*, the value 1 will be added to *current_value*. If a rising edge is detected at *clock*, this procedure will be repeated until *current_value* is greater than/equal to *set_value*. Then, *signal_output* will be set.

LD	· · · · clock · · · · · copy_name · · · · · · · · · · · · · ·
	RESET CV
	· · · · · set_value — PV
	.

ST copy_name(CU:= clock, RESET:= reset, PV:= set_value, Q:= signal_output, CV:= current_value);

(E_)CTD		Down counter		
Description	scription The function block CTD (count down) allows you to program cour For CTD declare the following:			
	CD:	clock generator input the value 1 is subtracted from the current value CV for each rising edge detected at CD, except if LOAD is set or CV has reached the value zero.		
	LOAD:	set with LOAD the counter state is reset to PV		
	PV:	preset value is the value subjected to subtraction during the first counting procedure		
	Q:	signal output is set if CV = zero		
	CV:	current value contains the current subtraction result (CV = current value)		
Time Chart	cu			
	LOAD			
	Q			
	cv			
	PV			

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

Data type	I/O	Function	
BOOL	input CD	subtracts 1 from CV at rising edge	
BOOL	input LOAD	resets counter to PV	
INT	input PV	preset value	
BOOL	output Q	signal output, set if CV = 0	
INT	output CV	current value	

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
- 0	VAR ±	copy_name	стр ∓		under this identifier a copy of the CTD function block is saved and a separate data area is reserved
- 1	VAR ±	clock	BOOL Ŧ	FALSE	downward counter input
• 2		set	BOOL Ŧ	FALSE	set input (set preset value (PV))
3	VAR 🛓	output_value	INT 📑	0	minuend
4	VAR 🛓	signal_output	BOOL 📑	FALSE	
5	VAR 🛓	current_value	INT 📑	0	current counter value

Body If set is set (status = TRUE), the preset_value (PV) is loaded in the current_value (CV). The value 1 will be subtracted from the current_value each time a rising edge is detected at clock. This procedure will be repeated until the current_value is greater than/equal to zero. Then signal_output will be set.

```
LD

    clock

                           copy_name:
                 -I F

    signal ·output

                             CTD
                             CD.
                               Ū
                 · set
                            LOADV
                                     current value
                output_value
                            PV
ST
      IF set THEN
                        (* first cycle *)
             load:=TRUE; (* load has to be TRUE;
                    to set current_value to output_value *)
             clock:=FALSE;
      END IF;
      copy_name(CD:= clock, LOAD:= set, PV:= output_value, Q:=
      signal_output, CV:= current_value);
      load:=FALSE;(* now current_value got the right value, load
      doesn't need to be *)
                    (* TRUE any longer *)
```

(E_)CTU	JD	Up/down counter
Description		tion block CTUD (count up/down) allows you to program counting es (up and down). For CTUD declare the following:
	CU:	count up the value 1 is added to the current CV for each rising edge detected at CU, except if RESET and/or LOAD is/are set.
	CD:	count down the value 1 is subtracted from the current CV for each rising edge detected at CD, except RESET and/or LOAD is/are set and if CU and CD are simultaneously set. In the latter case counting will be upwards.
	RESET:	reset if RESET is set, CV will be reset
	LOAD:	set if LOAD is set, PV is loaded to CV. This, however, does not apply if RESET is set simultaneously. In this case, LOAD will be ignored.
	PV:	preset value defines the preset value which is to be attained with the addition or subtraction (PV = preset value)
	QU:	signal output – count up is set if CV is greater than/equal to PV
	QD:	signal output – count down is set if CV = zero
	CV:	current value is the addition/subtraction result (CV = current value)
Time Chart	cu	
	CD	
	RESET	
	LOAD	
	QU	
	QD _ CV ↑	
	PV	

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

Data types

Data type	I/O	Function	
BOOL	input CU	count up	
BOOL	input CD	count down	
BOOL	input RESET	resets CV if set	
BOOL	input LOAD	loads PV to CV	
INT	input PV	set value	
BOOL	output QU	signal output count up	
BOOL	output QD	signal output count down	
INT	output CV	current value	

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*. A separate data area is reserved for this copy.

	Class		Identifier	Туре	Initial	Comment
0	VAR	ŧ	сору_патө	стир Ŧ		under this identifier a copy of the CTUD function block is saved and a separate data area is reserved
1	VAR	Ŧ	up_clock	BOOL 🖣	FALSE	upward counter input
2	VAR	₹	down_clock	BOOL 🖣	FALSE	downward counter input
З	VAR	ŧ	reset	BOOL 🗄	FALSE	reset input (reset to 0)
4	VAR	ŧ	sət	BOOL 🖣	FALSE	setinput(set to set_value)
5	VAR	₹	set_value	INT 于	0	dəfault
6	VAR	ŧ	output_up	BOOL 🗄	FALSE	
7	VAR	ŧ	output_down	BOOL 🖣	FALSE	
8	VAR	ŧ	current_value	INT 于	0	current counter value

Body

Count up:

If reset is set, the current_value (CV) will be reset. If up_clock is set, the value 1 is added to the current_value. This procedure is repeated for each rising edge detected at up_clock until the current value is greater than/equal to the set_value. Then output_up is set. The procedure is not conducted, if reset and/or set is/are set.

Count down: If set is set (status = TRUE), the set_value (PV = preset value) will be loaded in the *current_value* (CV). If *down_clock* is set, the value 1 is subtracted from *set_value* at each clock. This procedure is repeated at each clock until the *current_value* is smaller than/equal to zero. Then,

signal_output is set. The procedure will not be conducted, if *reset* and/or *set* is/are set or if CU and CV are set at the same time. In the latter case, counting will be downwards.

LD

÷

	· · · up_clock· · · · · · · · · · · · · · · · · · ·
1	· · · · · · · · · · · · output_up
	····down_clock · · · · copy_name
- 1	
	· · · · · · reset· · · · · └ CU ⊂ QU └ · · · · · output_down
4	
	RESET CV
. 4	
	· · · · · · · · · set_value — PV · · · · · · · · · · · · · · · · · ·

ST copy_name(CU:= up_clock, CD:= down_clock, RESET:= reset, LOAD:= set, PV:= set_value, QU:= output_up, QD:= output_down, CV:= current_value);

Chapter 13

Timer

(E_)TP			Timer	with de	fined pe	riod		
Description		ction block For TP dec				a clock time	er with a	defined clock
	IN:	clock g if a rising period a	g edge i	s detecte	ed at IN, a	clock is gen	erated ha	aving the
	PT:	resolutio each ris	/alue: 0 on 10ms ing edge	each) a e at IN. A	clock havi	value: 0 –21 ng the perio g edge deter clock (see	d PT is c cted at P	aused for
	Q:	signal of the set for the set		iod of P	r as soon a	as a rising e	dge is de	etected at IN
	ET:	elapsed contains		psed per	iod of the t	timer. If PT :	= ET, Q v	vill be reset
Time Chart	ТР							
	IN	t ₀ t ₁		t ₂	t ₃	t4 t5 t6	t7	
	Q				2			
	ET	t ₀	^t 1 + PT	t ₂	t ₂ + PT	t ₄	t ₄ + PT	
	PT		1					
		t _o t	1 + PT	t ₂	t ₃	t ₄	t ₄ + PT	t
		Α		E	3	С		
	the outp		g a lengt	th define	d by PT. T			generated at is triggered if
	C) A risi	ng edge at	the inpu	t IN does	not have a	any influence	e during t	he processing

of PT.

r

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is not available for FP1 or FP–M 0.9k.

Data types	Data type	I/O	Function
	BOOL	input IN	clock generated according to clock period at rising edge
	TIME	input PT	clock period
	BOOL	output Q	signal output
	ТІМЕ	output ET	elapsed time

Example In this example the function block TP is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*. A separate data area is reserved for this copy.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	сору_пате	TP Ŧ		under this identifier a copy of the TP function block is saved and a separate data area is reserved
1	VAR 🛓	start	BOOL 🗗	FALSE	start signal
2	VAR 🛓	set_value	TIME 于	T#Os	intended pulse period
З	VAR 🛓	signal_output	BOOL 🗗	FALSE	
4	VAR 🛓	current_value	TIME 于	T#Os	actually elapsed time

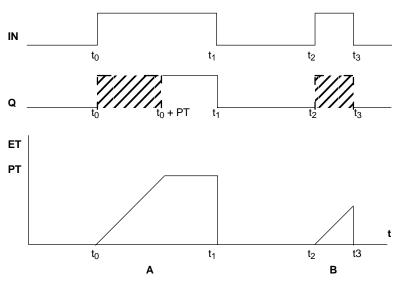
Body If *start* is set (status = TRUE), the clock is emitted at *signal_output* until the *set_value* for the clock period is reached.

LD

		-1	h	•	•	•	2	T	P	1.00	• •	: ÷	- 5	sigr	nal_	out	pu	t٠
		•••	- 1				-	IN	Q	-				00	-£)-	÷.	۰.
• •	•	•	set_	va	lue	-	-	PT	ET	-	our	rent	_va	alue	• •	•	•	•
1.16	- 61	S	6.00	1.5	÷.	- 62	1.1					S. 3			÷ 4		- 61	÷.

IL

CAL	(* Instance name of TP*) (* Assign value of start variable to TP-IN input*) (* Assign value of set_value variable to TP-PT input*) (* Assign TP-Q output to signal_output variable *) (* Assign TP-ET output to current_value variable *)
	. (* Assign 12-Er obber in content_value valiable *)


The nomination *copy_name.IN* or *copy_name.ET* etc. has to be maintained in the IL.

(E_)TON		Timer with switch-on delay
Description	The funct	tion block TON allows you to program a switch–on delay. For TON declare ving:
	IN:	timer ON an internal timer is started for each rising edge detected at IN
	PT:	switch on delay (16–bit value: 0 – 327.27s, 32–bit value: 0 – 21,474,836.47s; resolution 10ms each) the desired switch on delay is defined here(PT = preset time)
	Q:	signal output is set if PT = ET
	ET:	elapsed time

indicates the current value of the elapsed time

r

A)Q is set delayed with the time defined in PT. Resetting is without any delay.

B)If the input IN is only set for the period of the delay time PT or even for a shorter period of time ($t_3 - t_2 < PT$), Q will not be set.

For the difference between the normal IEC function and the function with an enable input, page 24. You can find an example for the "function with enable" in the Online Help.

This function is not available for FP1 or FP–M 0.9k.

Data types	Data type	I/O	Function
	BOOL (IN)	input	internal timer starts at rising edge
	TIME (PT)	input	switch on delay
	BOOL (Q)	output	signal output set if PT = ET
	TIME (ET)	output	elapsed time

Example In this example the function block TON is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*. A separate data area is reserved for this copy.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	copy_name	TON Ŧ		under this identifier a copy of the TON function block is saved and a separate data area is reserved
1	VAR 🛓	start	BOOL 편	FALSE	start signal
2	VAR 🛓	set_value	TIME 🗄	T#Os	intended pulse period
З	VAR 🛓	signal_output	BOOL 🗗	FALSE	
4	VAR 🛓	current_value	TIME 于	T#Os	actually elapsed time

Body If *start* is set (status = TRUE), the input signal is transferred to *signal_output* with a delay by the time period *set_value*.

LD

· start· · ·copy_name	<u></u>
	····signal_output·
set_value — PT ET	
1001 1001 1001 1001 1001	NOT THE THE THE THE THE

IL

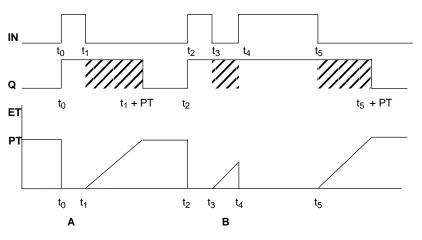
I	CAL	.copy_name .(IN:= start, PT:= set_value,	(* Instance name of TON *) (* Assign value of start variable to TON-IN input *) (* Assign value of set_value variable to TON-PT input *)
		Q:= signal_output, ET:= current_value)	(* Assign TON-Q output to signal_output variable *) (* Assign TON-ET output to current_value variable *)

The nomination *copy_name.IN* or *copy_name.ET* etc. has to be maintained in the IL.

Έ)TOF				
	Ē	TO	F	

Timer with switch-off delay

Description The function block TOF allows you to program a switch off delay, e.g. to switch off the ventilator of a machine at a later point of time than the machine itself. For TON declare the following:


 IN: timer ON an internal time measuring device is started if a falling edge is detected at IN. If a rising edge is detected at IN before PT has reached its value, Q will not be switched off (see time chart, section B)
 PT: switch-off delay (16-bit value: 0 - 327.27s, 32-bit value: 0 - 21,474,836.47s; resolution 10ms each) the intended switch-off delay is defined here (PT = preset time)
 Q: signal output is reset if PT = ET

ET: elapsed time

represents the current value of the elapsed time

Time Chart TOF

rf

A) Q is switched off with a delay corresponding to the time defined in PT. Switching on is carried out without delay.

B) If IN (as in the time chart on top for t_3 to t_4) is set prior to the lapse of the delay time PT, Q remains set (time chart for t_2 to t_3).

For the difference between the normal IEC function and the function with an enable input, see page 24. You can find an example for the "function with enable" in the Online Help.

This function is not available for FP1 or FP–M 0.9k.

Data types Data type I/O Function BOOL (IN) input internal timer on at falling edge TIME (PT) input switch off delay BOOL (Q) output signal output reset if PT = ET TIME (ET) output elapsed time

Example In this example the function TOF is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*. A separate data area is reserved for this copy.

	Class	Identifier	Турө	Initial	Comment
0	VAR ±	сору_пате	TOF Ŧ		under this identifier a copy of the TOF function block is saved and a separate data area is reserved
1	var 🛓	start	BOOL 🗗	FALSE	start signal
2	VAR 🛓	set_value	TIME 于	T#Os	intended pulse period
З	VAR 🛓	signal_output	BOOL 🗗	FALSE	
4	VAR 🛓	current_value	TIME 于	T#Os	actually elapsed time

Body If *start* is set, this signal is transferred to *signal_output* with a delay corresponding to the period of time *set_value*.

LD

IL

ł	· start· · · copy_name TOF · · · · · · · · · IN Q · set_value — PT ET	signal_output
	test fort fort fort fort to	· tot · · · · ·
	CAL copy_name	(* Instance name of TOF *)
	, (IN:= start,	(* Assign value of start variable to TOF-IN input *)
	, PT:= set_value,	(* Assign value of set_value variable to TOF-PT input *)
		(* Assign TOF-Q output to signal_output variable *)
	ET:= current_value)	(* Assign TOF-ET output to current_value variable *)

The nomination *copy_name.IN* or *copy_name.ET* etc. has to be maintained in the IL.

Part III Matsushita Instructions

Matsushita Floating Point Instructions

The Matsushita floating point instructions are designed specifically for applications that require variables of the data type REAL. Most of these can be replaced by the more flexible IEC commands. By doing so you will reduce the number of commands with which you need to be familiar.

The following Matsushita floating point instructions are described in detail in this part because they are not easily duplicated with IEC instructions: F327_INT, F328_DINT, F333_FINT, F334_FRINT, F335_FSIGN, F337_RAD and F338_DEG.

For details and examples on the other Matsushita floating point instructions, see Online help. For quick reference, please refer to the table below.

Name	Function	Equivalent IEC function
F309_FMV	Constant floating point data move	E_MOVE
F310_FADD	Floating point data add	E_ADD
F311_FSUB	Floating point data subtract	E_SUB
F312_FMUL	Floating point data multiply	E_MUL
F313_FDIV	Floating point data divide	E_DIV
F314_FSIN	Floating point Sine operation	E_SIN
F315_FCOS	Floating point Cosine operation	E_COS
F316_FTAN	Floating point Tangent operation	E_TAN
F317_ASIN	Floating point Arcsine operation	E_ASIN
F318_ACOS	Floating point Arccosine operation	E_ACOS
F319_ATAN	Floating point Arctangent operation	E_ATAN
F320_LN	Floating point data natural logarithm	E_LN
F321_EXP	Floating point data exponent	E_EXP
F322_LOG	Floating point data logarithm	E_LOG
F323_PWR	Floating point data power	E_EXPT
F324_FSQR	Floating point data square root	E_SQRT
F325_FLT	16-bit integer \rightarrow Floating point data	E_INT_TO_REAL
F326_DFLT	32-bit integer \rightarrow Floating point data	E_DINT_TO_REAL
F329_FIX	Floating point data \rightarrow 16–bit integer Rounding the first decimal point down	E_TRUNC_TO_INT
F330_DFIX	Floating point data \rightarrow 32–bit integer Rounding the first decimal point down	E_TRUNC_TO_DINT
F331_ROFF	Floating point data \rightarrow 16–bit integer Rounding the first decimal point off	E_REAL_TO_INT
F332_DROFF	Floating point data \rightarrow 32–bit integer Rounding the first decimal point off	E_REAL_TO_DINT
F336_FABS	Floating point data absolute	E_ABS

Chapter 14

Counter, Timer Function Blocks

CT_FB		Counter
Description		realized with the CT_FB function block are down counters. The count (set value) is 1 to 32767. For the CT_FB function block declare the
	Count:	count contact each time a rising edge is detected at Count , the value 1 is subtracted from the elapsed value EV until the value 0 is reached
	Reset:	reset contact each time a rising edge is detected at Reset , the value 0 is assigned to EV and the signal output C is reset; each time a falling edge is detected at Reset , the value at SV is assigned to EV
	SV:	set value value of EV after a reset procedure
	C:	signal output is set when EV becomes 0
	EV:	elapsed value current counter value
Time Chart	Count c	
	Reset 0	
	1	0
	SV (
	<u>EV</u> (
	C d	DFF
	download PROG mo	

r

- In order to work correctly, the CT_FB function block needs to be reset each time before it is used.
- The number of available counters is limited and depends on the settings in the system registers 5 and 6. The compiler assigns a NUM* address to every counter instance. The addresses are assigned counting downwards, starting at the highest possible address.
- The Matsushita CT function (down counter) uses the same NUM* address area (Num* input). In order to avoid errors (address conflicts), the CT function and the CT_FB function block should not be used together in a project.

PLC types

Availability	FP0		FP1	F	P–M	
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
CT_FB	x	х	х	х	х	x: available –: not available

164 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Data types

Variable	Data type	Function
Count	BOOL	count contact (down)
Reset	BOOL	reset contact
SV	INT, WORD	set value
С	BOOL	set when EV = 0
EV	INT, WORD	elapsed value

Example In this example the function CT_FB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *copy_name*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	copy_name	Ŧ		
1	VAR 🛓	set_value	INT 📑	10	
2	VAR 🛓	signal_output	BOOL 📑	FALSE	
3	VAR <u>±</u>	count_contact	BOOL 🗗	FALSE	
4	VAR 🛓	Reset_CT	BOOL 편	FALSE	
5	VAR 🛓	machine_error	BOOL 🗾	FALSE	
6	VAR 🛓	number_error	BOOL 📑	FALSE	

Body This example uses variables. You may also use constants for the input variables.

LD

Not every input/output has to be assigned copy_name count_contact CT_FB count_contact Count count_contact Reset_CT Reset_EV set_value	count_contact CT_FB Count_contact Reset_CT Reset_EV								S - 24			5000	<u> </u>	~~~	ŝ	- 2	20		- 33	2	3
Copy_name CT_FB Count_contact — Count C Reset_CT — Reset EV	count_contact CT_FB Count count_contact Cunt count_contact Reset_EV set_value SV		·	•		Not every input/output has	to be	ass	iane	d									•	•	•
CT_FB count_contact — Count C — signal_output Reset_CT — Reset EV —	Curl_contact CT_FB Count signal_output Reset_CT Reset EV SV signal_output set_value SV signal_output With instance_name.FB_variable (e.g. copy_name.EV) the signal_output		•	1															1	•	÷
CT_FB count_contact Count C Reset_CT Reset EV	Curl_contact CT_FB Count signal_output Reset_CT Reset_EV SV signal_output with instance_name.FB_variable (e.g. copy_name.EV) the SV	•	•		1														•	•	•
CT_FB count_contact Count C Reset_CT Reset EV	Curl_contact CT_FB Count signal_output Reset_CT Reset_EV SV signal_output with instance_name.FB_variable (e.g. copy_name.EV) the SV					and and one one production.	Sector ex	c			and a				- 22		- 23	· ···			
count_contact — Count C — signal_output · · · · · · · · · · · · · · · · · · ·	count_contact Count C signal_output Reset_CT Reset EV set_value SV With instance_name.FB_variable (e.g. copy_name.EV) the	•	•		•	············	ame j	· · ·				•	•	•		•	•	•	•	•	•
count_contact — Count C — signal_output · · · · · · · · · · · · · · · · · · ·	count_contact Count C signal_output Reset_CT Reset EV set_value SV With instance_name.FB_variable (e.g. copy_name.EV) the	•	•	•	•	· · · · · · · · CT F	в	• •	1.1	1	÷.,		• •	•	•	•	•	•	•	•	÷
	with instance_name.FB_variable (e.g. copy_name.EV) the	•	•		•	count_contact Count			ignal	_ou	tput	•		•							
· · · · · set_value — <u>SV</u> · · · · · · · · · · · · · · · · · · ·	With instance_name.FB_variable (e.g. copy_name.EV) the	•	·		•	· · Reset_CT Reset	EV -	e - 62		• •	• •	10	6. 6			•		•		•	÷
			•	-2	•	· · · set_value — SV	11	3 30	3 3		0.13	-			-	•	2	•	2	•	2
PA P						the rot the rot the r		e es	x 2		000	23	÷ ;								÷
					•	1040 1040 1040 1040 10						•		•			•	•	•	•	•
	variables of the variables of the FB can be accessed.			÷					• •	••••						÷					ż
variables of the variables of the FB can be accessed.	4			1000										the		ĺ	8				1000
			•	- 100 A	-									the		Ī		:		•	- 1830 - N
			•											the				•		•	· · · · · · · · · · · · · · · · · · ·
			· · · · · · ·											the						· · · · · ·	- 460 - 460 - 600 - 700
E MOVE			· · · · · ·	· · · · · · · · · · · · · · · · · · ·		variables of the variables	of the							the	•			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
machine error — E_MOVE			· · · · · · ·	- NOT - NOT - NOT - NOT -		variables of the variables	of the	≥ FB						the			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	·
· · · · machine_error — EN ENO - · · · · · · · · · · · · · ·	<pre>machine_error — EN ENO P · · · · · · · · · · · · · · · · · ·</pre>	· · · ·		· · · · · · · · · · · · · · · · · · ·		variables of the variables	of the	≥ FB	can 	be a		ss:		the				· · · · · · · · · · · · · · · · · · ·			· ···· ··· ··· ··· ··· ··· ··· ··· ···
	<pre>machine_error — EN ENO P · · · · · · · · · · · · · · · · · ·</pre>		· · · · · · · · · · · · · · · ·			variables of the variables	of the	≥ FB	can 	be a		ss:		the							- AND - AND - AND - AND - AND -
· · · · machine_error — EN ENO - · · · · · · · · · · · · · ·	<pre>machine_error — EN ENO P · · · · · · · · · · · · · · · · · ·</pre>	· · · ·				variables of the variables	of the	≥ FB	can 	be a		ss:		the	·						· · · · · · · · · · · · · · · · · · ·

IL

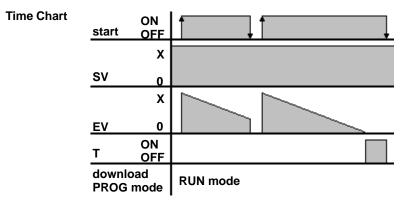
	(* Not every input/output has to be assigned. *)							
CAL copy_name(Count:= count_contact, Reset:= Reset_CT, SV:= set_value, C:= signal_output)								
		çe_name.FB_variable (e.g. copy_name.EV) of the FB can be accessed. *)						
		machine_error copy_name.EV,number_error						
-	L							

TM_1ms_FB

Timer for 1ms intervals

Description This timer for 0.001s units works as an ON–delay timer. If the **start** contact of the function block is in the ON state, the preset time **SV** (set value) is started. When this time has elapsed, the timer contact **T** turns ON. For the TM_1ms_FB function block declare the following:

start: start contact each time a rising edge is detected, the set value SV is copied to the elapsed value EV and the timer is started


SV: set value the defined ON-delay time (0 to 32.767s)

T: timer contact is set when the time defined at SV

is set when the time defined at **SV** has elapsed, this means when **EV** becomes 0

EV: elapsed value

count value from which 1 is subtracted every 0.001s while the timer is running

i P

- The number of available timers is limited and depends on the settings in the system registers 5 and 6.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

PLC types

Availability	FP0	FP1		F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_1ms_FB	х	-	-	-	-	x: available –: not available

167 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Operands

For	Relay			T/C		Register			Constant	
	х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
start	х	х	х	х	х	х	-	-	-	-
т	-	х	х	х	-	-	-	-	-	-
	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
SV, EV	_	х	х	х	х	х	х	x	х	_

x: available -: not available

Data types

Variable	Data type	Function
start	BOOL	start contact
SV	INT, WORD	set value
т	BOOL	timer contact
EV	INT, WORD	elapsed value

Example In this example the functionTM_1ms_FB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function. This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *Alarm Control* and a separate

copy of the original FB. This copy is saved under *Alarm_Control*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
0	VAR :	Aarm_Control	TM_1ms_FB Ŧ	1	
1	VAR :	Start_Contact	BOOL T	FALSE	
2	VAR :	Aarm_Relay_1	BOOL 7	FALSE	
3	VAR :	Aarm_Relay_2	BOOL 7	FALSE	

Body This example uses variables. You may also use constants for the input variables.

LD

IL

Almene		
	control:	
-As soo	on as the variable Start_Contact becomes TRUE, the timer	
	_Control will be started.	
	ariable EV of the timer is set to the value SV. 🛛 🔧	÷ .
-As Ion	g as Start_Contact is TRUE, the value 1 is subtracted from EV every	
1ms	and a constant of a second state of 2	÷ .
	EV reaches the value 0 (after 1 second as SV=1000 the timer	
	M_1ms_FB), the variable Alarm_Relay_2 becomes TRUE. // _/	÷ .
	_Contact is FALSE, the variable EV of the timer is set to 0 and	
Alarm	_Relay_2 becomes FALSE.	
	· · · · · Alarm Control · · · · · · · · · · · · · · · · · · ·	
	TM 1ms FB	
· Start Co		
	1000 — SV EV - · · · · · · · · · · · · · · · · · ·	
100 100		a 4
Th - 4-11		e - 6
	owing code should display a warning.	
	on as the value of the variable EV of the timer is smaller than or equal to	e - 6
ouu (an	ter 0.5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE.	
	· · · · · · · · · · · · · · · · · · ·	e 1
	ea ea e LE la calcalea ea ea calcalea ea calcalea	
Narm_Cor		÷
1010 L010		
Alarm_Cor	ntrol.EV NE	•••
Alarm_Cor		
(* Alarma - As so Alarm - The v: - As lor - When	control: on as the variable Start_Contact becomes TRUE, the timer Control will be started. ariable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type	
(* Alarm (- As so Alarm - The v - As lor - When TM_11 If Star becor	ntrol.EV	
(* Alarm - As so Alarm - The v: - As lor - When TM_1i If Star	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. aniable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2	
(* Alarm (- As so Alarm - The v: - As lor - When TM_11 If Star becor	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. aniable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2	
(* Alarma - As so Alarm - The v: - As lor - When TM_1: If Star becor *)	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. anable EV of the timer is set to the value of SV. ng as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB) the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE.	
(* Alarma - As so Alarm - The v: - As lor - When TM_1: If Star becor *)	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. ariable EV of the timer is set to the value of SV. ng as Start_Contact is TRUE, the value 1 is subtracted from EV every 1ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 ness FALSE. Alarm_Control (start:= Start_Contact, SV:= 1000,	
(* Alarm - - As so Alarm - The v. - As lor - When TM_1: If Star becor *)	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. ariable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE. Alarm_Control (start:= Start_Contact,	
(* Alarm - - As so Alarm - The v. - As lor - When TM_1: If Star becor *)	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. ariable EV of the timer is set to the value of SV. ng as Start_Contact is TRUE, the value 1 is subtracted from EV every 1ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 ness FALSE. Alarm_Control (start:= Start_Contact, SV:= 1000,	
(* Alarm - As so Alarm - The v - As lor - The v - As lor - When TM_11 If Star becor *) CAL (* The foll - As so (after *)	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. aniable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE. Alarm_Control (start:= Start_Contact, SV:= 1000, T:= Alarm_Relay_2) lowing code should display a warning. on as the value of the variable EV of the timer is smaller than or equal to 500 0.5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE.	
(* Alarm - As so Alarm - The v - As lor - When TM_11 If Star becor *) CAL (* The foll - As so (after *) LD	control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. ariable EV of the timer is set to the value of SV. Ig as Start_Contact is TRUE, the value 1 is subtracted from EV every 1 ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE. Aarm_Control (start:= Start_Contact, SV:= 1000, T:= Alarm_Relay_2) to wing code should display a warning. on as the value of the variable EV of the timer is smaller than or equal to 500 0.5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control.EV	
(* Alarm - As so Alarm - The v: - As lor - When TM_11 If Star becor *) CAL (* The foll - As so (after *) LD LE	<pre>there is a state is a state</pre>	
(* Alarm - As so Alarm - The v. - As lor - When TM_10 If Star becor *) CAL (* The foll - As so (after *) LD LE AND(control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. anable EV of the timer is set to the value of SV. as start_Contact is TRUE, the value 1 is subtracted from EV every 1ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE. Alarm_Control (start:= Start_Contact, SV:= 1000, T:= Alarm_Relay_2) towing code should display a warming. on as the value of the variable EV of the timer is smaller than or equal to 500 0.5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control. EV 500 Alarm_Control. EV 500	
(* Alarm - As so Alarm - The v: - As lor - The v: - As lor - When TM_11 If Star becor *) CAL (* The foll - As so (after *) LD LE AND(NE	<pre>there is a state is a state</pre>	
(* Alarm - Aarm - Aarm - The v. Aalor - When TM_11 If Star becor *) CAL (* The foll - As so (after *) LD LE AND(control: on as the variable Start_Contact becomes TRUE, the timer _Control will be started. anable EV of the timer is set to the value of SV. as start_Contact is TRUE, the value 1 is subtracted from EV every 1ms. EV reaches the value 0 (after 1 second as SV=1000 with the timer type ms_FB), the variable Alarm_Relay_2 becomes TRUE. t_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 nes FALSE. Alarm_Control (start:= Start_Contact, SV:= 1000, T:= Alarm_Relay_2) towing code should display a warming. on as the value of the variable EV of the timer is smaller than or equal to 500 0.5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control. EV 500 Alarm_Control. EV 500	

169 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

TM_10ms_FB

Timer for 10ms intervals

- **Description** This timer for 0.01s units works as an ON–delay timer. If the **start** contact of the function block is in the ON state, the preset time **SV** (set value) is started. When this time has elapsed, the timer contact **T** turns ON. For the TM_10ms_FB function block declare the following:
 - start: start contact each time a rising edge is detected, the set value SV is copied to the elapsed value EV and the timer is started
 SV: set value the defined ON-delay time (0 to 327.67s)
 T: timer contact is set when the time defined at SV has elapsed, this means when EV becomes 0
 EV: elapsed value count value from which 1 is subtracted every 0.01s while the timer is

r

- The number of available timers is limited and depends on the settings in the system registers 5 and 6.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

Availability	FP0		FP1	FP–M		Ţ
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_10ms_FB	Х	х	х	х	х	x: available –: not available

Operands

For	Relay			T/C		Register			Constant	
	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
start	х	x	x	х	х	х	-	-	-	-
т	-	х	х	х	-	-	-	-	-	-
SV EV	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
SV, EV	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Data types

Variable	Data type	Function
start	BOOL	start contact
SV	INT, WORD	set value
Т	BOOL	timer contact
EV	INT, WORD	elapsed value

Example In this example the function TM_10ms_FB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *Alarm_Control*, and a separate data area is reserved.

	Class	Identifier	Туре	Initial	Comment
0	var ±	Alarm_Control	TM_10ms_FB ₫		
1	VAR 🛓	Start_Contact	BOOL 🗾	FALSE	
2	VAR 🛓	Alarm_Relay_1	BOOL 💆	FALSE	
з	VAR 🛓	Alarm_Relay_2	BOOL 🗾	FALSE	

Body This example uses variables. You may also use constants for the input variables.

LD Alarm control: \mathcal{L} . -As soon as the variable Start_Contact becomes TRUE, the timer Alarm_Control will be started. -The variable EV of the timer is set to the value SV. -As long as Start_Contact is TRUE, the value 1 is subtracted from EV every . . . 10ms. -When EV reaches the value 0 (after 10 seconds as SV=1000 with the timer . . type TM_10ms_FB), the variable Alarm_Relay_2 becomes TRUE. -If Start_Contact is FALSE, the variable EV of the timer is set to 0 and . . Alarm_Relay_2 becomes FALSE · · · · · · · · · Alarm_Control · care care care care care TM_10ms_FB · Start_Contact ----T -Alarm_Relay_2 · - start - SV · · · · 1000 — EV Total rola rola rola rola The following code should display a warning. -As soon as the value of the variable EV of the timer is smaller than or equal to 500 (after 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. 2 . . LE Alarm_Control.EV-· · · · AND 500 -Alarm_Relay_1 NE Alarm_Control.EV ----.0. c < - cIL (* Alarm control: - As soon as the variable Start_Contact becomes TRUE, the timer Alarm_Control will be started. - The variable EV of the timer is set to the value of SV. - As long as Start_Contact is TRUE, the value 1 is subtracted from EV every 10ms. - When EV reaches the value 0 (after 10 seconds as SV=1000 with the timer type TM_10ms_FB), the variable Alarm_Relay_2 becomes TRUE. If Start_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 becomes FALSE. *1 CAL Alarm_Control (start:= Start_Contact, . SV:= 1000, T:= Alarm_Relay_2) (* The following code should display a warning. - As soon as the value of the variable EV of the timer is smaller than or equal to 50 (after 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. *) LD Alarm_Control.EV . 1 F 500 AND Alarm_Control.EV ΝE 0 1 ST Alarm_Relay_1

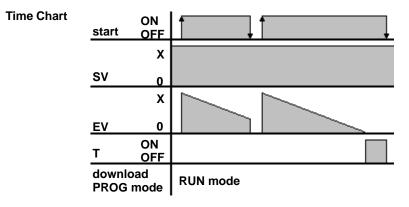
TM_100ms_FB

Timer for 100ms intervals

Description This timer for 0.1s units works as an ON–delay timer. If the **start** contact of the function block is in the ON state, the preset time **SV** (set value) is started. When this time has elapsed, the timer contact **T** turns ON. For the TM_100ms_FB function block declare the following:

start: start contact

each time a rising edge is detected, the set value **SV** is copied to the elapsed value **EV** and the timer is started


SV: set value the defined ON-delay time (0 to 3276.7s)

T: timer contact

is set when the time defined at **SV** has elapsed, this means when **EV** becomes 0

EV: elapsed value

count value from which 1 is subtracted every 0.1s while the timer is running

i P

- The number of available timers is limited and depends on the settings in the system registers 5 and 6.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

PLC types

Availability	FP0	FP1		F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_100ms_FB	Х	х	х	х	х	x: available -: not available

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant			
101	Х	Y	R	L	Т	С	DT	LD	FL	dec. or hex.		
start	х	х	x x x x -			-	-	-	_			
т	-	х	х	х	-	-	_	-	-	-		
SV EV	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.		
SV, EV	_	x	x	х	х	х	х	x	х	_		

x: available -: not available

Data types

Variable	Data type	Function
start	BOOL	start contact
SV	INT, WORD	set value
т	BOOL	timer contact
EV	INT, WORD	elapsed value

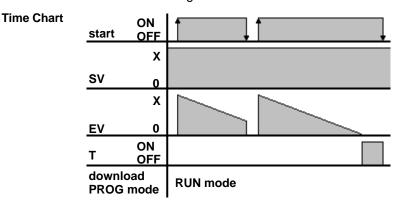
Example In this example the functionTM_100ms_FB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU header In the POU header, all input and output variables are declared that are used for programming this function. This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *Alarm_Control*, and a separate

data area is reserved.

	Class	Identifier	Турө	Initial	Comment
0	var ±	Alarm_Control	TM_100ms_FB 편		
1	VAR 🛓	Start_Contact	BOOL 🗾	FALSE	
2	VAR 🛓	Alarm_Relay_1	BOOL 🗾	FALSE	
З	VAR 🛓	Alarm_Relay_2	BOOL 🗾	FALSE	

Body This example uses variables. You may also use constants for the input variables.


Alar -The -As In 1000 -Whe type -If SI Alar -Start_0	<pre>soon as the variable Start_Contact becomes TRUE, the timer m_Control will be started. variable EV of the timer is set to the value SV. ong as Start_Contact is TRUE, the value 1 is subtracted from EV every ms. n EV reaches the value 0 (after 10 seconds as SV=1000 with the timer a TM_100ms_FB), the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and rm_Relay_2 becomes FALSE Alarm_Control Alarm_Control SV EV Alarm_Relay_2 </pre>
1.1.1.1	na na n a na na na na
-As s	ollowing code should display a warning. soon as the value of the variable EV of the timer is smaller than or equal to after 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE.
5 2 5 7	
Alarm_C	Control.EV AND
· · 7	•••• 50
8.831	ra na na na na posta posta na
	· · · · · · NE · · · · · · · · · · · · ·
Alarm_C	Control.EV — P · · · · · · · · · · · · · · · · · ·
	· · · · · 0 · · · · · · · · · · · · · · · ·
6 6.6 1	
	m control:
- As Alau - The - As I - Whe TM_ If S ² bec	m control: soon as the variable Start_Contact becomes TRUE, the timer rm_Control_will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type _100ms_FB), the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE.
- As Alar - The - As I - Whe TM_ If S bec *)	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type _100ms_FB), the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE.
- As Alau - The - As I - Whe TM_ If S ² bec	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB), the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100,
- As Alar - The - As I - Whe TM_ If S bec *)	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB) the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE. Alarm_Control (start= Start_Contact,
- As Alar - The - As If S bec *) CAL (* The f - As	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB), the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100,
- As Alai - The - As - Mhi TM_ If S bec *) CAL (* The - As (afb	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. an EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB) the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 comes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100, T:= Alarm_Relay_2) following code should display a warning. soon as the value of the variable EV of the timer is smaller than or equal to 50
- As Alai - The - As If S bec *) CAL (* The f - As (afte *) LD LE	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. an EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB) the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 somes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100, T:= Alarm_Relay_2) following code should display a warning. soon as the value of the variable EV of the timer is smaller than or equal to 50 er 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control. EV 50
- As Alai - The - As - Mhi TM_ If S bec *) CAL (* The f - As (aft *) LD LE AND(soon as the variable Start_Contact becomes TRUE, the timer rm_Control_will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. en EV reaches the value 0 (after 10 seconds as SV=100 with the timer type _100ms_FB) the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 somes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100, T:= Alarm_Relay_2) following code should display a warning. soon as the value of the variable EV of the timer is smaller than or equal to 50 ar 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control.EV 50 Alarm_Control.EV
- As Alai - The - As If S bec *) CAL (* The f - As (afte *) LD LE	soon as the variable Start_Contact becomes TRUE, the timer rm_Control will be started. variable EV of the timer is set to the value of SV. long as Start_Contact is TRUE, the value 1 is subtracted from EV every 100ms. an EV reaches the value 0 (after 10 seconds as SV=100 with the timer type 100ms_FB) the variable Alarm_Relay_2 becomes TRUE. tart_Contact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2 somes FALSE. Alarm_Control (start:= Start_Contact, SV:= 100, T:= Alarm_Relay_2) following code should display a warning. soon as the value of the variable EV of the timer is smaller than or equal to 50 er 5 seconds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE. Alarm_Control. EV 50

TM_1s_FB

Timer for 1s intervals

Description This timer for 1s units works as an ON–delay timer. If the **start** contact of the function block is in the ON state, the preset time **SV** (set value) is started. When this time has elapsed, the timer contact **T** turns ON. For the TM_1s_FB function block declare the following:

start:	<pre>start contact each time a rising edge is detected, the set value SV is copied to the elapsed value EV and the timer is started</pre>
SV:	set value the defined ON–delay time (0 to 32767s)
T:	timer contact is set when the time defined at SV has elapsed, this means when EV becomes 0
EV:	elapsed value count value from which 1 is subtracted every 1s while the timer is running

r

- The number of available timers is limited and depends on the settings in the system registers 5 and 6.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_1s_FB	х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
start	BOOL	start contact
sv	INT, WORD	set value
т	BOOL	timer contact
EV	INT, WORD	elapsed value

Example In this example the function TM_1s_FB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

This also includes the function block (FB) itself. By declaring the FB you create a copy of the original FB. This copy is saved under *Alarm_Control*, and a separate data area is reserved.

	Class	ldentifier	Туре	Initial	Comment
0	VAR ±	Alarm_Control	TM_1s_FB 📑		
1	VAR 🛓	Start_Contact	BOOL 💆	FALSE	
2	VAR 🛓	Alarm_Relay_1	BOOL 💆	FALSE	
з	VAR 🛓	Alarm_Relay_2	BOOL 🗾	FALSE	

Body

This example uses variables. You may also use constants for the input variables.

LD

-As soon as the var Alarm_Control will -The variable EV of	be starte	ed.							Ε,	the	e ti i	me	: r							
-As long as Start_C 1 s.									tra	icte	ed	fro	m	ΕV	ev	er	у			4
-When EV reaches t type TM_1s_FB), th													the	e ti ı	me	г				1.
-If Start_Contact is Alarm_Relay_2 be				able	E/	of t	het	ti m	ег	is	set	to	0:	anc	1				3	1.
	arm Cor	trol		8 3	-							5					۰.			
	TM_1s_F		· .	8.8		2.03				8				12		2				2
· Start_Contact sta	art	Τ	-	-Al:	arm	Re	lay	2												
· · · · · 10 SN	1	EΥ	Ŀ.,	8.18		÷ .			10	25	2.0			18				\sim		×.
.					•															
The following code -As soon as the val 5 (after 5 seconds)	ue of the	varia	able	e E'	V of	the										-	al	to	0	1
-As soon as the val	ue of the	varia	able	e E'	V of	the										-	al	to	0	4
-As soon as the val	ue of the I and EV i	varia	able	e E'	V of	the	_R(-	al	to		4 .
-As soon as the val 5 (after 5 seconds)	ue of the I and EV i	varia	able	e E'	V of	the Iarm	_R(у_`	1ь			ies	TR		-	al	to	:	
-As soon as the val 5 (after 5 seconds)	ue of the I and EV i	varia	able	e E'	V of	the Iarm	_R(у_`	1ь			ies	TR		-	al	to		4
-As soon as the val 5 (after 5 seconds)	ue of the I and EV i	varia	able	e E'	V of	the Iarm	_R(у_`	1ь			ies	TR		-	al	to		4
-As soon as the val 5 (after 5 seconds)	ue of the land EV i LE	varia	able	e E'	V of	the Iarm	_R(у_`	1ь			ies	TR		-	al	to		4
-As soon as the val 5 (after 5 seconds) 	ue of the land EV i LE	varia	able	e E'	V of	the Iarm	_R(у_`	1ь			ies	TR		-	al	to		A

IL

Alarm_Co - The varial - As long a: - When EV TM_1s_F8	a the variable Start_Contact becomes TRUE, the timer ntrol will be started. ole EV of the timer is set to the value of SV. s Start_Contact is TRUE, the value 1 is subtracted from EV every 1 s. reaches the value 0 (after 10 seconds as SV=10 writh the timer type 3) the variable Alarm_Relay_2 becomes TRUE. ontact is FALSE, the variable EV of the timer is set to 0 and Alarm_Relay_2
CAL	Alarm_Control (start:= Start_Contact, SV:= 10, T:= Alarm_Re[ay_2_)
 Аз зооп а 	ng code should display a warning. Is the value of the variable EV of the timer is smaller than or equal to 5 econds) and EV is unequal 0, Alarm_Relay_1 becomes TRUE.
LD LE AND(NE) ST	Alarm_Control.EV 5 Alarm_Control.EV 0 Alarm_Relay_1

Chapter 15

Data Transfer Instructions

180

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

END_IF;

F0_MV(input_value, output_value);

- 0	N // /	
F0_	MV	

FO_M	V	10	6–bit	data	mov	е				Steps 5			
Description	The 16–bit area speci				•			•			copied to the 16–b		
PLC types	Assellate		FP0			FP1		FP-M					
	Availabilit	.7k, 5k,	rk, 5k, 10k 0.9k 2.7k, 5k 0.9k 2.7k, 5k				k						
	F0	х		х	х		х	х		: available : not available			
_													
Data types	Variable	Data	a type	type Function									
	s	INT,	WORD	source 16-bit area									
	d	INT,	WORD	destination 16-bit area									
	The variab	oles s	and d	l have	e to be	e of the	e san	ne da	ta type				
Operands	For		Re	lay		Т/	'C		Registe	ər	Constant		
	FOr	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.		
	s	х	х	х	х	х	х	x	х	х	x		
											1		

x: available

-: not available

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

х

х

х

х

х

х

х

Х

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class		Identifier	Туре		Initial	Comment				
0	VAR	ŧ	start	BOOL 편		FALSE	activates the function				
1	VAR	Ŧ	input_value	INT	Ŧ	137	contains the source value				
2	VAR	±	output_value	INT	Ŧ	0	the area, where the source value will be copied to. result after a 0->1 leading edge from start: 137				

When the variable start is set to TRUE, the function is executed. Body

LD

ST

IF start THEN

d

·	·		s	tar	t٠		FO. N	N	١V		·	·	·	·	·	
			-1		⊢	Е	Ň.	Ē	ΞŇ	D.	Ŀ.					
		va														

F1_D	٧V	X 32-bit data move The 32-bit data or 32-bit equivalent constant specified b											7	
Description	The 32–bit area speci											copied to the	32–bit	
PLC types	A		FP0			I	FP1		FF	P–M				
	Availabilit	y 2.	7k, 5k,	10k	0.9	9k	2.7k,	5k	0.9k	2.7k, 5	k			
	F1	F1 x x x x x										x: available –: not available		
Data types	Variable Data type Function													
	s DINT, DWORD source 32-bit area													
	d	DINT,	DWO	RD	destii	natio	on 32–b	it area						
	The variab	The variables s and d have to be of the same data type.												
Operands	For		Re	lay			T/	C	F	Registe	ər	Constant		
	FUI	DWX	DWY	DWR	D)	WL	DSV	DEV	DDT	DLD	DFL	dec. or hex.		
	s	х	х	х	1	х	х	х	х	х	х	х		
	d	-	х	х	:	х	х	х	х	х	х	_		
Example POU header	text (ST). ⁻ can find ar	The s instr J hea	ame I uctior der, a	POU n list (Il inp	hea (IL) ut a	adei exa	r is us ample	ed fo in the	or both e onlir	progr ne help	ammi).	x: availal	ailable ictured s. You	
	Class Id	dentifie	r ·	Type		Initi	al C	omme	nt					
	0 VAR 🛨 st	art	E	BOOL	Ŧ	FAL	SE a	≍tivate	s the fur	nction			_	
	1 VAR 🛓 s	ource	C	INT	Ŧ	137	c	ontains	s the sou	irce val	ue			
	2 VAR ± d	estinati	on [DINT	Ŧ	0						ue will be copied from start: 137	ito	
Body LD	When the variable <i>start</i> is set to TRUE, the function is executed.													
ST	IF start THEN													
	Fl	_DMV	(sou	irce	, d	lest	tinat	cion);					
	END_IF;													

available

MVN

16-bit data inversions and move

The 16-bit data or 16-bit equivalent constant specified by s is inverted and Description transferred to the 16-bit area specified by d if the trigger EN is in the ON-state.

PLC types

Availability	FP0		FP1	F	P–M	Ţ
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F2	Х	х	х	х	х	x: available –: not availa

Data types

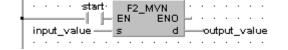
Variable	Data type	Function
s	INT, WORD	source 16-bit area to be inverted
d	INT, WORD	destination 16-bit area

The variables **s** and **d** have to be of the same data type.

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
S	x	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	_

x: available -: not available


Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the function
1	VAR ±	input_value	WORD Ŧ		this value will be inverted
2	VAR 🛓	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 16#EDCB

When the variable start is set to TRUE, the function is executed. Body

LD

ST IF start THEN

```
F2_MVN(input_value, output_value);
```

END_IF;

7

F3_DMVN

32-bit data inversions and move

Steps

Description The 32-bit data or 32-bit equivalent constant specified by **s** is inverted and transferred to the 32-bit area specified by **d** if the trigger **EN** is in the ON-state.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F3	х	х	х	х	х	x: available –: not available

Data types

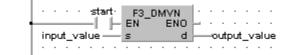
Variable	Data type	Function
s	DINT, DWORD	source 32-bit area to be inverted
d	DINT, DWORD	destination 32-bit area

The variables **s** and **d** have to be of the same data type.

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s	х	х	х	х	х	х	х	х	x	х
d	-	х	x	х	х	х	х	х	х	-

x: available -: not available


Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR ±	input_value	DWORD Ŧ		this value will be inverted
2	VAR ±	output_value	DWORD Ŧ	0	result after a 0->1 leading edge from start: 16#FFFFEDCB

Body When the variable *start* is set to TRUE, the function is executed.

LD

ST IF start THEN

F3_DMVN(input_value, output_value);

END_IF;

F5_B	ГМ		Bi	t dat	ta mo	ove					Steps	7
Description	area specif the ON–sta	ied b ate. V ation	y d ac Vhen t is per	cordi he 16 forme	ing to 6-bit e ed inte	the co quival ernally	ontent ent conv	specionstar sonstar	ified b nt is sp it to 1	y n if Decifie	to a bit of the 16 the trigger EN is d by s , the bit d binary expressi	s in lata
	• Bit No.	0 to 3	3: so	urce l	bit No	. (16#	0 to 1	6#F)				
	Bit No. 8	8 to 1	1: de	stinat	ion bi	t No. (16#0	to 16	#F)			
	 The bits 4 to 7 are fixed to move one bit and 12 to 15 are invalid For example, reading from the right, n = 16#C01 would move from bit position one, one bit to bit position 12 (C). 											
	one bit to b	oit pos	sition '	12 (C).							
PLC types	Availabilit	y	FP0			FP1			Р-М	-		
		2	2.7k, 5k, 10k		0.9k	2.7k,	5k	0.9k	2.7k, 5k		: available	
	F5		х		х	x		х	x		: not available	
Data types	Variable	Data	type	Fu	nctior	ì						
	s	INT, \	NORD	SOL	urce 16-	-bit area	a					
	n	INT, V	NORD	spe	ecifies s	ource a	nd des	tination	bit pos	itions		
	d	INT, V	NORD	des	stinatior	n 16–bit	area					
	The variables s and d have to be of the same data type.											
Operands	Fee		Re	ay		T/	C	F	Registe	ər	Constant	
	For	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
	s, n	x	х	x	х	х	x	x	x	x		
	d	-	x	х	x	x	х	x	x	х	-	
			II		1	1	I	1	1	I	·	

x: available --: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Klasse	Bezeichner	Тур	Initial	Kommentar
0	VAR 🛓	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	input_value	WORD 📑	2#1000100010001000	
2	VAR ±	copy_operand	WORD ₹		digit no.1 and no.3 are invalid, digit no.0 locates the position of the source bit (here: 2), digit no.2 locates the position of the destination bit (here: 15)
з	VAR ±	output_value	WORD Ŧ	2#11111111111111111	result after a 0.>1 leading edge from start: 2#011111111111111

Body When the variable *start* is set to TRUE, the function is executed.

LD

	· · · ·start· · ·	F5_BT	•					:	
1	· input_value —								
	copy_operand —	n	·	·	·	·	·	•	•
			 ·	·	·	·	·	·	·

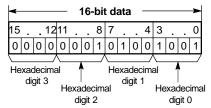
ST IF start THEN

F5_BTM(s:= input_value, n:= copy_operand, d=> output_value);

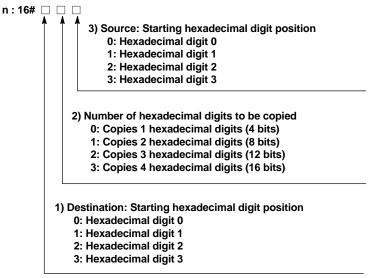
END_IF;

F6_DGT

Digit data move

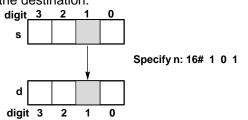

Steps

7

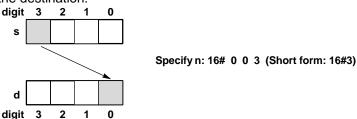

Description

The hexadecimal digits in the 16-bit data or in the 16-bit equivalent constant specified by **s** are copied to the 16-bit area specified by **d** as specified by **n**.

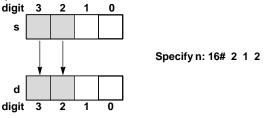
Digits are units of 4 bits used when handling data. With this instruction, 16–bit data is separated into four digits. The digits are called in order hexadecimal digit 0, digit 1, digit 2 and digit 3, beginning from the least significant four bits:

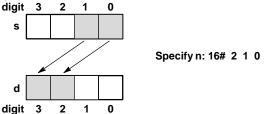


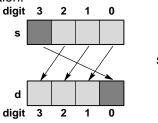
n specifies the 3) source hexadecimal digit position, the 2) number of digits and the 1) destination hexadecimal digit position to be copied using hexadecimal data as follows:



Following are some patterns of digit transfer based on the specification of **n**.


• When hexadecimal digit 1 of the source is copied to hexadecimal digit 1 of the destination:


 When hexadecimal digit 3 of the source is copied to hexadecimal digit 0 of the destination:


 When multiple hexadecimal digits (hexadecimal digits 2 and 3) of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and 3) of the destination:

 When multiple hexadecimal digits (hexadecimal digits 0 and 1) of the source are copied to multiple hexadecimal digits (hexadecimal digits 2 and 3) of the destination:

 When 4 hexadecimal digits (hexadecimal digits 0 to 3) of the source are copied to 4 hexadecimal digits (hexadecimal digits 0 to 3) of the destination:

Specify n: 16# 1 3 0

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F6	x	х	х	х	х	2

x: available -: not available

Data types

Variable	Data type	Function
s	INT, WORD	16-bit area source
n	INT, WORD	Specifies source and destination hexadecimal digit position and number of hexadecimal digits
d	INT, WORD	16-bit area destination

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant		
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s, n	х	х	х	х	x	х	х	х	х	х	
d	_	х	х	х	х	х	х	х	х	_	

x: available –: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class		Identifier	Туре		Initial	Comment
0	VAR	ł	start	BOOL	Ŧ	FALSE	
1	VAR	ł	source	INT	Ŧ	329	decimal 329 = hex. 149
2	VAR	ŧ	specify_n	WORD	Ŧ	16#111	Beginning from the end: 1: first hexadecimal digit is digit 1, i.e. 4 1: copies 2 hexadecimal digits, i.e. 14 1: destination is hexadecimal digit 1
3	VAR	ł	output	INT	Ŧ	0	hex. 140 = decimal 320

- Body When the variable *start* is set to TRUE, the function is executed. The values for *source* and *output* in the Monitor Header of the ladder diagram body have been set to display the hexadecimal value by activating the Hex button in the tool bar.
 - LD 1 15 21 F6 DGT 100 EN ENO . . . source = 329 d output = 320 5 specify_n = 16#0111 n Monitor Header F6 [PRG] Body 2 E6. Structure start 2#1 at %MX0.4.0 source 16#0149 at %MW5.124 specify_n 16#0111 at %MW5.125 output 16#0140 at %MW5.126

188

7

F10_BKMV

Block transfer

Steps

Description The data block specified by the 16-bit starting area specified by **s1** and the 16-bit ending area specified by **s2** are copied to the block starting from the 16-bit area specified by **d** if the trigger **EN** is in the ON-state. The operands **s1** and **s2** should be:

- in the same operand
- s1 ≤ s2

Whenever s1, s2 and d are in the same data area:

• **s1** = **d**: data will be recopied to the same data area.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	†
	F10	x	х	х	х	х	x: available -: not available

Data types	Variable	Data type	Function
	s1 INT, s2 INT,		starting 16-bit area, source
	s2	INT, WORD	ending 16-bit area, source
	d	INT, WORD	starting 16-bit area, destination

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For		Re	lay		Т/	С	R	egiste	Constant		
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
s1, s2	х	х	х	х	x	х	х	х	x	_	
d	-	х	х	х	х	х	х	х	x	_	

x: available –: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	source_Array	Array (04) of Int 📑	[1,2,3,4,5] 📑	
2	VAR 🛓	target_Array	Array [02] of INT ₹		result after a 0->1 leading edge from start: [2,3,4]

Body When the variable *start* changes from FALSE to TRUE, the function is carried out. It moves the data block starting at the 16–bit area specified by s1 and ending at the 16–bit area specified by s2 to the 16–bit area specified by s3.

LD

	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•
					s	tar	t٠		·		E'	10	Bł	сM	V.		•	·	·					
ł					-1		H			E				E	ÍNC	D ¦	_	·	·		·			
	· 9	501	ло	:e_	Ar	raj	y[1]-	_	s	1				- 0	1		-ta	агр	jet,	_A	ιιs	w[0	0]
	· 5	501	ло	:e_	Ar	raj	y[3]-	_	S	2						·	·				·	•	

ST IF start THEN

F10_BKMV(s1_Start:= source_Array[1],

s2_End:= source_Array[3],

d_Start=> target_Array[0]);

END_IF;

7

F11_COPY

Block copy

Steps

Description The 16-bit equivalent constant or 16-bit area specified by **s** is copied to all 16-bit areas of the block specified by **d1** and **d2** if the trigger **EN** is in the ON-state. The operands **d1** and **d2** should be:

- in the same operand
- d1 ≤ d2

PLC types

Availability	FP0		FP1	F		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F11	х	х	х	х	х	x

: available -: not available

Data types

Variable	Data type	Function
s	INT, WORD	source 16-bit area
d1	INT, WORD	starting 16-bit area, destination
d2	INT, WORD	ending 16-bit area, destination

The variables **s**, **d1** and **d2** have to be of the same data type.

Operands

For		Relay			T/C		Register			Constant
. 01	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	х
d1, d2	-	х	х	х	х	х	х	х	х	_

x: available

-: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

Class	Identifier	Туре	Initial	Comment
0 VAR ±	start	BOOL 📑	FALSE	activates the function
1 VAR ±	data_array	ARRAY [06] OF INT ₹		result after a 0->1 leading edge from start: [1,3,5,11,11,11,13]

Body When the variable *start* is set to TRUE, the function is executed.

LD

•	•	•	•	5		t∙ ⊫		1_	C	DP F	Y Ni		ŀ					:	
				1							d	1		-d	lata	a_;	агг	ау	[3]
·	·	·	·	·	·	·					d	2		-d	lata	a_;	агг	ау	[5]
 · ·																			

ST IF start THEN

END_IF;

11

F12_EPRD

EEPROM read from memory

Steps

Description This instruction is used to read information from the EEPROM. Before executing the F12_EPRD instruction, make sure that you have valid data in the EEPROM memory location being read to the destination area. Otherwise the values being read will not make any sense. Also ensure that there are at least 64 free data registers (1 block = 64 words (DTs)) reserved for the destination area.

PLC types

	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F12	Х	-	-	-	-	x: available –: not available

Data types

Variable	Data type	Function
EN	BOOL	Activation of the function block (when EN has the state TRUE, the function block will be executed at every PLC scan)
s1	DINT,D WORD	EEPROM start block number
s2	DINT, DWORD	Number of blocks to write (1 block = 64 words (DTs))
d	INT, WORD	DT start address for information to be written
ENO	BOOL	When the function block was executed, ENO is set to TRUE. Helpful at cascading of function blocks with EN–functionality

One of the two inputs 's1' or 's2' has to be assigned a constant number value.

Operands

For	Relay				T/C		Register			Constant
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1, s2	х	х	х	-	х	х	х	-	-	x
d	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
	_	_	_	_	I	_	х	_	_	-

x: available

-: not available

PLC–specific information

PLC type	FP0 2,7k C10/C14/C16	FP0 5k C32	FP0 10k T32CP
Block size (1 block)	64 words (64 x 16 bit)	64 words (64 x 16 bit)	64 words (64 x 16 bit)
EEPROM start block number	0 to 9	0 to 95	0 to 255
Number of blocks to be read / written each execution	1 to 2	1 to 8	1 to 255
Write duration (Additional scan time)	20 ms each block	5 ms each block	5 ms each block
Read duration (Additional scan time)	Less than 1 ms each block	Less than 1ms each block	Less than 1ms each block
Max number of writing events	100,000	10,000	10,000
Note Power down RUN> Prog mode changes are also counted			
Max read times	No limit	No limit	No limit

In this example the function F12_EPRD is programmed in ladder diagram (LD) and Example instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	data field	ARRAY [063] OF INT 🕈	[64(0)]	data field to be uploaded data from EEPROM

When the variable start changes from FALSE to TRUE, the function is carried out. Body The function reads the first block (= 64 words) after start block number 0 from the EEPROM and writes the information into the data fields from data-_field[0] until data_field[63].

. . .

LD

11

L

	F12_E EN 0 s1 1 <u>s</u> 2	ENO d	data field[0]·
LD DF	. start		
F12_EPRD	0, 1, data field[0]		

194 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

P13 EPWT EEPROM write to memory Steps 11

Description These instructions are used to save your PID profiles, timer profiles, counter profiles or positioning profiles ... into the built–in EEPROM. The EEPROM memory is not the same as the hold area. The hold area stores data in real time. Whenever the power shuts down, the hold data is stored in the EEPROM memory.

The P13_EPWT instruction sends data into the EEPROM only when the instruction is executed. It also has a limitation of the number of times you can write to it (see table on PLC–specific information). You must make sure that the P13_EPWT instruction will not be executed more often than the specified number of writes.

For example, if you execute P13_EPWT with R901A relay (pulse time 0.1s), the EEPROM will become inoperable after 100,000 * 0.1 sec=10,000 sec (2.8 hours). However if you want to hold your profile data such as positioning parameters or any other parameter values that are changed infrequently, you will find this instruction very useful.

PLC types

Availability	FP0		FP1	F	P–M	
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
P13	Х	-	_	-	_	x: available –: not available

Data types

es	Variable	Data type	Function
	EN	BOOL	Activation of the function block (when EN changes from FALSE to TRUE, the function block will be executed one time)
	s1	INT, WORD	DT start address of the block(s) that you want to save
	s2	DINT, DWORD	Number of blocks to write (1 block = 64 words (DTs))
	d	DINT, DWORD	EEPROM start block number
	ENO	BOOL	When the function block was executed, ENO is set to TRUE. Helpful at cascading of function blocks with EN–functionality

r

One of the two input variables s2 or d has to be assigned a constant number value.

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	wx	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s1	-	-	-	-	-	-	х	-	-	-
s2, d	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
	х	х	х	-	х	х	х	-	-	x

x: available -: not available

PLC–specific information

PLC type	FP0 2,7k C10/C14/C16	FP0 5k C32	FP0 10k T32CP
Block size (1 block)	64 words (64x16bit)	64 words (64x16bit)	64 words (64x16bit)
EEPROM start block number	0 to 9	0 to 95	0 to255
Number of blocks to be read / written each execution	1 to 2	1 to 8	1 to 255
Write duration (Additional scan time)	20 ms each block	5 ms each block	5 ms each block
Read duration (Additional scan time)	Less than 1ms each block	less than 1 ms each block	Less than 1ms each block
Max write times	100,000	10,000	10,000
Note: Power down, RUN -> PROG mode changes are also counted			
Max read times	No limit	No limit	No Limit

Example In this example the function P13_EPWT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 📑	FALSE	activates the function
1	VAR ±	data field	ARRAY [063] OF INT ₹	[1,2,3,4,5,6,7,8,9,10,11,12,52(0)]	data field to be uploaded data from EEPROM

- Body When the variable *start* changes from FALSE to TRUE, the function is carried out. The function reads the contents of *data-_field[0]* until *data-_field[63]* (s2* = 1 => 1 block = 64 words) and writes the information after start block number 0 into the EEPROM.
 - LD start P13_EPWT -I F EN ENO _ data_field[0] s1. . s2 · · · · · **1**— . . · 0 d

. start

_____1, _____0

_____data field[0],

IL

LD P13_EPWT

F15_>	(CH		10	6–bit	data	exch	nang	ge			Steps 5	
Description	The contents in the 16–bit areas specified by d1 and d2 are exchanged if the trigger EN is in the ON–state.											
PLC types FP0 FP1 FP-M												
	Availabilit	2	.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5	k		
	F15		х		х	x		х	х		x: available –: not available	
Data types	Variable Data type Function											
	d1 INT, WORD 16–bit area to be exchanged with d2											
	d2	INT, V	WORD	16	-bit area	a to be e	excha	nged w	ith d1			
	The variab	les d	1 and	d2 h	ave to	be of	the	same	data ty	pe.		
Operands	For		Re	lay		T/C		Register		ər	Constant	
	FOI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
	d1	-	х	х	х	х	х	x	х	х	_	
	d2	-	x	х	х	x	х	x	x	х	-	
	·				-						x: available : not available	
Example	In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.											
POU header	In the POU programm		-			outpu	it va	riable	s are d	eclar	ed that are used for	

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	value_1	INT Ŧ	17	result after a 0->1 leading edge from start: 24
2	VAR ±	value_2	INT Ŧ	24	result after a 0->1 leading edge from start: 17

When the variable *start* is set to TRUE, the function is executed. Body

LD

.

ST IF start THEN F15_XCH(value_1, value_2); END_IF;

Steps

5

F16_DXCH

32-bit data exchange

Description Two 32–bit data specified by **d1** and **d2** are exchanged if the trigger **EN** is in the ON–state.

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F16	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
d1	DINT, DWORD	32-bit area to be exchanged with d2
d2	DINT, DWORD	32-bit area to be exchanged with d1

The variables **d1** and **d2** have to be of the same data type.

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
d1, d2	-	х	х	х	х	х	х	х	х	_
										x. availa

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	value_1		17	result after a 0->1 leading edge from start: 24
2	VAR ±	value_2		24	result after a 0->1 leading edge from start: 17

Body When the variable *start* is set to TRUE, the function is executed.

ST IF start THEN

F16_DXCH(value_1, value_2);

END_IF;

3

Steps

F17_SWAP Higher/lower byte in 16–bit data exchange

Description The higher byte (higher 8 bits) and lower byte (lower 8 bits) of a 16–bit area specified by **d** are exchanged if the trigger **EN** is in the ON–state.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F17	Х	х	х	х	х	x: available –: not available

Data types

 Variable
 Data type
 Function

 d
 INT, WORD
 16-bit area in which the higher and lower bytes are swapped (exchanged)

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	VAR ±	start	BOOL 편	FALSE	activates the function		
1	VAR ±	swap_value	WORD Ŧ	16#2345	result after 0->1 leading edge from start: 16#4523		

Body When the variable *start* is set to TRUE, the function is executed.

LD

ST IF start THEN

F17_SWAP(swap_value);
END IF;

F144_TRNS Serial of

Serial communication (RS232C)

Description Use this instruction for transmission and reception of command data when an external device (personal computer, measuring instrument, bar code reader, etc.) is connected to the COM. port of the CPU or RS232C port.

Transmission

The **n** bytes of the data stored in the data table with the starting area specified by **s** are transmitted from the COM. port or RS232C port to an external device by serial transmission.

A start code and end code can be automatically added before transmission.

External device (Personal computer)

Reception

Reception is controlled by the reception completed flag (R9038) being turned on and off.

When reception completed flag (R9038) is off, the data sent to the COM. port or RS232C port is stored in the reception buffer selected in system registers 417 and 418. When an F144_TRNS instruction is executed, the reception completed flag (R9038) goes off.

External device (Bar code reader)

PLC types

	Availability	FP0	FP1		F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F144	Х	-	х	-	C types	x: available –: not available

Data types

Variable	Data type	Function				
S	WORD	Starting 16-bit area for storing data to be sent.				
n	INT, WORD	 16-bit equivalent constant or 16-bit area to specify number of bytes to be sent: When the value is positive, an end code is added. When the value is negative, no end code is added. When the value is 16#8000, the transmission mode of the RS232C port is changed from Computer–Link to General purpose or vice–versa. 				

Operands

For	Relay				T/C		Register			Constant
FOI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s	_	_	-	-	-	-	х	-	-	-
n	х	х	х	х	х	х	х	х	х	x

x: available -: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	the number of bytes specified by n exceeds the source data area range.
R9008	%MX0.900.8	for an instant	, , , , , , , , , , , , , , , , , , ,

Preparation of transmission and reception

1) Setting the use of COM. port: System register 412

F144 is only executed if system register 412 is set to general purpose.

With the programming software: Set system register 412 for serial transmission (general purpose port).

With the PLC program:

To switch between "computer link communication" and "serial data communication" (general purpose port), execute an **F144_TRNS** instruction. Set **n** (the number of transmission bytes) to 16#8000, and then execute the instruction.

When executed when "computer link" is selected, the setting will change to "general purpose port."

When executed when "general purpose port" is selected, the setting will change to "computer link." R9032 is the COM. port selection flag. This flag turns on when "General purpose port" is selected.

Example In this example the function F144_TRNS is programmed in ladder diagram (LD).

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class VAR <u>±</u>		Identifier	Туре		Initial	Comment
0			Start	BOOL 🛃		FALSE	
1	VAR	Ŧ	Dummy	WORD	Ŧ	0	
2	VAR_CONSTANT	Ŧ	COMPortSelect	WORD	Ŧ	16#8000	Switches System Register 412 from computer link to general port or vice-versa

Body The variable *ComPortSelect* is assigned the value 16#8000. This means that the COM port setting will switch to general purpose when in computer link mode or vice–versa when the function is executed.

LD

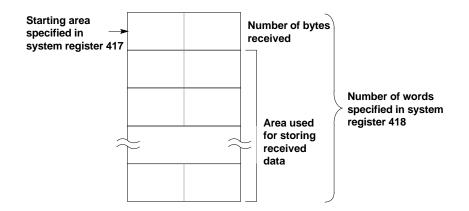
1	· · Start· · · · ·	F144_TRNS		
	• P	EN ENO	1	
	· · · · · Dummy	S	1	
	· · COMPortSelect	n		

When the power is turned on, the port use will revert to the setting of system register 412.

2) Set the RS232C transmission format with system register 413

The initial settings for the transmission format are as follows: Data length: 8 bits Parity check: Yes, odd Stop bits: 1 bit End code: C_R Start code: No STX

Sets transmission formats according to the connected external device. Since the end code specified in sxstem register 413 is automatically added to data sent, you do not have to write an end code in the area specified by s and n.

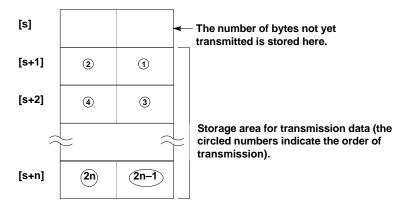

3) Set the initial baud rate with system register 414

The baud rate (transmission speed) for serial transmission is initially set to 9600 bps. Sets baud rate of RS232C port according to the connected external device.

4) Setting the reception buffer: System registers 417 and 418

All areas of the data register are initially set for use as the reception buffer. To change the reception buffer, set the starting area number in system register 417 and the size (number of words—maximum of 1000) in system register 418. The reception buffer will be as follows:

1 Cor


Program and operation during transmission

To transmit, write the transmission data to the data table, select it with an **F144_TRNS** instruction, and execute.

Data table for transmission

Data register areas beginning with the area selected by **s** are used as the data table for transmission.

Take care that the transmission data table and reception buffer areas (set in system registers 417 and 418) do not overlap.

Write the transmission data to the transmission data storage area selected with **s** (from the second word on) using an **F0_MV** or **F95_ASC** instruction.

- Do not include an end code in the transmission data as it will be added automatically.
- If the start code is set to "Yes", do not include a start code in the transmission data as it will be added automatically.
- There is no restriction on the number of bytes **n** that can be transmitted. Following the initial area of the data **s**, transmission is possible up to the data range that can be used by the data register.

When the **F144_TRNS** instruction is executed, the number of data bytes not yet transmitted is stored in the starting area of the data table.

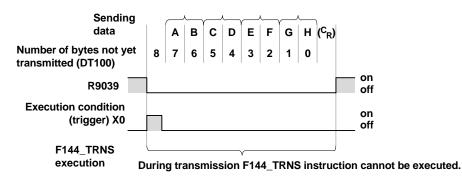
LD

Example In this example the characters of the the string SendString are transmitted.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	10	Identifier	Туре		Initial	Comment
0	VAR	크	Send	BOOL	f	FALSE	activates function
1	VAR	ŧ	SendString	STRING[30]	F	'ABCDEFGH'	
2	VAR	*	SendBuffer	ARRAY [015] ³ OF WORD	Ē	[16(0)]	
З	VAR_CONSTANT	±	StringHeaderSize	INT	Ŧ	2	

Body When the variable *Send* is set to TRUE, the function F10_BKMV copies the applied data of the string *SendString* to the buffer *SendBuffer* beginning at *SendBuffer*[1]. Additionally, the size of the string header, 2, is added to the beginning address of the string. Two characters of the string *SendString* can be copied into each element of the array *SendBuffer*. *SendBuffer*[0] remains reserved to show the number of bytes to be sent for the instruction F144_TRNS.

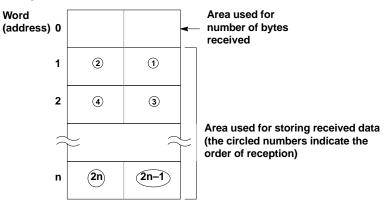

1	Creating the send buffer
	· · · · · Send · · · · Send · · · · Send · · · · · · · · · · · · · · · · · · ·
	AdrLast_Of_Var_I SendString - Var AdrLast - SendBuffer[1]
2	Send sign of the send buffer via the serial interface
2	· · · · · Send F144 TRNS
	· · · SendBuffer[0]
	a na
	· · · · SendString — IN

Operation:

If the execution condition (trigger) for the **F144_TRNS** instruction is on when sending completed flag (R9039) goes on, operation will proceed as follows:

- 1. **n** is preset in **s** (the number of bytes not yet transmitted). Furthermore, reception completed flag (R9038) is turned off and the reception data number is cleared to zero.
- 2. The data in the data table is transmitted in order from the lower byte.
 - As each byte is transmitted, the value in s (the number of bytes not yet transmitted) decrements by 1.
 - During transmission, the sending completed flag (R9039) goes off.
 - If the start code STX is set to "Yes", the start code will be automatically added to the beginning of the data.
 - The end code selected is automatically added to the end of the data.

1 er


3. When the specified quantity of data has been transmitted, the value in **s** (the number of bytes not yet transmitted) will be zero and the sending completed flag (R9039) will go on.

The F144_TRNS instruction cannot be executed and the R9039 is not turned on unless pin number 5 of COM. port (RS232C) is turned on.

Program and operation during reception

Data sent from the external device connected to the COM port or RS232C port will be stored in the data register areas set as the reception buffer in system registers 417 and 418.

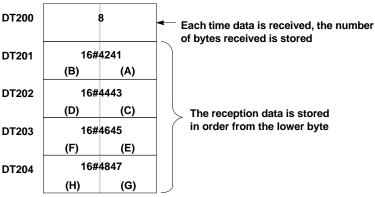
Reception buffer

Each time data is received, the amount of data received (number of bytes) is stored as a count in the leading address of the reception buffer. The initial value is zero.

The data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

Example In this example the function F144_TRNS is programmed in ladder diagram (LD).

POU In the POU header, all input and output variables are declared that are used for programming this function.


	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Start	BOOL 🗗	FALSE	
	VAR 🛓		WORD 👎	0	

Body In this example, the eight characters A, B, C, D, E, F, G and H (8 bytes of data) are received from an external device.

System register settings for this example are as follows:

– System register 417: 200

- System register 418: 4

Reception buffer when reception is completed

When reception of data from an external device has been completed, the reception completed flag (R9038) goes on and further reception of data is not allowed.

To receive more data, an **F144_TRNS** instruction must be executed to turn off the reception completed flag (R9038) and clear the byte number to zero.

LD

	· · Start· · · · F144_TRNS	ŀ.	ŝ	ં	ŝ	ં	ŝ	ंग्	ŝ	ं
	• EN ENO	H.	53	19	50		50	10	50	19
	· · · Dummy — s	1	•	•		•		•	•	•
	0 <u> n</u>		-	19	5	19	5	19	-	19
	To repeat reception, set to 0 at n. R9038 will also go off when the nur bytes is set and transmission is car					ns	mi	ss	ior	n

Operation:

When the reception completed flag (9038) is off and data is sent from an external device, operation will proceed as follows. (After RUN, R9038 is off during the first scan.)

 The data received is stored in order in the reception data storage area of reception buffer beginning from the lower byte of the second word of the area.

Start and end codes will not be stored.

With each one byte received, the value in the leading address of the reception buffer is incremented by 1.

- 2. When an end code is received, the reception completed flag (R9038) goes on. After this, no further reception of data is allowed.
- 3. When an **F144_TRNS** instruction is executed, the reception completed flag (R9038) goes off and the number of received data bytes is cleared to zero. Further data received is stored in order in the reception data storage area beginning from the lower byte of the second word of the area.

r

For repeated reception of data, refer to the following procedure 1) to 5). 1) Receive data

- 2) Reception completed (R9038: on, Reception: not allowed)
- 3) Process received data
- 4) Execute F144_TRNS instruction (R9038: off, Reception: enable)
- 5) Receive further data

F147_PR

Parallel printout

Steps

5

Description Outputs the ASCII codes for 12 characters stored in the 6–word area specified by **s** via the word external output relay specified by **d** if the trigger **EN** is in the ON–state. If a printer is connected to the output specified by **d**, a character corresponding to the output ASCII code is printed.

Only bit positions 0 to 8 of **d** are used in the actual printout. ASCII code is output in sequence starting with the lower byte of the starting area. Three scans are required for 1 character constant output. Therefore, 37 scans are required until all characters constants are output.

Since it is not possible to execute multiple **F147_PR** instructions in one scan, use print–out flag R9033 to be sure they are not executed simultaneously. If the character constants convert to ASCII code, use of the F95_ASC instruction is recommended.

PLC types

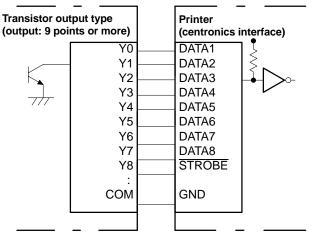
vailability	FP0		FP1	F	P–M	
wanabinty	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F147	x	-	х	-	х	x: available –: not available

Data types

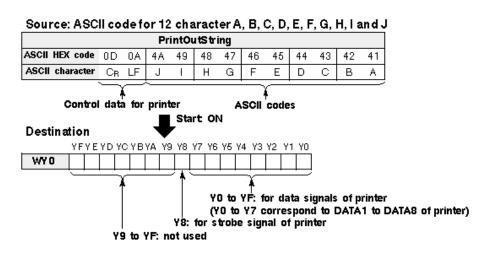
	Variable	Data type	Function					
s INT, WORD starting 16-bit area for storing 12 bytes (6 words) of As codes (source)								
	d	WORD	word external output relay used for output of ASCII codes (des- tination)					

Operands

For	Relay T/C Register						Constant			
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s	x	х	х	x	х	х	x	х	х	-
d	—	х	-	_	-	-	_	-	-	_


x: available

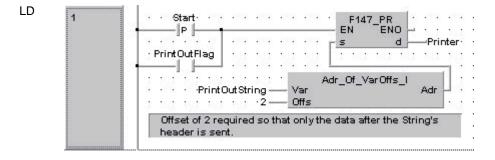
–: not available


Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	D.7 permanently – the ending area for storing ASCII codes limit	
R9008	%MX0.900.8	for an instant	 the trigger of another F147_PR instruction turns on while one F147_PR instruction is being executed
R9033	%MX0.903.3	permanently	- a F147_PR instruction is being executed

Connection example

Example In this example the function F147_PR is programmed in ladder diagram (LD). The ASCII codes stored in the string *PrintOutString* are output through word external output relay WY0 when trigger *Start* turns on.



GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

	Class	Identifier	Matsus	IEC_Addres:	Туре	Initial
0	VAR_GLOBAL	Printer	WYO	%QW0	WORD 📑	0
1	VAR_GLOBAL 🛓	PrintOutFlag	R9033	%MX0.903.3	BOOL 🖣	FALSE

POU In the POU header, all input and output variables are declared that are used for programming this function.

5 6		Class		Identifier	Туре		Initial	Comment
15 B	0	VAR	±	Start	BOOL	Ŧ	FALSE	
	1	VAR_EXTERNAL	ŧ	PrintOutFlag 🖣	BOOL	Ŧ	FALSE	
•	2	VAR	+	PrintOutString	STRING[12]	Ŧ	'ABCDEFGHIJ\$L\$R'	\$L = line feed \$R = carriage return
[3	VAR_EXTERNAL	ŧ	Printer 🖣	WORD	Ŧ	0	

Chapter 16

Arithmetic Instructions

F20_ADD

16-bit addition

Steps

5

Description The 16-bit equivalent constant or 16-bit area specified by **s** and the 16-bit area specified by **d** are added together if the trigger **EN** is in the ON-state. The result is stored in **d**.

PLC types

	Availability	FP0	FP1		F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F20	x	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s	INT, WORD	addend
d	INT, WORD	augend and result

The variables **s** and **d** have to be of the same data type.

Operands

WX WY WR WL SV EV DT LD FL dec. or her S X X X X X X X X X	For	Relay			T/C		Register			Constant	
	101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
	s	x	х	х	х	х	х	х	х	х	х
	d	-	х	х	х	x	х	х	х	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	var <u>±</u>	start	BOOL 🗗	FALSE	activates the function		
1	VAR ±	value_in	INT ₹	27	the value, that will be added to output_value		
2		value_in_out	INT Ŧ	16	result after a 0->1 leading edge from start: 43		

Body When the variable *start* is set to TRUE, the function is executed.

LD

 · · · · start·
 F20_ADD
 · · · · · · · · ·

 EN
 ENO
 · · · · · · · · ·

 ·value_in
 _ s
 d
 _ value_in_out

ST IF start THEN
 F20_ADD(value_in, value_in_out);
 END IF;

Steps

F21_DADD

32-bit addition

Description The 32-bit equivalent constant or 32-bit area specified by **s** and the 32-bit data specified by **d** are added together if the trigger **EN** is in the ON-state. The result is stored in **d**.

PLC types

5	Availability	FP0	FP1		F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F21	Х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
S	DINT, DWORD	addend
d	DINT, DWORD	augend and result

The variables **s** and **d** have to be of the same data type.

Operands

For	Relay			T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	value		27	the value, that will be added to output_value
2	VAR ±	output_value		16	result after a 0->1 leading edge from start: 43

Body When the variable *start* is set to TRUE, the function is executed.

LD

ST IF start THEN

F21_DADD(value, output_value);

END_IF;

Steps

7

ADD2 16-bit addition, destination can be specified

The 16-bit data or 16-bit equivalent constant specified by s1 and s2 are added Description together if the trigger EN is in the ON-state. The result is stored in d.

PLC types

Availability	FP0		FP1	F	P–M	
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F22	Х	х	х	х	х	x: available : not available

Data types

Variable	Data type	Function
s1	INT, WORD	augend
s2	INT, WORD	addend
d	INT, WORD	result

The variables s1, s2 and d have to be of the same data type.

Operands

For	Relay			T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	x	х	х
d	-	х	х	х	х	х	х	х	х	-
•	•									vu ovoilok

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 🛃	FALSE	activates the function
1	VAR 🛓	value_in1	INT 于	27	
2	VAR 🛓	value_in2	INT 📑	16	
з	VAR ±	value_out	INT Ŧ	0	result after a 0->1 leading edge from start: 43

Body

When the variable start is set to TRUE, the function is executed.

LD

	star —	t∙ ⊩	E	F2 N	22_	_AI	2 ENI				:				
value_	in1–		S	1				d	_	~	alı	ue,	_0	JL	
value_	in2 –	_	s	2					·	·	·	·	·	·	

ST IF start THEN F22_ADD2(value_in1, value_in2, value_out);

END_IF;

Steps

DADD2 32-bit addition, destination can be 23 specified

The 32-bit data or 32-bit equivalent constant specified by s1 and s2 are added Description together if the trigger EN is in the ON-state. The result is stored in d.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F23	Х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s1	DINT, DWORD	augend
s2	DINT, DWORD	addend
d	DINT, DWORD	result

The variables s1, s2 and d have to be of the same data type.

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s1, s2	х	x	x	х	х	х	х	х	x	х
d	-	x	х	х	х	х	х	х	x	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

Class	Identifier Type		Initial	Comment		
0 VAR ±	start	BOOL 편	FALSE	activates the function		
1 VAR 🛓	value_in1	DINT 📑	27	first summand		
2 VAR 🛓	value_in2	DINT 📑	16	second summand		
3 VAR ±	value_out		0	result after a 0->1 leading edge from start: 43		

Body

When the variable *start* is set to TRUE, the function is executed.

ENO

F23_DADD2

LD

start∘

	value_in1s1dvalue_out value_in2s2
ST	IF start THEN
	F23_DADD2(value_in1, value_in2, value_out);
	END_IF;

F40_BADD

4-digit BCD addition

Steps

5

Description The 4–digit BCD equivalent constant or 16–bit area for 4–digit BCD data specified by **s** and the 16–bit area for 4–digit BCD data specified by **d** are added together if the trigger **EN** is in the ON–state. The result is stored in **d**.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F40	x	х	х	_	х	x: available -: not available

Data types

Variable	Data type	Function
s	WORD	addend, 16-bit area for 4-digit BCD data or equivalent constant
d	WORD	augend and result, 16-bit area for 4-digit BCD data

Operands

For		Re	lay		T/C		Register			Constant
	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
S	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment	
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function	
1	VAR ±	summand	WORD Ŧ		this value will be added to the output_value	
2		output_value	WORD Ŧ	16#0011	result after 0->1 leading edge from start: 16#2122	

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

I.

• • • start•	F40_BADD	
summand —	s d	output_value

ST IF DF(start) THEN

F40_BADD(summand, output_value);

END_IF;

Steps

F41_DBADD

8-digit BCD addition

Description The 8-digit BCD equivalent constant or 8-digit BCD data specified by **s** and the 8-digit BCD data specified by **d** are added together if the trigger **EN** is in the ON-state. The result is stored in **d**.

PLC types

es	Availability	FP0	FP1		F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F41	x	х	х	-	х	x: available -: not available

Data types

Variable	Data type	Function
s DWORD		addend, 32-bit area for 8-digit BCD data or equivalent constant
d	DWORD	augend and result, 32-bit area for 8-digit BCD data

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
S	х	x	x	х	х	х	х	х	х	х
d	-	х	x	х	х	х	х	х	х	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR 💾	summand	DWORD Ŧ		this value will be added to the output_value
2	VAR ±	output_value	DWORD Ŧ	16 # 00003678	result after 0->1 leading edge from start: 16#12345678

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

· · · start·	F41_DBADD	
summand —	s d output_value	

BADD2 4-digit BCD addition, destination can be specified

Steps

7

The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified Description by s1 and s2 are added together if the trigger EN is in the ON-state. The result is stored in d.

PLC types

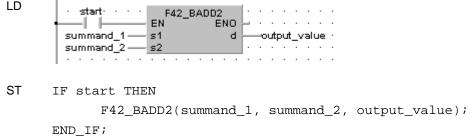
Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F42	х	-	х	_	х	x: available : not available

Data types

Variable	Data type	Function
s1	WORD	augend, 16-bit area for 4-digit BCD data or equivalent constant
s2	WORD	addend, 16-bit area for 4-digit BCD data or equivalent constant
d	WORD	sum, 16-bit area for 4-digit BCD data

Operands

For	Relay			T/C		Register			Constant	
FOI	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	х
d	_	х	х	х	х	х	х	х	х	_
										vi ovoilok


x: available -: not available

- Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	summand_1	WORD 편	16#4321	first summand
2	VAR 🛓	summand_2	WORD 편	16#1234	second summand
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 16#5555

When the variable start changes from FALSE to TRUE, the function is executed. Body

LD

Steps

DBADD2 8-digit BCD addition, destination 5 can be specified

The 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified Description by s1 and s2 are added together if the trigger EN is in the ON-state. The result is stored in d.

PLC typ

pes	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F43	x	х	х	Ι	х	x: available -: not available

Data types

Variable	Data type	Function
s1	DWORD	augend, 32-bit area for 8-digit BCD data or equivalent constant
s2 DWORD		addend, 32-bit area for 8-digit BCD data or equivalent constant
d	DWORD	sum, 32-bit area for 8-digit BCD data

Operands

For	Relay			T/C		Register			Constant	
FUI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	x	x	х	х	х	х	х	х	х
d	-	x	x	х	х	х	х	х	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR :	start	BOOL 📑	FALSE	activates the function
1	VAR 🗄	≝summand_1	DWORD 📑	16#12345678	first summand
2	VAR 🗄	gsummand_2	DWORD 📑	16#87654321	second summand
0		eutput_value	DWORD Ŧ	o	result after a 0->1 leading edge from start: 16#39939393

Body

When the variable start is set to TRUE, the function is executed.

LD

LD	start F43_DBADD2 EN ENO summand_1 s1 summand_2 s2
ST	IF start THEN
	F43_DBADD2(summand_1, summand_2, output_value);
	END_IF;

F157_CADD Time a

Time addition

Steps

9

Description The date/clock data (3 words) specified by s1 and the time data (2 words) specified by s2 are added together if the trigger EN is in the ON–state. The result is stored in the area (3 words, same format as s1) specified by d. All the data used in the F157_CADD instruction are handled in form of BCD.

Example Clock/calendar data:

August 1, 1992 Time: 14:23:31 (hour:minutes:seconds)

- s1[0]: 16#2331 (minutes/seconds)
- s1[1]: 16#0114 (day/hour)
- s1[2]: 16#9208 (year/month)

Time data:

32 hours; 50 minutes; and 45 seconds

s2: 16#00325045 (hours/minutes/seconds)

You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056) for the operand **d**. These registers are factory built–in calendar timer values. To change the built–in calendar timer value, first store the added result in other memory areas and transfer them to the special data registers using the F0_MV instruction.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F157	х	_	5k	-	5k	x:

x: available –: not available

;	Variable	Data type	Function
	s1	ARRAY [02] OF WORD	augend, time and date, values in BCD format
	s2	DWORD	addend, 32-bit area for storing time data in BCD format
	d	ARRAY [02] OF WORD	sum in BCD format

Operands

Data types

For		Re	lay		Т/	C	Register		Constant		
101	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s1	х	х	х	х	х	х	х	х	х	_	
d	-	х	х	х	х	х	х	х	х	-	
s2	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
	x	х	х	x	х	x	x	х	х	x	

x: available

-: not available

Example In this example the function F157_CADD is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	ass Identifier Type		Initial	Comment
0	VAR 🛓	Start	BOOL 📑	FALSE	
1	VAR 🛓	TimeDate	ARRAY [02] OF WORD 편	[3(16#0101)]	2001, Jan. 1, 1:01:01 a.m.
2	VAR 🛓	TimeAdd	DWORD 📑	16#01010101	101 hours, 1 min., 1 sec.
з	VAR 🛓	SumTime	ARRAY [02] OF WORD 📑	[3(0)]	2001, Jan. 5, 6:02:02 a.m.

LD

1	· · Start· · · · · · · · · · · ·	਼		1		1.2	
	F157_CADD	Ŀ	ं	1	ं	1	•
	· · · · · <u>·</u> EN ENO	-	•	. •	•		•
	🔆 · · · · · TimeDate —— s1 👘 d	H	-	Sur	mΤi	ime	·
	· · · · TimeAdd — s2	1		•		•	•
	a car car car car car car car					0.00	

IL

1	LD F157_CADD	Start TimeDate, TimeAdd, SumTime	100
		•	з

F25_SUB

16-bit subtraction

Steps

5

Description Subtracts the 16-bit equivalent constant or 16-bit area specified by **s** from the 16-bit area specified by **d** if the trigger **EN** is in the ON-state. The result is stored in **d** (minuend area).

PLC types

Availability	FP0		FP1	F	P–M	
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F25	х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s	INT, WORD	subtrahend
d	INT, WORD	minuend and result

The variables **s** and **d** have to be of the same data type.

Operands

	For		Relay			T/C		Register			Constant	
	101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
ſ	s	х	х	х	х	х	х	х	х	х	х	
	d	-	х	х	х	x	x	х	x	х	-	

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	value_in	INT Ŧ	:	the value, that will be subtracted from value_in_out
2		value_in_out	INT Ŧ	16	result after a 0->1 leading edge from start: -11

Body When the variable *start* is set to TRUE, the function is executed.

LD

····start· F25_SUB EN ENO ·value_in____s___d___value_in_out

Steps

F26_DSUB

32-bit subtraction

Description Subtracts the 32-bit equivalent constant or 32-bit data specified by **s** from the 32-bit data specified by **d** if the trigger **EN** is in the ON-state. The result is stored in **d** (minuend area).

PLC types

Availability	FP0		FP1	F	P-M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F26	x	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s	DINT, DWORD	subtrahend
d	DINT, DWORD	minuend and result

The variables **s** and **d** have to be of the same data type.

Operands

	For	Relay			T/C		Register			Constant	
	101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
	s	х	х	х	х	х	х	х	х	х	х
	d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 于	FALSE	activates the function
1	VAR ±	value_in		27	the value, that will be subtracted from value_in
2	VAR ±	value_in_out		16	result after a 0->1 leading edge from start: -11

Body When the variable *start* is set to TRUE, the function is executed.

LD

4	····start·	FZ6_D306			· ·				
	·value_in —	s d	┝	-~	alue	_ir	Lo	ut	·

ST IF start THEN

```
F26_DSUB(value_in, value_in_out);
```

END_IF;

Steps

7

F27_SUB2 16-bit subtraction, destination can be specified

Description Subtracts the 16-bit data or 16-bit equivalent constant specified by **s2** from the 16-bit data or 16-bit equivalent constant specified by **s1** if the trigger **EN** is in the ON-state. The result is stored in **d**.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F27	х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s1	INT, WORD	minuend
s2	INT, WORD	subtrahend
d	INT, WORD	result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For	Relay			T/C		Register			Constant	
FUI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	x	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	var <u>±</u>	start	BOOL 🗗	FALSE	activates the function		
1	VAR 🛓	minuend	INT 于	27	minuend		
2	VAR 🛓	subtrahend	INT 于	16	subtrahend		
з	VAR ±	output_value	INT Ŧ	0	result after a 0->1 leading edge from start: 11		

Body

When the variable *start* is set to TRUE, the function is executed.

LD

• • • start•	F27_SUB2 EN ENO	
 minuend — 	s1 d	output_value
subtrahend —	s2	

ST IF start THEN

F27_SUB2(minuend, subtrahend, output_value);

END_IF;

Steps

DSUB2 32-bit subtraction, destination can be specified

Subtracts the 32-bit data or 32-bit equivalent constant specified by s2 from the Description 32-bit data or 32-bit equivalent constant specified by s1 if the trigger is in the ON-state. The result is stored in d.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	ſ
F28	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	DINT, DWORD	minuend
s2	DINT, DWORD	subtrahend
d	DINT, DWORD	result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For		Relay			T/C		Register			Constant
FUI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	x	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-
										v: availat

x: available -: not available

- Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	minuend	DINT 📑	27	minuend
2	VAR 🛓	subtrahend	DINT 于	16	subtrahend
з	VAR ±	output_value		0	result after a 0->1 leading edge from start: 11

Body

When the variable start is set to TRUE, the function is executed.

LD	subtrahend s2
ST	IF start THEN
	F28_DSUB2(minuend, subtrahend, output_value);
	END_IF;

F45_BSUB

4-digit BCD subtraction

Steps

5

Description Subtracts the 4–digit BCD equivalent constant or 16–bit area for 4–digit BCD data specified by **s** from the 16–bit area for 4–digit BCD data specified by **d** if the trigger **EN** is in the ON–state. The result is stored in **d**.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	Ţ
F45	х	х	х	_	х	x: available -: not available

Data types

Variable	Data type	Function
s	WORD	subtrahend, 16–bit area for 4–digit BCD data or equivalent constant
d	WORD	minuend and result, 16-bit area for 4-digit BCD data

Operands

		Relay			T/C		Register			Constant
For	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s	x	х	х	х	х	х	х	x	х	х
d	_	х	х	х	х	х	х	x	х	-

x: available –: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR ±	subtrahend	WORD Ŧ		this value will be subtracted from the output_value
2	VAR ±	output_value	WORD Ŧ	16#2111	result after 0->1 leading edge from start: 16#2100

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

	F45_BSUB								
↓ P	EN ENO	۲.	·	·	·	•	·	·	•
• subtrahend —	s d	⊢	_	-0	utp	but	_v	alu	Je

ST IF DF(start) THEN
 F45_BSUB(subtrahend, output_value);
 END_IF;

DBSUB 6

8-digit BCD subtraction

Steps

Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s Description from the 8-digit BCD data specified by d if the trigger EN is in the ON-state. The result is stored in d.

PLC types

Availability	FP0		FP1	F	P–M	
<i>i</i> trancisinty	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F46	x	х	х	-	х	x: available –: not available

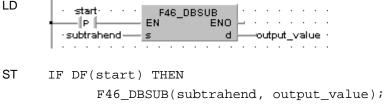
Data types

Variable	Data type	Function
s	DWORD	subtrahend, 32-bit area for 8-digit BCD data or equivalent constant
d	DWORD	minuend and result, 32-bit area for 8-digit BCD data

Operands

For	Relay			T/C		Register			Constant	
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s	х	x	x	х	x	х	х	x	х	х
d	-	х	х	х	х	х	х	x x		_

x: available -: not available


In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u></u>	start	BOOL 편	FALSE	activates the function
1	VAR ±	subtrahend	DWORD Ŧ		this value will be subtracted from the output_value
2	VAR ±	output_value	DWORD Ŧ	16#23210044	result after 0->1 leading edge from start: 16#23000033

When the variable start changes from FALSE to TRUE, the function is executed. Body

LD

END_IF;

F47_BSUB2 4-digit BCD subtraction, destination can be specified

Steps

7

Description Subtracts the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s2 from the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 if the trigger EN is in the ON-state. The result is stored in d.

PLC types	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F47	Х	х	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	WORD	minuend, 16-bit area for 4-digit BCD data or equivalent constant
s2	WORD	subtrahend, 16-bit area for 4-digit BCD data or equivalent constant
d	WORD	result, 16-bit area for 4-digit BCD data

Operands

For		Re	lay	T/C			Register			Constant
FOI	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-
-										

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	minuend	WORD 편	16#4567	minuend
2	VAR 🛓	subtrahend	WORD 편	16#1234	subtrahend
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 16#3333

Body

When the variable *start* is set to TRUE, the function is executed.

LD

	· start· · ·	F47 BSUB2	.	·	·	·	·	·	•
- 1	└──_ ₽ └── ──	EN ENO	-	·	·	·	·	·	•
	 minuend — 	s1 d		-0	utp	but	<u>ر</u>	ralu	Je
	•subtrahend—	s2	·	·	·	·	·	·	•
			•						

ST IF start THEN

F47_BSUB2(minuend, subtrahend, output_value); END IF;

DBSUB2 8-digit BCD subtraction, 48 destination can be specified

Steps 11

Subtracts the 8-digit BCD equivalent constant or 8-digit BCD data specified by s2 Description from the 8-digit BCD equivalent constant or 8-digit BCD data specified by s1 if the trigger **EN** is in the ON-state. The result is stored in **d**.

PLC types

Availability	FP0		FP1	F	P-M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F48	Х	х	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	DWORD	minuend, 32-bit area for 8-digit BCD data or equivalent constant
s2	DWORD	subtrahend, 32-bit area for 8-digit BCD data or equivalent constant
d	DWORD	result, 32-bit area for 8-digit BCD data

Operands

For	Relay				T/C		Register			Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-
										v: ovoilol

x: available -: not available

- Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🗄	start	BOOL 편	FALSE	activates the function
1	VAR 🗄	uminuend	DWORD 편	16#33555588	minuent
2	VAR 🗄	≝ subtrahend	DWORD 편	16#00110022	subtrahent
з	VAR :	eutput_value	DWORD 7	0	result after a 0->1 leading edge from start: 16#33445566

Body

When the variable start is set to TRUE, the function is executed.

LD	start F48_DBSUB2 P EN Start EN Image: start Image: start Image: start Image: st
ST	IF start THEN
	F48_DBSUB2(minuend, subtrahend, output_value);
	END_IF;

F158_CSUB Time subtraction

Steps

9

Description Subtracts time data (2 words) specified by **s2** from the date/clock data (3 words) specified by **s1** if the trigger **EN** is in the ON–state. The result is stored in the area (3 words, same format than **s1**) specified by **d**. All the data used in the **F158_CSUB** instruction are handled in form of BCD.

Example Clock/calendar data:

August 1, 1992 Time: 14:23:31 (hour:minutes:seconds)

s1[0]: 16#2331 (minutes/seconds)

- s1[1]: 16#0114 (day/hour)
- s1[2]: 16#9208 (year/month)

Time data:

32 hours; 50 minutes; and 45 seconds

s2 16#00325045 (hours/minutes/seconds)

You cannot specify special data registers DT9054 to DT9056 (DT90054 to DT90056 for FP10/10S) for the operand **d**. These registers factory built–in calendar timer values. To change the built–in calendar timer value, first store the added result in other memory areas and transfer them to the special data registers using the F0_MV instruction.

PLC types	Availability	FP0		FP1	F		
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F158	х	-	5k	-	5k)

x: available –: not available

Variable	Data type	Function				
s1	ARRAY [02] OF WORD	minuend, time and date, values in BCD format				
s2	DWORD	subtrahend, 32-bit area for storing time data in BCD format				
d	ARRAY [02] OF WORD	result in BCD format				

Operands

Data types

For	Relay				T/C		Register			Constant
101	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1	х	х	х	х	х	х	х	х	х	_
d	-	х	х	х	х	х	х	х	х	-
s2	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
	x	х	х	x	х	x	x	х	х	x

x: available -: not available

IL

Example In this example the function F158_CSUB is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Start	BOOL	FALSE	
1	VAR ±	TimeDate	ARRAY [02] OF WORD	[3(16#0101)]	2001, Jan. 1, 1:01:01 a.m.
2	VAR 🛓	TimeSubtract	DWORD	16#01010101	101 hours, 1 min., 1 sec.
з	VAR ≛	ResultTime	ARRAY (02) OF WORD	f [3(0)]	2000, Dec. 27, 8:00:00 p.m. Time warp back into old millenium!

LD	1	· · Start· · · · · · · · · · · · · · · · · · ·			3
		F158_CSUB	1		
		····TimeDate — s1 d — s1		sultTim	

1 LD Start F158_CSUB TimeDate, TimeSubtract, ResultTime

Steps

7

MUL 16-bit multiplication, destination can be specified

Description Multiplies the 16-bit data or 16-bit equivalent constant **s1** and the 16-bit data or 16-bit equivalent constant specified by **s2** if the trigger **EN** is in the ON-state. The result is stored in **d** (32-bit area).

PLC types

Availability	FP0		FP1	F		
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F30	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	multiplicand
s2	INT, WORD	multiplier
d	DINT, DWORD	result

The variables **s1**, **s2** and **d** have to be of the same data type (INT/DINT or WORD/ DWORD).

Operands

For	Relay			T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	х
d	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
ŭ	_	х	х	x	х	х	х	x	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the fuction
1	VAR 🛓	multiplicand	INT 📑	10	multiplicand
2	VAR 🛓	multiplicator	INT 于	17	multiplicator
з		output_value		0	result after a 0->1 leading edge from start: 170

In this example the input variables *input_value_1, input_value_2* and *input_value_3* are declared. However, you can write constants directly at the input contact of the function instead.

Body When the variable *start* is set to TRUE, the function is carried out.

LD

···· start·	F30_MUL	·							÷	
multiplicand —	s1 d	_								
multiplicator —	s2	·	·	·	·	·	·	·	·	·
		•								

ST IF start THEN

F30_MUL(multiplicand, multiplicator, output_value); END_IF;

Steps

11

DMUL 32-bit multiplication, destination can be specified

Multiplies the 32-bit data or 32-bit equivalent constant specified by s1 and the one Description specified by s2 if the trigger EN is in the ON-state. The result is stored in d[1], d[2] (64-bit area).

PLC types

	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	ſ
	F31	Х	-	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	DINT, DWORD	multiplicand
s2	DINT, DWORD	multiplier
d	ARRAY [01] OF DINT or DWORD	result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For	Relay				T/C		R	egiste	Constant		
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
s1, s2	х	х	х	х	х	х	х	х	х	х	
d	_	х	х	х	х	х	х	x	х	-	
										المائمين من الم	

x: available -: not available

- In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR ±	start	BOOL	Ŧ	FALSE	Enable signal
1	VAR 🛓	multiplicand	DINT	Ŧ	0	Variable 0
2	VAR 🛓	multiplicator	DINT	Ŧ	0	Variable 1
3		output_value	ARRAY [02] OF DINT			🕈 Result of multiplication

Body

When the variable *start* is set to TRUE, the function is carried out.

LD start · · F31_DMUL EN ENO . . . -I Imultiplicand s1. d -output_value multiplicator s2 ST IF start THEN F31_DMUL(multiplicand, multiplicator, output_value); END_IF;

F50_BMUL 4–digit BCD multiplication, destination can be specified

Steps

Description Multiplies the 4-digit BCD equivalent constant or 16-bit area for 4-digit BCD data specified by s1 and s2 if the trigger EN is in the ON-state. The result is stored in d (8-digit area).

PLC types

S	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F50	Х	х	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	WORD	multiplicand, 16-bit area for 4-digit BCD data or equivalent constant
s2	WORD	multiplier, 16-bit area for 4-digit BCD data or equivalent constant
d	DWORD	result, 32-bit area for 8-digit BCD data

Operands

For		Re	lay		T/C		Register			Constant	
	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
s1, s2	х	х	х	х	х	х	х	х	х	х	
d	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
d	_	х	х	х	х	х	х	х	x	-	

x: available

–: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	multiplicand	WORD 📑	16#20	multiplicand
2	VAR 🛓	multiplicator	WORD 📑	16#2	multiplicator
з	VAR ±	output_value	DWORD Ŧ	0	result after a 0->1 leading edge from start:16#00000040

Body When the variable *start* is set to TRUE, the function is executed.

LD

		s _	tar	t∙ ⊫–	•	E	50_	BI	IL EN	ο	ŀ	•	•	•	•		:
	ulti ulti					s s				d	ŀ		inti	put	<u>د</u> ب ز	ralı	ue

ST IF start THEN

F50_BMUL(multiplicand, multiplicator, output_value); END_IF;

F51_DBMUL 8-digit BCD multiplication, destination can be specified

Steps |11

Description Multiplies the 8-digit BCD equivalent constant or 8-digit BCD data specified by s1 and the one specified by s2 if the trigger EN is in the ON-state. The result is stored in the ARRAY d[1], d[2] (64-digit area).

PLC types

	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F51	Х	-	х	-	х	x: available -: not available

Data types

Variable	Data type	Function
s1	DWORD	multiplicand, 32-bit area for 8-digit BCD data or equivalent constant
s2	DWORD	multiplier, 32-bit area for 8-digit BCD data or equivalent constant
d	ARRAY [01] OF DWORD	result

Operands

For		Re	lay		Τ/	'C	Register			Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
s1, s2	х	x	х	х	х	х	х	х	x	х	
d	-	х	х	х	х	х	х	х	х	-	
										v: ovoilol	

x: available -: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class Identifier		Туре	Initial	Comment
0	VAR 🛓	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	multiplicand	DWORD 📑	16#00000010	multiplicand
2	VAR 🛓	multiplicator	DWORD 📑	16#00000666	multiplicator
з	VAR ±	output_value	ARRAY [01] OF DWORD 🕈		result after a 0->1 leading edge from start: [16#00006660,16#00000000]

Body

When the variable *start* is set to TRUE, the function is executed.

LD start F51_DBMUL -11 ŀ EN ENO. <1 d multiplicand --output_value multiplicator · s2 . . ST IF start THEN F51_DBMUL(multiplicand, multiplicator, output_value); END_IF;

DV 16-bit division, destination can be specified

Steps 7

Description The 16-bit data or 16-bit equivalent constant specified by **s1** is divided by the 16-bit data or 16-bit equivalent constant specified by **s2** if the trigger **EN** is in the ON-state. The quotient is stored in **d** and the remainder is stored in the special data register DT9015/DT90015.

Δ	Availability	FP0		FP1	F	P–M	1
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F32	х	х	х	х	х	x: available –: not available

1 -

Data types

Martin Date

PLC types

Variable	Data type	Function
s1	INT, WORD	dividend
s2	INT, WORD	divisor
d	INT, WORD	quotient

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For	Relay			T/C		Register			Constant	
	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Type Initial		Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the fuction
1	VAR 🛓	dividend	INT 📑	36	dividend
2	VAR 🛓	divisor	INT 📑	17	divisor
з	VAR 4	output_value	INT Ŧ	0	result after a 0->1 leading edge from start: 2

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · · start·	F32_DIV	
└── │	EN ENO	
•dividend —	s1 d	
🕐 divisor ——	s2	

ST IF start THEN

F32_DIV(dividend, divisor, output_value); END_IF;

Steps

11

33_DDIV 32-bit division, destination can be specified

Description The 32–bit data or 32–bit equivalent constant specified by **s1** is divided by the 32–bit data or 32–bit equivalent constant specified by **s2** if the trigger **EN** is in the ON–state. The quotient is stored in **d** and the remainder is stored in the special data registers DT9016 and DT9015/DT90016 and DT90015.

PLC types

Availability	FP0		FP1	F	P–M		
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k		
F33	Х	-	х	-	х	x: available –: not available	

Data types

Variable	Data type	Function
s1	DINT, DWORD	dividend
s2	DINT, DWORD	divisor
d	DINT, DWORD	quotient

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For		Re	lay		T/C			egiste	Constant	
FUI	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1, s2	x	х	х	x	x	x	х	x	х	х
d	_	х	х	х	х	х	х	x	х	-

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	start	BOOL 🗗	FALSE	activates the fuction
1	VAR 🛓	dividend	DINT 📑	36	dividend
2	VAR 🛓	divisor	DINT 于	17	divisor
з	VAR 🛓	output_value		0	result after a 0->1 leading edge from start: 2

Body When the variable *start* is set to TRUE, the function is executed.

LD

••• start•	F33_001V							:	
·dividend —	s1 d								
🕐 divisor ——	s2	ŀ	·	·	·	·	·	·	·
				·	·	·			·

ST IF start THEN

F33_DDIV(dividend, divisor, output_value); END_IF; 52

not available

BDIV 4-digit BCD division, destination can be specified

Steps

7

Description The 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by s1 is divided by the 4-digit BCD equivalent constant or the 16-bit area for 4-digit BCD data specified by s2 if the trigger EN is in the ON-state. The quotient is stored in the area specified by d and the remainder is stored in special data register DT9015/DT90015.

PLC ty

ypes	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F52	x	х	х	-	х	x: available –: not availal

Data types

Variable	Data type	Function
s1	WORD	dividend, 16-bit area for BCD data or 4-digit BCD equivalent constant
s2	WORD	divisor, 16-bit area for BCD data or 4-digit BCD equivalent constant
d	WORD	quotient, 16–bit area for BCD data (remainder stored in special data register DT9015/DT90015)

Operands

For		Re	lay		Т/	Ċ	R	egiste	er	Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	x	х	х	x	х	х	х	х	х	x
d	_	х	х	х	х	х	х	х	х	_

x: available -: not available

242 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the fuction
1	VAR 🛓	dividend	WORD 편	16#0037	dividend
2	VAR 🛓	divisor	WORD 편	16#0015	divisor
з	VAR ±	output_value	WORD Ŧ	0	result after 0->1 leading edge from start: 16#0002

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · · start· · ·	F52_BDIV	Ŀ			:				
· · · dividend —		F							
··· divisor —		÷.	·		·				
		•	•	•	•	•	•	•	•

ST IF start THEN

F52_BDIV(dividend, divisor, output_value); END_IF;

Steps

available not available 11

F53 DBDIV 8–digit BCD division, destination can be specified

Description The 8-digit BCD equivalent constant or the 8-digit BCD data specified by s1 is divided by the 8-digit BCD equivalent constant or the 8-digit BCD data specified by s2 if the trigger EN is in the ON-state. The result is stored in the areas specified by d, and the remainder is stored in the special data registers DT9016 and DT9015/DT90016 and DT90015.

PLC types

/pes	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F53	x	-	х	-	х	x: _:

Data types

Variable	Data type	Function
s1	DWORD	dividend, 32-bit area for BCD data or 8-digit BCD equivalent constant
s2	DWORD	divisor, 32–bit area for BCD data or 8–digit BCD equivalent constant
d	DWORD	quotient, 32–bit area for BCD data (remainder stored in special data register DT9016 and DT9015/ DT90016 and DT90015)

Operands

For		Re	lay		Т/	C	R	egiste	er	Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1, s2	х	х	х	х	х	x	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available --: not available

244 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the fuction
1	VAR 🛓	dividend	DWORD 편	16#00001110	dividend
2	VAR 🛓	divisor	DWORD 편	16#00000010	divisor
з		output_value	DWORD Ŧ	o	result after 0->1 leading edge from start: 16#00000111

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · · start· · ·	F53_DBDIV	L
· · · dividend —		
· · · divisor —	s2	· · · · · · · · ·

ST IF start THEN

F53_DBDIV(dividend, divisor, output_value); END_IF;

F35_I	NC		16	6–bit	incre	emen	t				Steps	3
Description	Adds "1" to added rest					ied by	d if	the tri	gger El	I is in	the ON-state	. The
PLC types			FP0			FP1		I	P-M			
	Availabilit	:y2	.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5	k		
	F35		х		х	х		х	x		: available -: not available	
Dete tomos				_								
Data types	Variable	_	a type	-	Inction							
	d	IN I,	WORD	16	-bit area	a to be i	ncrea	ased by	1			
Operands	_		Re	lay		T	'C		Registe	ər	Constant	
	For	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
	d	-	x	х	x	x	x	x	x	х	-	
Example POU header	text (ST). ⁻ can find ar	The s n insti J hea	ame F ructior der, a	POU n list (Il inpu	heade IL) exa ut and	r is us ample	sed f in tl	for bo he on	th progr line help	ammi D.	x: availabl –: not ava (LD) and struc ing languages ed that are use	ilable turec 5. You
	Class	Ident	ifier		Туре	Init	ial	Co	mment			
	0 VAR ±	start			BOOL	₹ FAL	SE	act	ivates th	e funct	tion	
	1 VAR ±	incre	ment_v	alue	INT	1 7			ult after : je from s			
Body	When the	varial	ole sta	<i>rt</i> cha	anges	from I	FALS	SE to	TRUE,	the fu	inction is exec	uted
LD		art · • - E · · ·	F35_IN N	IC ENO d	 	 ement_	 value	2				
ST	IF DF(st	art	THE	N								

F35_INC(increment_value);

	DINC		32	2-bit	incre	emen	t				Steps	s 3
Description	Adds "1" to added rest				•	ied by	d if th	ne trig	ger EN	I is in	the ON-sta	te. Tl
PLC types	Availabilit	h.,	FP0			FP1		FP	P–M			
	Availabilit	2	.7k, 5k,	10k	0.9k	2.7k,	5k (0.9k	2.7k, 5			
	F36		х		х	х		x	х		available not available	
Data types	Variable	Data	a type	F	unctic	on						
	d	DIN	r, dwof	RD 3	82–bit ar	ea to be	e increa	ised by	1			
Operands			Re			т	/C	G	Registe		Constant	1
	For	DWX	1	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	+
	d	_	x	x	x	x	x	x	x	x	_	+
Example		The s	same F	POU	heade	r is us	sed fo	r both	progr	ammi	x: availa –: not a (LD) and stru ng languago	vailabl J <mark>ctur</mark> e
Example POU header	text (ST). ⁻ can find ar	The s n inst J hea ing th	same F ructior ader, a	POU n list (Il inpi	heade IL) exa ut and	outpu	ed fo in the	r both e onlin ables	progr ne help	ammi o. eclare	−: not a LD) and str	vailabl ucture es. Ye
POU	text (ST). can find ar In the POU programm	The s n inst J hea ing th	same F ruction ader, a his fund entifier	POU n list (Il inpi	heade IL) exa ut and	outpu	sed fo in the It varia	r both e onlin ables	progr ne help are de	ammi b. eclare t	–: not a (LD) and str ng language d that are u	vailabl ucture es. Ye
	text (ST). can find ar In the POL programm	The son inst J heating the Id states	same F ruction ader, a his fund entifier	POU I list (Il inpu ction.	heade IL) exa ut and Typ BOO	e	sed fo in the it varia nitial	r both e onlin ables	progr he help are de	ammi). eclare t the fur er a 0->	-: not a (LD) and stru- ng language d that are u	vailabl ucture es. Ye

	BINC		4-	-digi	t BCD) incr	em	ent			Steps	
Description	Adds "1" to The result		•		data s	pecifi	ed b	oy d if t	he trigg	er EN	I is in the ON-	-sta
PLC types	Availabilit		FP0		I	FP1		F	P–M			
	Availabilit	y 2	2.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5l			
	F55		х		x	х		-	х		: available : not available	
Data types	Variable	Data	a type	Fu	nction							
	d	WO	RD	16-	-bit area	for 4–0	digit I	BCD dat	ta to be in	crease	ed by 1	
Operands						_	-					1
operatius	For		Rel			Т/	-		Registe	1	Constant	
		WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
	d	-	х	х	х	х	х	х	х	х	-	
Example		The s	same F	OU I	neadei	r is us	ed f	for bot	h progr	amm	x: availal	ailat ctu
POU header	In the POL programmi				it and	outpu	t va	riable	s are de	eclare	ed that are us	,ed
	Class	Ident	lifier		Туре	2	Init	ial	Comme	ent		
	0 VAR ±	start			воо	LŦ	FAL	.SE	activate	es the	function	
			ment_va									

Body When the variable *start* is set to TRUE, the function is executed.

LD

F55_BINC F55_BINC FN ENO FN ENO FN ENO FN ENO

	DBINC		8-	-digit	t BCL) incı	reme	nt			Steps
Description	Adds "1" to The result				data s	specifi	ed by	d if the	e trigg	er EN	is in the ON
PLC types			FP0			FP1		FP	-М		
	Availabilit	2.	.7k, 5k,	10k	0.9k	2.7k,	5k ().9k	2.7k, 5	k	
	F56		х		х	х		-	х		available not available
Data tunos	Veriable	Data	4.000	.	n et le n						
oata types	Variable	Data	type		nction			D data	to ho in		d by 1
	d	DVVC	IRD	32-	-bit area		aigit BC	D data	to be in	icrease	d by 1
Operands	_		Re	lay		T/	C	R	egiste	er	Constant
	For	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
	d	_	х	х	x	x	x	x	х	x	_
xample		The s	ame F	POU	neade	r is us	sed fo	r both	progr	ammi	x: availa -: not av (LD) and stru ng language
POU header	text (ST). can find ar	The s n instr J hea ing th	ame F fuction der, a	POU H I list (I II inpu	neade IL) exa	r is us ample	ed fo in the	r both e onlin	progr e help are de	ammi).	not av: LD) and stru
POU	text (ST). can find ar In the POU programm	The s n instr J hea ing th	ame F ruction der, a is fund tifier	POU H I list (I II inpu	neade IL) exa ut and	r is us ample outpu	ed fo in the it varia	r both e onlin	progr e help are de	ammi b. eclare	–: not a (LD) and stru ng language
POU	text (ST). can find ar In the POU programm Class	The s n instr J hea ing th Iden	ame F ruction der, a is fund tifier	POU I I list (I Il inpu	neade IL) exa It and Type BOOL	r is us ample outpu	ed foi in the It varia Initial FALSE	r both onlin ables	progr e help are de Cor acti resu	ammi). eclare mment vates t	-: not av (LD) and stru ng language d that are us he function a 0->1 leding start:
	text (ST). can find ar In the POU programm Class 0 VAR 1	The s instr J hea ing th Iden start	ame F auction der, a is fund tifier	POU I n list (I ll inpu ction.	t and Type BOOL DWOF	outpu	ed fo in the It varia Initial FALSE 16#876	r both e onlin ables 54320	progr e help are de Cor actin resu edga 16#	ammi). eclare mment vates t ult after e from 876543	-: not av (LD) and stru ng language d that are us he function a 0->1 leding start:
POU header	text (ST). can find ar In the POU programm Class OVAR = 1 VAR =	The s in instr J hea ing th Iden start incre	ame F uction der, a is fund tifier	POU I I list (I ction. /alue	IL) exa IL) exa IL) exa IL) exa IL) exa BOOL DWOF	r is us ample outpu	ed fo in the it varia nitial FALSE FALSE	r both e onlin ables 54320	progr e help are de cor acti resu edg 16#	ammi). eclare mment vates t ult after e from 876543	-: not av (LD) and stru ng language d that are us he function a 0->1 leding start: (21
POU header Body	text (ST). can find ar In the POU programm Class OVAR = 1 VAR =	The s in instr J hea ing th Iden start incre	ame F uction der, a is fund tifier ment_v	POU I list (I ll inpu ction. /alue //alue	IL) exa IL) exa IL) exa IL) exa IL) exa BOOL DWOF	r is us ample outpu	ed fo in the it varia nitial FALSE FALSE	r both onlin ables 54320 E to TI	progr e help are de cor acti resu edg 16#	ammi). eclare mment vates t ult after e from 876543	-: not av (LD) and stru ng language d that are us he function a 0->1 leding start: (21
POU header Body LD	text (ST). can find ar In the POU programm Class VAR 1 VAR 1 When the IF DF(st	The s instr J hea ing th Iden start variat	ame F uction der, a is fund tifier ment_v	POU I I list (I Il inpu ction. /alue //alue	Type IL) exa It and Type BOOL DWOF	from F	FALSE	t both onlin ables 54320 E to Tf	progr e help are de cor acti resu edg 16#	ammi). eclare mment vates t ult after e from 876543	-: not av (LD) and stru ng language d that are us he function a 0->1 leding start: (21

527	

Variable

d

Data type

16-bit decrement

Steps

3

Description Subtracts "1" from the 16-bit data specified by **d** if the trigger **EN** is in the ON-state. The result is stored in d.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F37	x	х	х	х	х	x: available –: not available

Data types

Function INT, WORD 16-bit area to be decreased by 1

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d		х	х	х	х	х	х	х	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

Class	Identifier	Type In	itial	Comment
0 VAR	± start	BOOL 편 FA	LSE	activates the function
1 VAR	t decrement_value	INT 🖣 17		result after a 0->1 leading edge from start: 16

Body When the variable start changes from FALSE to TRUE, the function is executed.

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

LD

start F37_DEC le k EN ENO d decrement_value

ST IF DF(start) THEN

```
F56 DBINC(increment value);
```

escription	The added					becille		an the	; uigge		is in the Of
LC types	Availabilit	v	FP0			FP1		FP	Р-М		
	Availabili		.7k, 5k,	10k	0.9k	2.7k, 5k).9k	2.7k, 5		
	F38		Х		x	Х		x	Х		: available : not available
ata types	Variable	Data	type		Functio	n					
	d	DINT	, DWO	RD	32–bit ar	ea to be	e decre	ased by	[,] 1		
norondo			_	-				_			-
perands	For		1	lay		T/	-		legiste	r	Constant
		DWX	DWY	DWF	R DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex
	d	-	х	х	x	х	х	х	х	х	-
200	text (ST). can find an In the POL	The s instr J hea	ame I uctior der, a	POU n list II inp	heade (IL) exa	r is us ample	ed fo in the	r both e onlin	progr e help	ammi D.	x: avai –: not a (LD) and sti ing languag nd that are u
eample POU header	text (ST). can find ar	The s instr J hea	ame I ructior der, a is fund	POU n list II inp	heade (IL) exa	r is us ample outpu	ed fo in the	r both e onlin ables	progr e help	ammi o. eclare	-: not a (LD) and str ing languag
POU	text (ST). can find an In the POL programmi	The s instr J hea ing th	ame I ructior der, a is fund	POU n list II inp	heade (IL) exa out and	r is us ample outpu	sed fo in the it varia	r both e onlin ables	progr e help are de	ammi b. eclare	–: not a (LD) and str ing languag ed that are t
	text (ST). can find an In the POU programmi Class	The s instr J hea ing th Ident	ame I ructior der, a is fund	POU I list II inp ction	heade (IL) exa out and Typ BOC	outpu	sed fo in the It varia nitial ALSE	r both e onlin ables Co act	progr e help are de	ammi). eclare t the fur r a 0->	-: not a (LD) and sti ing languag d that are un notion 1 leading

F57_BDEC

4-digit BCD decrement

Steps

3

Description Subtracts "1" from the 4–digit BCD data specified by **d** if the trigger **EN** is in the ON–state. The result is stored in **d**.

PLC types	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F57	Х	х	х	-	х	x: available –: not available

Data types

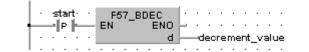
 Variable
 Data type
 Function

 d
 WORD
 16-bit area for BCD data to be decreased by 1

Operands

For	For				Т/	Ċ	Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	_	х	х	х	х	х	х	х	х	-

x: available –: not available


Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	start	BOOL 편	FALSE	activates the function
1	VAR ±	decrement_value	WORD Ŧ	16#4322	result after a 0->1 leading edge from start: 16#4321

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

F58_D				-	BCE						Steps
Description	Subtracts "1" from the 8–digit BCD data specified by d if the trigger EN is ON–state. The result is stored in d .										
PLC types	Availability		FP0		[FP1		FF	P-M		
	Availabilit	2.	.7k, 5k,	10k	0.9k	2.7k,	5k ().9k	2.7k, 5	k	
	F58		х		х	х		-	х		: available -: not available
Data types	Variable	Data	type	Fu	nction	I					
	d	DWO	RD	32-	-bit area	a for BC	D data	to be o	decrease	ed by 1	
Dorondo			_					_			[_
Operands	For		Re			Т/	-		Registe	[Constant
		DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
	d	-	х	х	х	х	х	х	х	х	-
ample POU	text (ST). 1 can find an	The s instr	ame F uction	POU I list (neade IL) exa	r is us ample	ed fo in the	r both e onlir	n progr ne help	amm).	not a :- (LD) and str ing languag ed that are u
-	text (ST). 1 can find an	The s instr hea	ame F uction der, al is fund	POU list (l inpu	neade IL) exa	r is us ample outpu	ed fo in the	r both e onlir	n progr ne help	amm). eclare	(LD) and str
POU	text (ST). T can find an In the POU programmi	The s instr I hea ng th	ame F uction der, al is fund	POU list (l inpu	neade IL) exa it and	outpu	ed fo in the it varia	r both e onlir	are de	amm). eclare	(LD) and str ing languag
POU	text (ST). T can find an In the POU programmin Class	The s instr J hear ng th Identi	ame F uction der, al is fund	POU I list (ll inpu	neader IL) exa It and Type BOOL	r is us ample outpu	ed fo in the It varian nitial ALSE	r both e onlir ables	are de Comm	amm). eclare ent es the after a om sta	(LD) and str ing languag ed that are u function 0->1 leding art:
	text (ST). T can find an In the POU programmin Class VAR ± 1 VAR ± 1 When the v	The s instr J hearing th Identi start decre	ame F uction der, al is fund ifier ment_v ole <i>sta</i>	POU I list (list (ction.	neade IL) exa It and Type BOOL DWOR	r is us ample outpu T F F from F	ed fo in the it varia ALSE 6#3764 FALSI	r both e onlir ables 54322 E to T	Comm activat result a edge fr 16#876	amm). eclare ent es the offer a om sta 54321	(LD) and str ing languag ed that are u function 0->1 leding art:
POU header Body	text (ST). T can find an In the POU programmin Class VAR ± 1 VAR ± 1 When the v	The s instr J hearing th Identi start decre	ame F uction der, al is fund ifier ment_v ble sta	POU I list (list (ction.	Type BOOL DWOR	r is us ample outpu T F F from F	ed fo in the it varia ALSE 6#3764 FALSI	r both e onlir ables 54322 E to T	Comm activat result a edge fr 16#876	amm). eclare ent es the offer a om sta 54321	(LD) and str ing languag ed that are u function 0->1 leding art:
POU header Body LD	text (ST). T can find an In the POU programmin Class OVAR ± 1 VAR ± 1 When the v istart IF DF(st	Art)	ame F uction der, al is fund ifier ment_v ble <i>sta</i> 58_DB0	POU I list (ll inpu- ction. ralue rt cha	Type BOOL DWOR	from F	ed fo in the it varia it varia ALSE 6#8764 FALSE	r both e onlir ables 54322 E to T	Comm activat result a edge fr 16#876	amm). eclare ent es the offer a om sta 54321	(LD) and str ing languag ed that are u function 0->1 leding art:

F87_/	ABS	16–bit data absolute value	Steps	3
Decorintion	Cots the absolut	a value of 16, bit data with the sign specified b	w d if the triage	

Description Gets the absolute value of 16-bit data with the sign specified by d if the trigger EN is in the ON-state. The absolute value of the 16-bit data with +/- sign is stored in d. This instruction is useful to operate the data whose sign (+/-) may vary.

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F87	х	х	х	х	х	x: available –: not available

Data types

 Variable
 Data type
 Function

 d
 INT, WORD
 16-bit area for storing original data and its absolute value

Operands

For	Relay				T/C		Register			Constant
	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	Ι	х	х	х	х	х	х	х	х	_

x: available -: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 📑	FALSE	activates the function
1	VAR 🛓	abs_value			result after a 0->1 leading edge from start: 123

Body When the variable *start* is set to TRUE, the function is executed.

LD start F87_ABS F87_ABS LO EN EN Abs_value

ST IF start THEN

F87_ABS(abs_value);

3

Steps

DABS

d

32-bit data absolute value

Gets the absolute value of 32-bit data with the sign specified by d if the trigger EN Description is in the ON-state. The absolute value of the 32-bit data with sign is stored in d. This instruction is useful to operate the data whose sign (+/-) may vary.

PLC types

bes	Availability	FP0		FP1	FP-M		
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F88	Х	х	х	х	х	x: available –: not available

Data types

Variable Function Data type DINT, DWORD 32-bit area for storing original data and its absolute value

Operands

For	Relay			T/C		Register			Constant	
	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 🛃	FALSE	activates the function
1	VAR ±	abs_value		-123	result after a 0->1 leading edge from start: 123

Body When the variable start is set to TRUE, the function is executed.

LD

ST

start · · F88 DABS ENO. EN d. -abs_value . . . IF start THEN

```
F88_DABS(abs_value);
END IF;
```

Chapter 17

Data Comparison Instructions

F60_CMP

16-bit data compare

```
Steps 5
```

Description Compares the 16–bit data specified by **s1** with one specified by **s2** if the trigger **EN** is in the ON–state. The compare operation result is stored in special internal relays R9009, R900A to R900C.

	same is a batware	Flag					
Data	comparison between s1 and s2	R900A (>flag)	R900B (=flag)	R900C (<flag)< th=""><th>R9009 (carry–flag)</th></flag)<>	R9009 (carry–flag)		
16–bit data with sign	s1< s2	OFF	OFF	ON	#		
	s1=s2	OFF	ON	OFF	OFF		
	s1> s2	ON	OFF	OFF	#		
	s1< s2	#	OFF	#	ON		
16-bit data without sign	s1= s2	OFF	ON	OFF	OFF		
,	s1> s2	#	OFF	#	OFF		

#: turns ON or OFF depending on the conditions

PLC types

6	Availability	FP0	FP1		F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F60	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit area or 16-bit equivalent constant to be compared
s2	INT, WORD	16-bit area or 16-bit equivalent constant to be compared

The variables **s1** and **s2** have to be of the same data type.

Operands

	For	Relay			T/C		Register			Constant	
		WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
	s1, s2	х	х	х	х	х	х	х	х	х	х

x: available

-: not available

Example

POU In the POU header, all input and output variables are declared that are used for programming this function.

can find an instruction list (IL) example in the online help.

	Class	Identifier	Туре	Initial	Comment			
0	VAR 🛓	start	BOOL 편	FALSE	activates the function			
1	VAR 🛓	value	INT 于	5				
2	VAR ±	equal	BOOL Ŧ	FALSE	set to TRUE depending on the status of R900B (= flag)			
з	VAR ±	greater_or_equal	BOOL Ŧ	FALSE	set not to TRUE depending on the status of R9009 (carry flag)			

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · start· · ·	F60_CMP	· R900B · · · · · · · ·
	EN ENO	
· · · · value —	s1 ·	
· · · · · · 2 —	s2 ·	R9009 · · · · · · · ·
		//greater_or_equal

ST equal:= FALSE;

greater_or_equal:= FALSE;

IF start THEN

F60_CMP(value, 2);

IF R900B THEN

equal := TRUE;

END_IF;

IF NOT(R9009) THEN
 greater_or_equal:= TRUE;

END_IF;

F61_DCMP

32-bit data compare

Steps

9

Description Compares the 32–bit data or 32–bit equivalent constant specified by **s1** with one specified by **s2** if the trigger **EN** is in the ON–state. The compare operation result is stored in special internal relays R9009, R900A to R900C.

		Flag					
Data	comparison between s1 and s2	R900A (> flag)	R900B (=flag)	R900C (< flag)	R9009 (carry–flag)		
32–bit data with sign	s1< s2	OFF	OFF	ON	#		
	s1=s2	OFF	ON	OFF	OFF		
	s1> s2	ON	OFF	OFF	#		
	s1< s2	#	OFF	#	ON		
32-bit data without sign	s1=s2	OFF	ON	OFF	OFF		
	s1> s2	#	OFF	#	OFF		

#: turns ON or OFF depending on the conditions

PLC types

	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F61	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	DINT, DWORD	32-bit area or 32-bit equivalent constant to be compared
s2	DINT, DWORD	32-bit area or 32-bit equivalent constant to be compared

The variables **s1** and **s2** have to be of the same data type.

Operands

For	Relay			T/C		Register			Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1, s2	х	х	х	х	х	x	х	х	х	х

x: available

-: not available

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	value	DINT 📑	5	
2	VAR ±	equal	BOOL Ŧ	FALSE	set to TRUE depending on the status of R900B (= flag)
з		greater_or_equal	BOOL Ŧ	FALSE	set not to TRUE depending on the status of R9009 (carry flag)

When the variable *start* is set to TRUE, the function is executed. Body

LD	start: F61_DCMP R900B EN EN EN value s1 R9009
ST	equal:= FALSE;
	greater_or_equal:= FALSE;
	IF start THEN
	<pre>F61_DCMP(value, 2);</pre>
	IF R900B THEN
	equal:= TRUE;
	END_IF;
	IF NOT(R9009) THEN
	<pre>greater_or_equal:= TRUE;</pre>
	END_IF;
	END_IF;

F62_WIN

16-bit data band compare

Steps

7

Description Compares the 16-bit equivalent constant or 16-bit data specified by **s1** with the data band specified by **s2** and **s3**, if the trigger **EN** is in the ON-state. This instruction checks that **s1** is in the data band between **s2** (lower limit) and **s3** (higher limit), larger than **s3**, or smaller than **s2**. The compare operation considers +/- sign. Since the BCD data is also treated as 16-bit data with sign, we recommend using BCD data between 0 and 7999 to avoid confusion. The compare operation result is stored in special internal relays R900A, R900B, and R900C.

Commercia en haturaan	Flag					
Comparison between s1 , s2 and s3	R900A (> flag)	R900B (=flag)	R900C (< flag)			
s1< s2	OFF	OFF	ON			
s2≤ s1≤ s3	OFF	ON	OFF			
s1> s3	ON	OFF	OFF			

PLC types

Availability	FP0		FP1	FP-M		
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F62	х	х	х	х	х	×

x: available -: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit area or 16-bit equivalent constant to be compared
s2	INT, WORD	lower limit, 16-bit area or 16-bit equivalent constant
s3	INT, WORD	upper limit, 16-bit area or 16-bit equivalent constant

The variables s1, s2 and s3 have to be of the same data type.

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s1, s2, s3	х	х	х	х	х	х	х	х	х	x

x: available

-: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Type Initial		Comment		
0	VAR 🛓	start	BOOL 편	FALSE	activates the function		
1	VAR ±	test_value	INT Ŧ		this value will be compared with the data band specified by lower_limit and higher_limit; result after 0->1 leading edge from start: R900A and R900C are OFF, R900B is ON		
2	VAR 🛓	lower_limit	INT 📑	0	lower limit		
з	VAR 🛓	higher_limit	INT 📑	100	higher limit		

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · start· · ·	F62_WIN
<u>← </u>	EN ENO
i test_value —	s1 ·
·lower_limit —	s2 ·
higher_limit —	- s3 ·
	• • • • • • •

ST IF start THEN

s3_Max:= higher_limit);

F63_DWIN

32-bit data band compare

Steps 13

Description Compares the 32–bit equivalent constant or 32–bit data specified by **s1** with the data band specified by **s2** and **s3**, if the trigger **EN** is in the ON–state. This instruction checks that **s1** is in the data band between **s2** (lower limit) and **s3** (higher limit), larger than **s3**, or smaller than **s2**. The compare operation considers +/– sign. Since the BCD data is also treated as 32–bit data with sign, we recommend using BCD data between 0 and 799999999 to avoid confusion. The compare operation result is stored in special internal relays R900A, R900B, and R900C.

O annu anta an hatana an	Flag					
Comparison between s1 , s2 and s3	R900A (> flag)	R900B (=flag)	R900C (< flag)			
s1< s2	OFF	OFF	ON			
s2≤ s1≤ s3	OFF	ON	OFF			
s1> s3	ON	OFF	OFF			

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F63	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	DINT, DWORD	32-bit area or 32-bit equivalent constant to be compared
s2	DINT, DWORD	lower limit, 32-bit area or 32-bit equivalent constant
s3	DINT, DWORD	upper limit, 32-bit area or 32-bit equivalent constant

The variables **s1**, **s2** and **s3** have to be of the same data type.

Operands

For		Relay				T/C Register Consta			Register		
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
s1, s2, s3	х	х	х	х	х	х	х	х	х	х	

x: available

-: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 📑	FALSE	activates the function
1	VAR ±	test_value	DINT Ŧ	35	this value will be compared with the data band specified by lower_limit and higher_limit; result after 0.>1 leading edge from start: R900A and R900C are OFF, R900B is ON
2	VAR 🛓	lower_limit	DINT 📑	0	lower limit
З	VAR 🛓	higher_limit	DINT 📑	100	higher limit
4	VAR 🛓	inside_the_range	BOOL 📑	FALSE	

Body When the variable *start* is set to TRUE, the function is executed.

LD

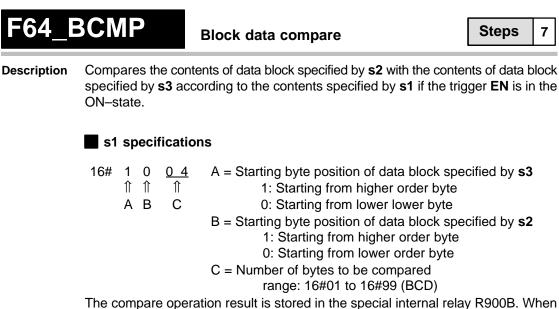
• start• • F63_DWIN	Ŀ		RS	90C		ir	Sei	На				ang		•
· test_value — s1				·		."			-"					
·lower_limit — s2	ŀ													
higher_limit —s3	ŀ	·	·	·	·	·	·	·	·	·	·	·	·	·
	·	·	·	·	·	·	·	·	·	·	·	·	·	·

ST inside_the_range:= FALSE;

IF start THEN

F63_DWIN(s1_In:= test_value,

```
s2_Min:= lower_limit,
```


s3_Max:= higher_limit);

IF R900B THEN

inside_the_range:= TRUE;

END_IF;

F64 BCMP

solution the special internal relay relay is in the ON-state.

The flag R900B used for the compare instruction is renewed each time a compare instruction is executed. Therefore the program that uses R900B should be just after F64_BCMP.

PLC	types
-----	-------

Availability	FP0		FP1	FP-M		ſ
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F64	x	-	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	WORD	control code specifying byte positions and number of bytes to be compared
s2	INT, WORD	starting 16-bit area to be compared to s3
s3	INT, WORD	starting 16-bit area to be compared to s2

The variables **s2** and **s3** have to be of the same data type.

Operands

For		Relay T/C Reg				egiste	er	Constant		
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1	x	х	х	x	х	х	x	х	х	х
s2, s3	х	х	х	х	х	х	х	х	х	-

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR 🛓	Start	BOOL	Ŧ	FALSE	
1	VAR ±	Control Code	WORD	Ŧ	16#1106	s2 starting from upper byte s3 starting from upper byte compare 6 bytes
2	VAR 🛓	DataBlock1	ARRAY [05] OF INT	Ŧ	[6(1234)]	
3	VAR 🛓	DataBlock2	ARRAY [05] OF INT	Ŧ	[6(1234)]	<u></u>

Body When the variable *start* is set to TRUE, the function is executed.

LD

1	· Start· · · · · · · ·	F64_BCMP EN ENO	Ċ	1
	· · · · Control Code	EN ENU s1	Γ.	
		s2		
	· · · · · DataBlock2[0] —	s3	•	

ST IF start THEN

Chapter 18

Logic Operation Instructions

F65_WAN

16-bit data AND

Steps

7

Description Executes AND operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and s2 if the trigger EN is in the ON-state. The AND operation result is stored in the 16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the AND operation is performed internally converting it to 16-bit binary expression. You can use this instruction to turn OFF certain bits of the 16-bit data.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F65	Х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit equivalent constant or 16-bit area
s2 INT, WORD		16-bit equivalent constant or 16-bit area
d INT, WORD		16-bit area for storing AND operation result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For	Relay				T/C		Register			Constant	
FOI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s1, s2	х	х	х	х	х	х	х	х	х	x	
d	-	х	х	х	х	x	х	х	х	-	

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	value_1	WORD 📑	2#0000000011001100	
2	VAR 🛓	value_2	WORD 📑	2 # 0000000010101010	
3	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 2#0000000010001000

Body When the variable *start* is set to TRUE, the function is executed.

LD

·		• • •			•	·		•				·	·		•
·	· 5	art ·	• •	E F	65 '	WA	N	ŀ.	·	·	·	·	·	·	•
-				EN	_	E	NO.	H.	·	·	·	·	·	·	•
·	 val 	ue_1		s1			d	H	-0	utp	but	_v	alı	ue	•
·	 val 	ue_2		s2				Ŀ.	·	·	·	·	·	·	•

ST IF start THEN

F65_WAN(value_1, value_2, output_value); END_IF;

66_WOR

16-bit data OR

Steps

7

Description Executes OR operation of each bit in 16-bit equivalent constant or 16-bit data specified by s1 and s2 if the trigger EN is in the ON-state. The OR operation result is stored in the 16-bit area specified by d. When 16-bit equivalent constant is specified by s1 or s2, the OR operation is performed internally converting it to 16-bit binary expression. You can use this instruction to turn ON certain bits of the 16-bit data.

PLC types

F66_WOR

Availability	FP0		FP1	F		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F66	x	х	х	х	х	×

x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit equivalent constant or 16-bit area
s2 INT, WORD		16-bit equivalent constant or 16-bit area
d INT, WORD		16-bit area for storing OR operation result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operand	s
---------	---

For	Relay				T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s1, s2	х	х	х	x	х	x	х	x	х	х	
d	-	х	х	х	х	х	х	х	х	-	

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	value_1	WORD 📑	2#0000000011001100	
2	VAR 🛓	value_2	WORD 📑	2 # 0000000010101010	
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 2#0000000011101110

Body When the variable *start* is set to TRUE, the function is executed.

LD

. . start · · · F66_WOR EN ENO 🖵 · · · · · · -I I-· value_1d s1 -output_value value_2 s2

ST IF start THEN

F66_WOR(value_1, value_2, output_value); END_IF;

F67_XOR

16-bit data exclusive OR

Steps

7

Description Executes exclusive OR operation of each bit in 16–bit equivalent constant or 16–bit data specified by **s1** and **s2** if the trigger **EN** is in the ON–state. The exclusive OR operation result is stored in the 16–bit area specified by **d**. When 16–bit equivalent constant is specified by **s1** or **s2**, the exclusive OR operation is performed internally converting it to 16–bit binary expression. You can use this instruction to review the number of identical bits in the two 16–bit data.

PLC types

Availability	FP0		FP1	F	P-M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F67	х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit equivalent constant or 16-bit area
s2	INT, WORD	16-bit equivalent constant or 16-bit area
d	INT, WORD	16-bit area for storing XOR operation result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	x
d	Ι	х	х	х	х	x	x	х	х	-

x: available -: not available

F67_XOR

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	value_1	WORD 📑	2#1111000011001100	
2	VAR 🛓	value_2	WORD 📑	2#1100000010101010	
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 2#0011000001100110

Body When the variable *start* is set to TRUE, the function is executed.

LD

- 1	· ·	·	·	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•
	·		s	tar	t٠	·	·		F6	7	хс	R		.	·	·		·		•
- 1			-1		⊢		_	E	Ň.		E	EN (D	Ŀ.	·	·		·		
	·	• •	va	lue	<u>'</u>	1 –	_	s	1				d		-0	ut	put	_v	alı	Je
	•	• •	val	lue	2	2 —	_	S	2					•	·	•	·		·	·

ST IF start THEN

F67_XOR(value_1, value_2, output_value); END_IF;

F68_XNR

16-bit data exclusive NOR

Steps

7

Description Executes exclusive NOR operation of each bit in 16–bit equivalent constant or 16–bit data specified by **s1** and **s2** if the trigger **EN** is in the ON–state. The exclusive NOR operation result is stored in the 16–bit area specified by **d**. When 16–bit equivalent constant is specified by **s1** or **s2**, the exclusive NOR operation is performed internally converting it to 16–bit binary expression. You can use this instruction to review the number of identical bits in the two 16–bit data.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F68	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit equivalent constant or 16-bit area
s2	INT, WORD	16-bit equivalent constant or 16-bit area
d	INT, WORD	16-bit area for storing NOR operation result

The variables **s1**, **s2** and **d** have to be of the same data type.

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	x	х	х	х	х	х	х	х	х	x
d	-	х	х	x	х	х	х	х	х	-

x: available -: not available POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	value_1	WORD 편	2#1111000011001100	
2	VAR 🛓	value_2	WORD 편	2#1100000010101010	
з	VAR ±	output_value	WORD Ŧ	-	result after a 0->1 leading edge from start: 2#1100111110011001

Body When the variable *start* is set to TRUE, the function is executed.

LD

1	•	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	·	•
	•	·	s	tar	t٠	·	·		F6:	8	XN	R		•	·	·	·	·	·	·
1		_	-1		⊢		_				Ē	EN (D	_	·	·	·	·	·	·
	•	-	va	lue	<u>-</u> 1	_	_	s	1				d ¦	_	-0	utp	but	<u>ر</u>	alı	Je
			va va		_								d		0	utp	out	÷,	alı	Je

ST IF start THEN

F68_XNR(value_1, value_2, output_value); END_IF; **Chapter 19**

Data Shift and Rotate Instructions

Steps

1

Availability LSR /ariable		5k, 10k ×		k 2	.7k, 5k	0.9k	2.7k, 5k	
		х	v					
/ariable	X		~	X X		x x		x: available -: not available
	Variable Data type Function							
ataInput	BOOL	-	whe	n ON,	shift–in c	lata = 1,	when OFF,	shift–in data = 0
hiftTrigger	BOOL	-	shift	s one l	oit to the	left whe	n ON	
ResetTrigger	BOOL	-	rese	ts data	a area to	0 when	ON	
VR	INT, W	/ORD	spec	ified d	ata area	where o	lata shift tak	es place
		Dal				•		
For			-	<u> </u>		_		
	X	Ŷ	к	L	1	C		
Datalnput Shift Trigger, Reset Trigger	x	х	x	x	x	x		
WR	WX	WY	WR	WL	SV	EV		
	_	_	х	_	_	-	x: available	
	For DataInput Shift Trigger, Reset Trigger WR elow is an e	ResetTrigger BOOL VR INT, V For X DataInput Shift Trigger, Reset Trigger WR WX - elow is an examp	ResetTrigger VR INT, WORD For X Y DataInput Shift Trigger, Reset Trigger WR WX WY 	ResetTrigger BOOL reset VR INT, WORD spect For X Y R DataInput x x x Shift Trigger, x x x WR WX WY WR	Reset TriggerBOOLresets dataVRINT, WORDspecified dForRelayXYRLDataInput Shift Trigger, Reset TriggerXXXXWRWXWYWRWLx-elow is an example of a ladder dia	Reset TriggerBOOLresets data area toVRINT, WORDspecified data areaForT/To XYRLTDataInput Shift Trigger, Reset TriggerXXXXWRWXWYWRWLSVxelow is an example of a ladder diagram (Reset TriggerBOOLresets data area to 0 whenVRINT, WORDspecified data area where colspan="4">T/CFor \overline{X} YRLTCDataInput Shift Trigger, Reset TriggerxxxxxxWRWXWYWRWLSVEVxelow is an example of a ladder diagram (LD) both	Reset Trigger BOOL resets data area to 0 when ON VR INT, WORD specified data area where data shift tak For Relay T/C X Y R L T C DataInput Shift Trigger, Reset Trigger X X X X X X x

Description

Left shift register

vhen the nifts 1 bit turns all available

Shifts 1 bit of the specified data area (WR) to the left (to the higher bit position). When programming the LSR instruction, be sure to program the data input (DataInput), shift (ShiftTrigger) and reset triggers (ResetTrigger).

.SR

ypes	Variable	Data type	Function
	DataInput	BOOL	when ON, shift-in data = 1, when OFF, shift-in data = 0
	ShiftTrigger	BOOL	shifts one bit to the left when ON
	ResetTrigger	BOOL	resets data area to 0 when ON
	WR	INT, WORD	specified data area where data shift takes place

a in the

5

F100_SHR

Right shift of 16-bit data in bit units

Steps

Description Shifts n bits of 16-bit data area specified at d to the right (to the lower bit position) if the trigger EN is in the ON-state. When n bits are shifted to the right, the data in the nth bit is transferred to special internal relay R9009 (carry-flag) and the higher n bits of the 16-bit data area specified by d are filled with 0s.

types	Availability	FP0		FP1	FP-M		
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F100	x	x x		х	х	

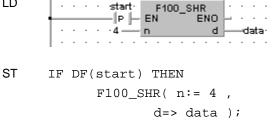
Data types	Variable	Data type	Function				
	d	INT, WORD	16-bit area to be shifted to the right				
	n	INT	number of bits to be shifted				

Operands

PLC

For	Relay				Т/	C	Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	-	x	x	х	х	х	х	х	x	-
n	х	x	x	х	х	х	х	х	x	х

x: available -: not available


Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	data	WORD T		result after a 0->1 leading edge from start: 16#0123

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

ilable available

SHL 101

Left shift of 16-bit data in bit units

Steps 5

Shifts n bits of 16-bit data area specified at d to the left (to the higher bit position) Description if the trigger **EN** is in the ON-state. When **n** bits are shifted to the left, the data in the **n**th bit is transferred to special internal relay R9009 (carry-flag) and **n** bits starting with bit position 0 are filled with 0s.

PLC types	Availability	FP0		FP1	F		
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F101	Х	х	х	х	х	x: ava -: not

Data types

Variable	Data type	Function
d	INT, WORD	16-bit area to be shifted to the left
n	INT	number of bits to be shifted

Operands

For	Relay				Т/	C	Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	-
n	х	х	х	х	х	х	х	х	х	x

x: available -: not available

- In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the function
1	VAR ±	data	WORD Ŧ		result after a 0->1 leading edge from start: 16#2340

When the variable start changes from FALSE to TRUE, the function is executed. Body

-data-

ENO

d

LD . . . start F101_SHL P - EN n

- IF DF(start) THEN
 - F101 SHL(n := 4, d=> data);

END_IF;

ST

3

F105_BSR Right shift of one hexadecimal digit (4 bits) of 16–bit data

Steps

- **Description** Shifts one hexadecimal digit (4 bits) of the 16–bit area specified by **d** to the right (to the lower digit position) if the trigger **EN** is in the ON–state. When one hexadecimal digit (4 bits) is shifted to the right,
 - hexadecimal digit position 0 (bit position 0 to 3) of the data specified by d is shifted out and is transferred to the lower digit (bit position 0 to 3) of special data register DT9014) and
 - hexadecimal digit position 3 (bit position 12 to 15) of the 16-bit area specified by d becomes 0.

This instruction is useful when the hexadecimal or BCD data is treated.

PLC types			FP0			FP1		E	P-M			
I LO types	Availabilit	y	.7k, 5k,		0.9k	2.7k,	5k	0.9k	2.7k, 5	k		
	F105	-	х х	IUK	<u>х</u>	2.7 K,	JN	X	2.7 K, 3		available	
			~		~	~		~	~		: not available	
Data types	Variable	Data	type	Fu	nctio	n						
	d	INT, \	NORD	16-	-bit are	a to be s	shifte	d to the I	right			
Operanda												
Operands	For		1	lay		Τ/			Registe	1	Constant	
		WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
	d	-	х	х	х	х	х	х	х	х	-	
											x: availab -: not ava	
POU header	In this example the function is programmed in ladder diagram (LD) and structure text (ST). The same POU header is used for both programming languages. Yo can find an instruction list (IL) example in the online help. In the POU header, all input and output variables are declared that are used for programming this function.											
	Class	Iden	tifier	Туре		Initial		Comme	nt			
	0 VAR ±	start		BOOL	Ŧ	FALSE		activate	s the fur	nction		
	1 VAR ±	data		WORD	Ŧ	16#1234			ter a 0-> rt: 16#0		ng edge	
Body	When the v	variat	ole sta	<i>rt</i> cha	inges	from F	FALS	SE to T	RUE,	the fu	nction is exec	cuted.
LD	· · · · · ·											
ST	IF DF(st	art)	THE	N								
	F1	05_E	BSR(d	lata)	;							

F106_BSL Left shift of one hexadecimal digit (4 bits) of 16-bit data

Steps 3

- **Description** Shifts one hexadecimal digit (4 bits) of the 16–bit area specified by **d** to the left (to the higher digit position) if the trigger **EN** is in the ON–state. When one hexadecimal digit (4 bits) is shifted to the left,
 - hexadecimal digit position 3 (bit position 12 to 15) of the data specified by d is shifted out and is transferred to the lower digit (bit position 0 to 3) of special data register DT9014 (DT90014 for FP10/10S).
 - hexadecimal digit position 0 (bit position 0 to 3) of the 16-bit area specified by d becomes 0.

This instruction is useful when the hexadecimal or BCD data is treated.

PLC types			FP0			FP1		F	P-M			
,p	Availabilit	y	.7k, 5k,		0.9k		5k	0.9k	2.7k, 5	k		
	F106		X		х	X		х	x		available not available	
				l								
Data types	Variable	Data	type	Fu	nctic	on						
	d	INT, V	NORD	16-	-bit ar	ea to be	shifte	d to the l	əft			
Operands			-	• -		-	0				•	I
Operations	For			lay		-	C		Registe		Constant	+
		WX	WY	WR	WL	SV	EV	/ DT	LD	FL	dec. or hex.	
	d	-	х	х	х	х	х	х	х	х	-	
Example POU header	-: not available In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help. In the POU header, all input and output variables are declared that are used for programming this function.											
	Class	Ident	ifier	Туре		Initial		Commer	ſt			
	0 VAR ±	start		BOOL	Ŧ	FALSE	-	activates	the fun	ction		
		data		WORD	Ŧ	16#1234		esult aft rom star			ng edge	
Body LD	When the variable <i>start</i> changes from FALSE to TRUE, the function is executed.											
ST	IF DF(st	art)	· · ·	 N	<u>d</u>	— data: 						

F106_BSL(data);

F110_WSHR Right shift of one word (16 bits) of 16-bit data range

Steps |

5

Description Shifts one word (16 bits) of the data range specified by **d1** (starting) and **d2** (ending) to the right (to the lower word address) if the trigger **EN** is in the ON–state. When one word (16 bits) is shifted to the right,

- the starting word is shifted out
- the data in the ending word becomes 0
- d1 and d2 should be:
- in the same operand
- $d1 \le d2$

PLC types

es	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F110	х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
d1	INT, WORD	starting 16-bit area
d2	INT, WORD	ending 16-bit area

The variables **d1** and **d2** have to be of the same data type.

Operands

For		Re	lay		T/	C	R	egiste	er	Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d1, d2	- x x			х	х	х	х	х	х	_

x: available -: not available

285 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL <u>7</u>	FALSE	activates the function
1	VAR ±	source_array	ARRAY [03] OF INT 🖣		result after a 0->1 leading edge from start: [2,4,5,0]

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

•	•	·	•	5	tar P	t. L	E		11	0_1	Ws	SHE	R SNO			:	:	:	:	:	:	:	:
				•		5							d	1		-s	ou	гс	e_:	агг	ау	[1]	
· ·	·	·	·	·	·	·							ď	2	_	-s	ou	ГС	e_	агг	ау	[3]	•
· ·	•	•	•	•	•	•	•	·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ST IF DF(start) THEN

F111_WSHL Left shift of one word (16 bits) of 16–bit data range

Steps

5

Description Shifts one word (16 bits) of the data range specified by **d1** (starting) and **d2** (ending) to the left (to the higher word address) if the trigger **EN** is in the ON–state. When one word (16 bits) is shifted to the left,

- the ending word is shifted out
- the data in the starting word becomes 0
- d1 and d2 should be:
- in the same operand
- d1 ≤ d2

PLC types

es	Availability	FP0		FP1	F	P-M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F111	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
d1	INT, WORD	starting 16-bit area
d2	INT, WORD	ending 16-bit area

The variables **d1** and **d2** have to be of the same data type.

Operands

For		Re	lay		T/	С	R	egiste	er	Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d1, d2	-	х	x x		х	х	х	х	х	_

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	start	BOOL 📑	FALSE	activates the function
1			ARRAY [03] OF INT 👎		result after a 0->1 leading edge from start: [2,0,3,4]

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

	•	•	•	s _	tar P	t.	Е	11	1_	WS	L Enc		:	:	:	:	:	:	:	:
				Ľ			-				d						агг			
•	·	·	·	·	·	·					_d2	2	-s	ou	IГC	e_	агг	ау	[3]	•

ST IF DF(start) THEN

F112_WBSR Right shift of one hex. digit (4 bits) of 16–bit data range

Steps 5

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to the right (to the lower digit position) if the trigger EN is in the ON-state. When one hexadecimal digit (4 bits) is shifted to the right,

- the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data specified by d1 is shifted out
- the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data specified by d2 becomes 0

d1 and d2 should be:

- in the same operand
- d1 ≤ d2

FP1 PLC types FP0 FP-M Availability 0.9k 0.9k 2.7k, 5k, 10k 2.7k, 5k 2.7k, 5k F112 х х х х х

x: available -: not available

Data types

Variable	Data type	Function
d1	INT, WORD	starting 16-bit area
d2	INT, WORD	ending 16-bit area

The variables d1 and d2 have to be of the same data type.

Operands

For		Re	lay		Т/	C	R	egiste	er	Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d1, d2	_	х	x x		x x		х	х	x	_

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗾	FALSE	activates the function
1	VAR ±	source_array	ARRAY [03] OF WORD ₹		result after a 0->1 leading edge from start: [16#3456,16#8901, 16#4567,16#0123]

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

	·	·	·	·	s	tar In	t∙ ⊫			11	2_	WE		R ENI	_	ŀ	·	·	·				:	
1					_	P	F	E	DI						۰.	Γ								
															_					_		-	[1]	
				÷										_ U.	2		-3	00	II C	Ľ_	an	ау	[3]	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ST IF DF(start) THEN

F113_WBSL Left shift of one hex. digit (4 bits) of 16-bit data range

Steps 5

Description Shifts one hexadecimal digit (4 bits) of the data range specified by d1 (starting) and d2 (ending) to the left (to the higher digit position) if the trigger EN is in the ON-state. When one hexadecimal digit (4 bits) is shifted to the left,

- the data in the higher hexadecimal digit (bit position 12 to 15) of the 16-bit data specified by d2 is shifted out.
- the data in the lower hexadecimal digit (bit position 0 to 3) of the 16-bit data specified by **d1** becomes 0.

d1 and d2 should be:

- in the same operand
- d1 ≤ d2

FP1 PLC types FP0 FP-M Availability 2.7k, 5k, 10k 0.9k 0.9k 2.7k, 5k 2.7k, 5k F113 х х х х х

x: available -: not available

Data types

Variable	Data type	Function
d1	INT, WORD	starting 16-bit area
d2	INT, WORD	ending 16-bit area

The variables d1 and d2 have to be of the same data type.

Operands

For		Re	lay		Т/	C	R	egiste	Constant		
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
d1, d2	_	х	х	х	х	х	х	х	x	_	

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	start	BOOL 📑	FALSE	activates the function
1	VAR ±	source_array	ARRAY [03] OF WORD ₹		result after a 0->1 leading edge from start: [16#3456,16#0120, 16#6789,16#2345]

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

	•	·	·					11	з_	WE	зs,	L.	_	ŀ	·	·			:	
1					P	E	ы				t	un≞ d	1						[1]	
													2						[3]	
	•	·	·		·	•	•	•	•	•	•	•	•	•	·					·

ST IF DF(start) THEN

F119_LRSR

LEFT/RIGHT shift register

Steps |

5

- **Description** LR_trig: Left/right trigger; specifies the direction of the shift–out. LR_trig = ON: shifts out to the left, LR_trig = OFF: shifts out to the right.
 - **DataInp:** Specifies the new shift-in data. New shift-in data = 1 when the data input is in the ON-state. New shift-in data = 0 when the data input is in the OFF-state.
 - **Sh_trig:** Shifts 1 bit to the left or right when the leading edge of the trigger is detected (OFF \rightarrow ON).
 - **Rst_trig:** Turns all the bits of the data range specified by d1 and d2 to 0 if this trigger is in the ON–state.
 - d1: Start of 16 bit area.
 - d2: End of 16 bit area.
 - Carry: Shifted-out bit.

PLC types

Availability	FP0		FP1	F		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	Ī
F119	x	х	х	х	х	X:a _:ı

x: available -: not available

Data types

Variable	Data type	Function
LR_trig	BOOL	specifies direction of shift, ON = left, OFF = right
DataInp	BOOL	shift–in data, ON = 1, OFF = 0
Sh_trig	BOOL	activates shift
Rst_trig	BOOL	resets data in area specified by d1 and d2 to 0
Carry	BOOL	bit shifted out
d1	INT, WORD	starting 16-bit area
d2	INT, WORD	ending 16-bit area

The variables **d1** and **d2** have to be of the same data type.

Operands

For		Re	lay		Т/	'C	R	egiste	ər	Constant	
101	Х	Y	R	L	Т	С	DT	LD	FL	dec. or hex.	
LR_trig, DataInp, Sh_trig, Rst_trig	x	x	x	x	x	x	_	_	_	-	
Carry	-	х	x	х	х	х	-	-	-	-	
al4 al2	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
d1, d2	-	х	х	х	х	x	x	х	х	_	

x: available

–: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	data_array	Array [02] of Int	Ē [2#00 Þ . ₹	
1	VAR ±	enable_leftShift	BOOL	FALSE	function shifts left if TRUE, else it shifts right
2	VAR ±	reset	BOOL	FALSE	if TRUE, the whole array will be set to zero
З	VAR 🛓	input	BOOL	TRUE	specifies the new shift-in data
4	VAR ±	shift_trigger	BOOL	FALSE	activates the function at a 0->1 leading edge
5	VAR ±	carry_out_value	BOOL	FALSE	result after a 0->1 leading edge from shift_trigger: 1. After the next cycle the value will be set back to zero.

Body When the variable *enable_leftShift* is set to TRUE, the function shifts left, else it shifts right.

LD

ļ	enable_leftShift	F119_LRSR LR_trig Carry	Ŀ	—o	ап	гу_	_ou		va	Iue	2.
	· · · · input ——	DataInp	$ \cdot $	·	·	·	·	·	·	·	·
	shift_trigger —	Sh_trig	Ŀ.	·	·	·	·	·	·	·	•
	· · · reset —	Rst_trig	Ŀ.	•	·	·	·		·	·	•
	data_array[0] ——	d1	$ \cdot $	·	·	·	·	•	·	·	•
	data_array[2] ——	d2	ŀ	·	·	·	·	·	·	·	·

ST carry_out_value:=F119_LRSR(LR_trig:= enable_leftShift,

```
DataInp:= input,
Sh_trig:= shift_trigger,
Rst_trig:= reset,
d1:= data_array[0],
d2:= data_array[2]);
```

n

х

х

х

х

х

х

F120_	ROR		16	6–bit	data		Steps 5								
Description			ts of the 16–bit data specified by d to the right if the trigge Vhen n bits are rotated to the right,												
	 the data in bit position n-1 (nth bit starting from bit position 0) is transferred to the special internal relay R9009 (carry-flag) n bits starting from bit position 0 are shifted out to the right and into the bigher bit positions of the 16-bit data specified by d 														
PLC types	-	higher bit positions of the 16–bit data specified by d .													
	Availabilit	y2	2.7k, 5k, 10		0.9k	2.7k, 5k		0.9k 2.7k, 5k		k					
	F120		х		x	x		x	X		: available : not available				
Data types	Variable	Data	type	Fι	Inction	۱									
	d	INT, V	WORD	16	-bit area	a									
	n	INT		nu	mber of	bits to I	oe rota	ted							
Operands			Ro	lay		Т	'C	F	Registe	٥r	Constant				
	For	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.				
	d	-	×	x	x	x	×	x	x	×	-				

х

х

х


х

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	rot_value	WORIÞŦ	16#1234	result after a 0->1 leading edge from start: 16#4123

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

х

n

х

х

х

х

х

х

F121_	ROL		16	6-bi	t data	left r	otat	е			Steps	5			
Description	Rotates n bits of the 16-bit data specified by d to the left if the trigger EN is in the ON-state. When n bits are rotated to the left,														
	 the data in bit position 16-n (nth bit starting from bit position 15) is transferred to special internal relay R9009 (carry-flag) n bits starting from bit position 15 are shifted out to the left and into the lower bit positions of the 16-bit data specified by d. 														
PLC types			FP0	1		FP1			P–M						
	Availabilit		2.7k, 5k, 10k		0.9k	2.7k,	5k	0.9k	2.7k, 5	k					
	F121		x		х	x x		x	x x		x: available –: not available				
Data types	Variable	Data	a type	F	unction	1									
	d	INT, \	WORD	16	-bit area	a									
	n	INT	number of bits to be rotated												
Operands	For		Re	lay		Т/	С	1	Registe	er	Constant				
	FUI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.				
	d	_	х	х	х	х	х	х	х	х	_				

x: available -: not available

х

х

х

297 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	rot_value	WORD Ŧ	16#1234	result after a 0->1 leading edge from start: 16#2341

Body When the variable start changes from FALSE to TRUE, the function is executed.

LD

- · · · · · start·
 F121_ROL

 IP
 EN
 ENO

 · · · · · 4
 n
 d
- ST IF DF(start) THEN
 F121_ROL(n:= 4,
 d=> rot_value);

5

F122_RCR 16-bit data right rotate with carry-flag data

Steps

Description Rotates **n** bits of the 16-bit data specified by **d** including the data of carry-flag to the right if the trigger **EN** is in the ON-state. When **n** bits with carry-flag data are rotated to the right,

- the data in bit position n-1 (nth bit starting from bit position 0) are transferred to special internal relay R9009 (carry-flag)
- n bits starting from bit position 0 are shifted out to the right and carry–flag data and n–1 bits starting from bit position 0 are subsequently shifted into the higher bit positions of the 16–bit data specified by d.

PLC types	Availabilit		FP0 2.7k, 5k, 10k			FP1			P–M		
	Availabilit	y 2			0.9k	2.7k,	5k	0.9k	2.7k, 5	k	
	F122		х		x	x		х	х		: available : not available
Data types	Data types Variable Data type			Function							
	d	INT, V	INT, WORD		16-bit area						
	n	INT		I	number of bits to be rotated						
Operands	For	Relay			y T/C		/C	Register		er	Constant
	1.01	WX	WY	W	R WL	sv	EV	DT	LD	FL	dec. or hex.
	d	-	x	x	x	х	х	x	х	х	-
	n	х	х	х	x	х	x	х	х	х	x
	L			1			1				x. availat

x: available
 -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	ass Identifier Type		Initial	Comment		
0	var <u>t</u>	start	BOOL 🗗	FALSE	activates the function		
1	VAR ±	rot_value	WORIÞŦ	16#1234	result after a 0->1 leading edge from start: 16#8123 (!)(carryflag)		

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

- LD start F122_RCR P F EN ENO · · · · · 4 n d rot_value
- ST IF DF(start) THEN

 $F122_RCR(n:=4)$

d=> rot_value);

5

F123 RCL	16-bit data left rotate with
	carry–flag data

Steps

Description Rotates **n** bits of the 16–bit data specified by **d** including the data of carry–flag to the left if the trigger **EN** is in the ON–state. When **n** bits with carry–flag data are rotated to the left,

- the data in bit position 16–**n** (**n**th bit starting from bit position 15) is transferred to special internal relay R9009 (carry–flag).
- n bits starting from bit position 15 are shifted out to the left and carry–flag data and n–1 bits starting from bit position 15 are shifted into lower bit positions of the 16–bit data specified by d.

PLC types	Availabilit		FP0 2.7k, 5k, 10k			FP1			P–M		
	Availabilit	y 2			0.9k	2.7k,	5k	0.9k	2.7k, 5	k	
	F123		х		х	х		х	х		: available : not available
Data types	ata types Variable Data type		ł	Function							
	d	INT, WORD		1	16–bit area						
	n	INT		r	number of bits to be rotated						
Operands			_								
Operanus	For	Relay			y 1		T/C Reg		Registe	er	Constant
	101	WX	WY	W	R WL	sv	EV	DT	LD	FL	dec. or hex.
	d	-	х	х	х	х	х	х	х	х	_
	n	х	х	х	х	х	х	х	х	х	х
	L				1				1		x. availa

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	rot_value	WORD Ŧ	16#1234	result after a 0->1 leading edge from start: 16#2340 (!)(carry flag)

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD

- · · · · · start·
 F123_RCL
 · · · · · · ·

 IP
 EN
 ENO
 - · · · · · ·

 · · · · · · · · · ·
 n
 d
 - rot_value
- ST IF DF(start) THEN
 F123_RCL(n:= 4,
 d=> rot_value);

Chapter 20

Data Conversion Instructions

F70_BCC

Block check code calculation

Steps

9

Description Calculates the Block Check Code (BCC), which is used to detect errors in message transmissions, of s3 bytes of ASCII data starting from the 16-bit area specified by s2 according to the calculation method specified by s1. The Block Check Code (BCC) is stored in the lower byte of the 16-bit area specified by d. (BCC is one byte. The higher byte of d does not change.)

s1: Specifying the Block Check Code (BCC) calculation method:

- 0: Addition
- 1: Subtraction
- 2: Exclusive OR operation

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F70	х	-	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT	specifies BCC calculation method: 0 = addition, 1 = subtraction, 2 = exclusive OR operation
s2	WORD, INT	starting 16-bit area to calculate BCC
s3	INT	specifies number of bytes for BCC calculation
d	WORD, INT	16-bit area for storing BCC

Operands

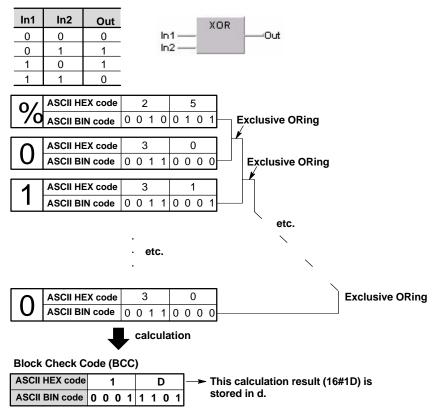
For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s3	х	х	х	х	х	х	х	х	х	х
s2	х	х	х	х	х	х	х	х	х	-
d	_	х	х	х	х	х	х	х	х	_

x: available -: not available

Error flags

No.	IEC address	Set	lf				
R9007	%MX0.900.7	permanently	he number of specified bytes for the target data ex-				
R9008	%MX0.900.8	for an instant	ceeds the limit of the specified data area.				

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net


POU In the POU header, all input and output variables are declared that are used for programming this function.

1	Class	Identifier	Туре		Initial	Comment
0	VAR 🛓	Start	BOOL	Ŧ	FALSE	
1	VAR ±	BCC_Calc_Method	INT	Ŧ	2	0 = Addition 1 = Subtraction 2 = Exclusive OR operation
2	VAR ±	ASCII_String	STRING[32]	Ŧ	%01#RCSX0000	
3	VAR 🛓	BCC	WORD	Ŧ	0	Result = 16#1D

Body A block check code is performed on the value entered for the variable *ASCII_String* when *Start* becomes TRUE. The exclusive OR operation, which is more suitable when large amounts of data are transmitted, has been chosen for the BCC method.

How the BCC is calculated using the exclusive OR operation:

Exclusive OR operation:

The ASCII BIN code bits of the first two characters are compared with each other to yield an 8–character exclusive OR operation result:

Sign for comparison	ASCII BIN code
%	00100101
0	00110000
Exclusive OR result	00010101

This result is then compared to the ASCII BIN code of the next character, i.e. "1".

Sign for comparison	ASCII BIN code
Exclusive OR result	00010101
1	00110001
Next exclusive OR	00100100

And so on until the final character is reached.

LD

111

						_		_	_										- 0	:3											
			+		-	-,	100		Ad	r C	H 1	(ar)	Off.	: 1				н	15		÷		+								
						. 1	- Var			-	-	-		-		Ad	r -		16												
		.2.	_	_	-	_	Off	5										÷													
					112														1.5												
•	•		•	•	L	• •	• •	•	÷	IN	LEN	1	Ŀ	÷	•	÷	÷	÷	:	-	•	•	:	•	•	•	•	-	•	•	•
													1.	+		+															
	0			Of VarOffs				· · · · 2 Off	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Offs LEN	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			2 Offs	2 Offs			· · · · · · · · · · · · · · · · · · ·	

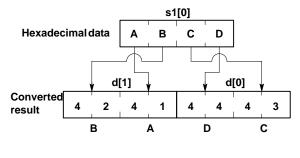
ST IF start THEN

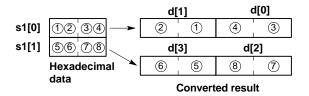
F70_BCC(s1_Control:= BCC_Calc_Methode,

s2_Start:= Adr_Of_VarOffs(Var:= ASCII_String, Offs:= 2),

> s3_Number:= LEN(ASCII_String), d=> BCC);

7


F71_HEX2A


$\text{HEX} \rightarrow \text{ASCII conversion}$

Steps

Description Converts the data of **s2** bytes starting from the 16–bit area specified by **s1** to ASCII codes that express the equivalent hexadecimals if the trigger **EN** is in the ON–state. The number of bytes to be converted is specified by **s2**. The converted result is stored in the area starting with the 16–bit area specified by **d**. ASCII code requires 8 bits (one byte) to express one hexadecimal character. Upon conversion to ASCII, the data length will thus be twice the length of the source data.

The two characters that make up one byte are interchanged when stored. Two bytes are converted as one segment of data.

ASCII HEX codes to express hexadecimal characters:

Hexadecimal number	ASCII HEX code
0	16#30
1	16#31
2	16#32
3	16#33
4	16#34
5	16#35
6	16#36
7	16#37
8	16#38
9	16#39
A	16#41
В	16#42
С	16#43
D	16#44
E	16#45
F	16#46

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	l
F71	х	-	х	-	х	

x: available -: not available

307

Data types

Variable	Data type	Function		
s1	INT, WORD	starting 16-bit area for hexadecimal number (source)		
s2	INT	specifies number of source data bytes to be converted		
d	WORD starting 16-bit area for storing ASCII code (destina			

Operands

For		Relay			Т/	C	R	egiste	Constant		
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s1	х	х	х	х	х	х	х	х	х	-	
s2	х	х	х	х	х	х	х	х	х	х	
d	-	х	х	х	х	х	х	х	х	-	

x: available -: not available

Error flags No. **IEC address** Set lf R9007 %MX0.900.7 - the byte number specified by s2 exceeds the area permanently specified by s1 - the calculated result exceeds the area specified by R9008 %MX0.900.8 for an instant d. - the data specified by s2 is recognized as "0".

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

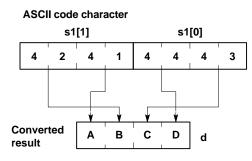
POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Start	BOOL	FALSE	
1	VAR 🛓	HexInput	ARRAY [01] OF WORD	[16#abcd,16#ef]	
2	VAR 🛓	BytesToConvert	INT	1 4	3 bytes will be converted
3	VAR ±	ASCOutput	ARRAY [03] OF WORD	f (4(0))	3 bytes hex. require 6 bytes for ASCII code ARRAY[3] will be filled with two zero characters = 16#3030

Body When the variable *Start* is set to true, the number of data bytes given in *BytesToConvert* in *HexInput* is converted to ASCII code and stored in *ASCIIOutput*. Note that two characters that make up one byte are interchanged when stored. One Monitor Header shows the Hex values, and the other the ASCII values.

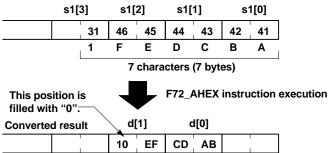
Т		
L	υ.	

the second s	EN Input[0] = 16#ABCD 51 BytesToConvert = 4 52	71_HEX2A ENO d	\SCOutput[0] = 16#4443
Monitor Head	der f71 [PRG]	Monitor Head	ler f71 [PRG] 🔳 🗖 👂
Start	2#1 at %MX0.4.10	-f71	Structure
- HexInput	Structure	Start	2#1 at %MX0.4.10
[0]	16#ABCD at %MW5.133	- Hexinput	Structure
[1]	16#00EF at %MW5.134	10)	16#ABCD at %MW5.133
BytesToConvert	4 at %MW5.135	[1]	46#00EF at %MW5.134
ASCOutput	Structure	BytesToConvert	4 at %MW5.135
[0]	16#4443 at %MW5.136	- ASCOutput	Structure
[1]	16#4241 at %MW5.137	101	CD at %MW5.136
[2]	16#4645 at %MW5.138	[1]	AB at %MW5.137
[3]	16#3030 at %MW5.139	[2]	EF at %MW5.138
6.5		[3]	00 at %MW5.139


ST IF start THEN

F72_A2HEX ASCII → HEX conversion Steps 7

Description


Converts the ASCII codes that express the hexadecimal characters starting from the 16-bit area specified by **s1** to hexadecimal numbers if the trigger **EN** is in the ON-state. **s2** specifies the number of ASCII (number of characters) to be converted. The converted result is stored in the area starting from the 16-bit area specified by **d**. ASCII code requires 8 bits (one byte) to express one hexadecimal character. Upon conversion to a hexadecimal number, the data length will thus be half the length of the ASCII code source data.

The data for two ASCII code characters is converted to two numeric digits for one word. When this takes place, the characters of the upper and lower bytes are interchanged. Four characters are converted as one segment of data.

Converted results are stored in byte units. If an odd number of characters is being converted, "0" will be entered for bits 0 to 3 of the final data (byte) of the converted results. Conversion of odd number of source data bytes:

ASCII code

Hexadecimal characters and ASCII codes:

ASCII HEX code	Hexadecimal number
16#30	0
16#31	1
16#32	2
16#33	3
16#34	4
16#35	5
16#36	6
16#37	7
16#38	8
16#39	9
16#41	А
16#42	В
16#43	С
16#44	D
16#45	E
16#46	F

Data types

Varia	ble	Data type	Function
s1	ĺ	WORD	starting 16-bit area for ASCII code (source)
s2	2	INT	specifies number of source data bytes to be converted
d	d INT, WORD		starting 16-bit area for storing converted data (destina- tion)

Operands

For		Relay				C	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1	х	х	х	х	х	х	х	х	х	-
s2	х	х	х	х	х	х	х	х	х	x
d	-	х	х	х	х	х	х	х	х	-

x: available

-: not available

Error flags

IS	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	 the number of bytes specified by s2 exceeds the area specified by s1.
				- the converted result exceeds the area specified by d.
	R9008	%MX0.900.8	for an instant	 the data specified by s2 is recognized as "0".
				 ASCII code, not a hexadecimal number (0 to F), is specified.

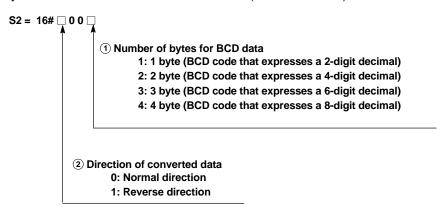
POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR 🛓	Start	BOOL	Ŧ	FALSE	
1		AscInput	ARRAY [01] OF WORD	Ŧ	[16#4443,16#4241]	16#4443 = CD (ASCII) 16#4241 = AB (ASCII)
2	VAR ±	HexOutput	WORD	Ŧ	0	Result = ABCD Upper- and lower-byte data interchanged

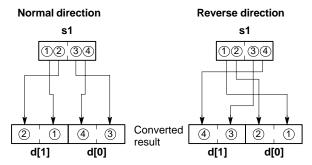
Body When the variable *Start* is set to TRUE, the function is executed. In this example, the value for s2, i.e. the number of bytes to be converted from ASCII code to hexadecimal code, is entered directly at the contact pin.

LD	1																													
		1.1	•	•	•	-5	tar	-	•	•	•	÷		F72	2	421	E)	(ł	•	•	•	•	•	•	•	•	•	•
	1 9	•	-	-	-	-			-	-	-	-	EN				E	N	0	÷	•						•			
		A	sc	Inp	ut	[0]	= 1	6#	44	43	-	-	s1						d	÷	-1-	le>	0	_tp	ut	= 1	167	¥A	BC	D
		1.2	•							·4	-	-	s2							+			•	•	•	•	•			•
	1	1.	•									•																•		•
	1i																													

ST IF start THEN


F72_A2HEX(s1_Start:= AscInput[0],

 $s2_Number := 4$,


d_Start=> HexOutput);

Description Converts the BCD code starting from the 16–bit area specified by **s1** to the ASCII code that expresses the equivalent decimals according to the contents specified by **s2** if the trigger **EN** is in the ON–state. **s2** specifies the number of source data bytes and the direction of converted data (normal/reverse).

The two characters that make up one byte are interchanged when stored. Two bytes are converted as one segment of data:

The converted result is stored in the area specified by **d**. ASCII code requires 8 bits (one byte) to express one BCD character. Upon conversion to ASCII, the data length will thus be twice the length of the BCD source data.

ASCII HEX code to express BCD character:

BCD character	ASCII HEX code
0	H30
1	H31
2	H32
3	H33
4	H34
5	H35
6	H36
7	H37
8	H38
9	H39

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

PLC types	Availability	FP0		FP1	FP–M			
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k		
	F73	Х	_	х	-	х	Ì	

x: available –: not available

Data types

Variable	Data type	Function
s1	WORD	starting 16-bit area for BCD data (source)
s2	INT, WORD	specifies number of source data bytes to be converted, and how it is arranged
d	WORD	starting 16-bit area for storing converted result (destina- tion)

Operands

For	Relay				T/	C	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1	х	х	х	х	х	х	х	х	х	_
s2	x	х	х	х	х	х	х	х	х	х
d	-	х	х	х	x	x	х	x	х	_

x: available -: not available

Error flags

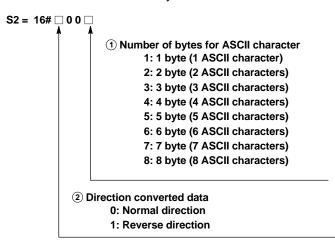
No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	- the data specified by s1 is not BCD data.
			 the number of bytes specified by s2 exceeds the area specified by s1.
R9008	%MX0.900.8	for an instant	 the converted result exceeds the area specified by d. the data specified by s2 is recognized as "0". the number of bytes specified by s2 is more than 16#4.

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

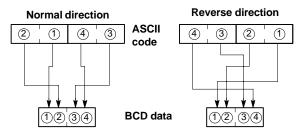
POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	;	Identifier	Туре	1	Initial	Comment
0	VAR	±	Enable	BOOL	Ŧ	FALSE	
1	VAR	Ŧ	BCDCodeInput	WORD	Ŧ	16#1234	
2	VAR	±	direction_number	WORD	Ŧ	16#1002	Reverse direction (1) 2 bytes (2)
з	VAR	±	ASCOutput	ARRAY [01] OF WORD	Ŧ	[2(0)]	Result: ASCOutput[0]=16#3231=12 (ASCII) ASCOutput[1]=16#3433=34 (ASCII)

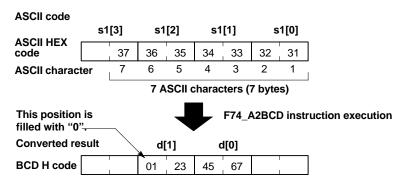
Body When the global variable *Enable* is set to TRUE, the function is executed. In this example, the variable *direction_number* specifies that from the input variable *BCDCodeInput*, 2 bytes will be converted in the reverse direction and stored in *ASCIIOutput*.


LD

1		1 1 1 1 1 1 1 1 1	1	1	4	1 = 1	1	- 1	1	4	1	1	2.1
	Enable: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F73_BCD2A											
	· BCDCodeInput = 16#1234	EN ENO s1 d	· · ·				tpu						
	direction_number = 16#1002	s2	+	•	4	•	• •		•	•	•	•	•


ST IF start THEN

Description Converts the ASCII codes that express the decimal characters starting from the 16-bit area specified by s1 to BCD if the trigger EN is in the ON-state. s2 specifies the number of source data bytes and the direction of converted code source data.



Four characters are converted as one segment of data:

The converted result is stored in byte units in the area starting from the 16–bit area specified by **d**. ASCII code requires 8 bits (1 byte) to express 1 BCD character. Upon conversion to a BCD number, the data length will thus be half the length of the ASCII code source data.

If an odd number of characters is being converted, "0" will be entered for bit position 0 to 3 of the final data (byte) of the converted results if data is sequenced in the normal direction, and "0" will be entered for bit position 4 to 7 if data is being sequenced in the reverse direction:

ASCII HEX code to express BCD character:

BCD character	ASCII HEX code
0	H30
1	H31
2	H32
3	H33
4	H34
5	H35
6	H36
7	H37
8	H38
9	H39

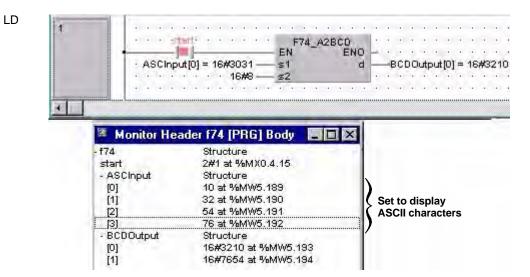
PLC types

Availability	FP0		FP1	FP-M		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F74	x	-	х	-	х	

x: available --: not available

Data types	Variable	Data type	Function					
	s1	WORD	starting 16-bit area for storing ASCII code (source)s					
	s2	INT, WORD	specifies number of source data bytes to be converted, and how it is arranged					
	d	WORD	starting 16-bit area for storing converted result (destina- tion)					

Operands	For	Relay				T/C		Register			Constant
	101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
	s1	x	x	х	х	х	х	х	х	x	_
	s2	х	х	х	х	х	х	х	х	х	х
	d	-	х	х	х	х	х	х	х	х	_


x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	 ASCII code not corresponding to decimal numbers (0 to 9) is specified.
				 the number of bytes specified by s2 exceeds the area specified by s1.
	R9008	%MX0.900.8	for an instant	- the converted result exceeds the area specified by d.
				 the data specified by s2 is recognized as "0".
				 the number of bytes for ASCII characters in s2 is more than 16#8.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class		Identifier	Туре		Initial
0	VAR	*	start	BOOL	Ŧ	FALSE
1	VAR	4	ASCInput	ARRAY [03] OF WORD	Ŧ	[16#3031,16#3233,16#3435,16#3637]
2	VAR	±	BCDOutput	ARRAY [01] OF WORD	Ŧ	[2(0)]

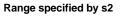
Body When the variable *start* is set to TRUE, the function is executed. For the variable at s1, you never need define an ARRAY with more than four elements because 8 ASCII characters require 8 bytes of memory and the function cannot convert more than 8 bytes. In this example, the value for s2 is entered directly at the contact pin.

ST IF start THEN

F74_A2BCD(s1_Start:= ASCInput[0] ,

s2_Number:= 16#8 ,

d_Start=> BCDOutput[0]);


7

BIN2A 16-bit BIN → ASCII conversion

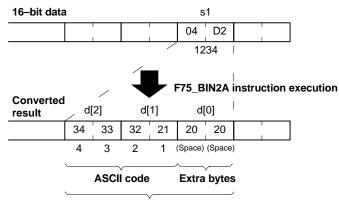
Steps

- Description Converts the 16-bit data specified by s1 to ASCII codes that express the equivalent decimal value. The converted result is stored in the area starting from the 16-bit area specified by d as specified by s2. Specify the number of bytes in decimal number in **s2**. (This specification cannot be made with BCD data.)
 - If a positive number is converted, the "+" sign is not converted.
 - When a negative number is converted, the "-" sign is also converted to ASCII code (ASCII HEX code: 16#2D).
 - If the area specified by s2 is more than that required by the converted data the ASCII code for "SPACE" (ASCII HEX code: 16#20) is stored in the extra area.
 - Data is stored in the direction towards the final address, so the position of the ASCII code may change, depending on the size of the data storage area.

Whe	When s2 = 8 (8 bytes)										
d	[3]	d[d[2]		d[1]		d[0]				
30	30	31	2D	20	20	20	20		1		
0	0	1	- (Space)	(Space)	(Space) (Space	e)			
	ASCII code Extra bytes										

If the number of bytes of ASCII codes following conversion (including the minus sign) is larger than the number of bytes specified by the s2, an operation error occurs. Make sure the sign is taken into consideration when specifying the object of conversion for the s2.

The following illustrations show conversions from 16-bit decimal data to ASCII codes.


16-bit data s1 FF 9C -100 F75_ BIN2A instruction execution Converted d[2] d[1] d[0] result 30 30 31 2D 20 20 0 0 1 (Space) (Space) ASCII code Extra bytes

When a negative number is converted

Range specified by s2 (6 bytes)

319

When a positive number is converted

Range specified by s2 (6 bytes)

Decimal characters to express ASCII HEX code:

Decimal characters	ASCII HEX code
SPACE	16#20
_	16#2D
0	16#30
1	16#31
2	16#32
3	16#33
4	16#34
5	16#35
6	16#36
7	16#37
8	16#38
9	16#39

Data types

Variable	Data type	Function		
s1 INT, WORD 16-bit area to be converted (source)				
		specifies number of bytes used to express destination data (ASCII codes)		
d	WORD	16-bit area for storing ASCII codes (destination)		

Operands

For	Relay T/C Register				er	Constant				
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	х	х	х	х	х	х	х	х	х	x
d	-	х	х	х	х	х	х	х	х	_

x: available

-: not available

Error flags

IS	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	 the number of bytes specified by s2 exceeds the area specified by d.
				- the data specified by s2 is recognized as "0".
	R9008	%MX0.900.8	for an instant	- the converted result exceeds the area specified by d.
				 the number of bytes of converted result exceeds the number of bytes specified by s2.

320 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Start	BOOL <u>T</u>	FALSE	
1	VAR 🛓	DataInput	INT 📑	-100	
2	VAR 🛓	AscOutput	ARRAY (03) OF WORD 📑	[4(0)]	

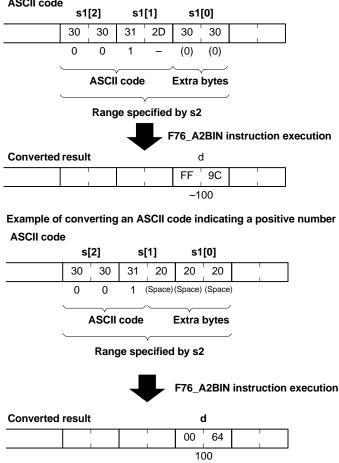
Body When the variable *Start* is set the TRUE, the function is executed. This programming example is based on the example for the conversion of a negative number outlined above. The monitor value icon is activated for both the LD and IL bodies; the monitor header icon is activated for the LD body.

2	EN END	See text above to see how this example works internally! Asc Output[0] = 16#2020
🖉 Monitor He	ader f75 [PRG] Body 🛛 🗔 🖪 🛛	3
- f75 Start DataInput	Structure 2#1 at %MX0.4.1 -100 at %MW5.160	
- Asc Output [0]	Structure 16#2020 at %MW5.161	
[1] [2] [3]	16#312D at %MW5,162 16#3030 at %MW5,163 16#0000 at %MW5,164	

ST IF start THEN

F76_A2BIN ASCII→

ASCII → 16–bit BIN conversion


Steps

7

- Description Converts the ASCII codes that express the decimal digits, starting from the 16-bit area specified by s1 to 16-bit data as specified by s2. The converted result is stored in the area specified by d. s2 specifies the number of source data bytes to be converted using decimal number. (This specification cannot be made with BCD data.)
 - The ASCII codes being converted should be stored in the direction of the last address in the specified area.
 - If the area specified by s1 and s2 is more than that required for the data you want to convert, place "0" (ASCII HEX code: 16#30) or "SPACE" (ASCII HEX code: 16#20) into the extra bytes.
 - ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also converted. The + codes can be omitted.

Example of converting an ASCII code indicating a negative number

ASCII code

322 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net ASCII HEX code to express decimal characters:

ASCII HEX code	Decimal characters
16#20	SPACE
16#2B	+
16#2D	-
16#30	0
16#31	1
16#32	2
16#33	3
16#34	4
16#35	5
16#36	6
16#37	7
16#38	8
16#39	9

Data types

Variable	Data type	Function
s1	WORD	16-bit area for ASCII code (source)
s2	INT	specifies number of source data bytes to be converted
d	INT, WORD	16-bit area for storing converted data (destination)

Operands

For	Relay			T/C		Register		Constant		
	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s1	х	x	х	х	х	х	х	х	x	-
s2	х	x	х	х	х	х	х	х	x	x
d	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	 the number of bytes specified by s2 exceeds the area specified by s1.
			- the data specified by s2 is recognized as "0".
			- the converted result exceeds the 16-bit area
R9008	%MX0.900.8	for an instant	specified by d.
			 ASCII code not corresponding to decimal numbers (0 to 9) or ASCII characters (+, -, and SPACE) is specified.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Com
0	VAR 🛓	Start	BOOL 📑	FALSE	
1	VAR 🛓	ASCInput	ARRAY [02] OF WORD 편	[16#2020,16#312D,16#3030]	
2	VAR 🛓	DataOutput	INT 📑	0	

Body When the variable *Start* is set the TRUE, the function is executed. The number of bytes to be converted is entered directly at the contact pin for s2. This programming example is based on the example for the conversion of a negative number outlined above.

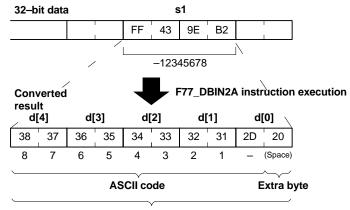
LD See text above to see how this South F76 A2BIN example works internally! -301 ENO EN ASCInput[0] = 16#2020 DataOutput = -100 · \$1 d6 s2 . . . æ Monitor Header f76 [PRG] Body - f76 Structure 2#1 at %MX0.4.2 Start ASCInput Structure 16#2020 at %MW5.170 [0] [1] 16#312D at %MW5.171 [2] 16#3030 at %MW5.172 DataOutput -100 at %MW5.173

ST IF start THEN

```
F76_A2BIN( s1_Start:= ASCInput[0] ,
```

```
s2_Number:= 6 ,
```

```
d=> DataOutput );
```


F77_DBIN2A 32-bit BIN \rightarrow ASCII conversion

Steps

11

- **Description** Converts the 32-bit data specified by **s1** to ASCII code that expresses the equivalent decimals. The converted result is stored in the area starting from the 16-bit area specified by **d** as specified by **s2**. **s2** specifies the number of bytes used to express the destination data using decimal.
 - When a positive number is converted, the "+" sign is not converted.
 - When a negative number is converted, the "-" sign is also converted to ASCII code (ASCII HEX code: 16#2D).
 - If the area specified by **s2** is more than that required by the converted data the ASCII code for "SPACE" (ASCII HEX code: 16#20) is stored in the extra area.
 - Data is stored in the direction of the last address, so the position of the ASCII code may change depending on the size of the data storage area.
 - If the number of bytes of ASCII codes following conversion (including the minus sign) is larger than the number of bytes specified by the s2, an operation error occurs. Make sure the sign is taken into consideration when specifying the object of conversion for the s2.

Example of converting a negative number from 32-bit decimal format to ASCII codes

Range specified by S2 (10 bytes)

Decimal characters	ASCII HEX code
SPACE	16#20
+	16#2B
-	16#2D
0	16#30
1	16#31
2	16#32
3	16#33
4	16#34
5	16#35
6	16#36
7	16#37
8	16#38
9	16#39

Decimal characters to express ASCII HEX code:

Data types

Variable	Data type	Function
s1	DINT, DWORD	32-bit data area to be converted (source)
s2	INT	specifies number of bytes to express destination data (ASCII codes)
d	WORD	16-bit area for storing ASCII codes (destination)

Operands

For	Relay			T/C		Register			Constant	
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s1	x	х	х	х	x	х	х	x	х	x
	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s2	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	-

x: available

-: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	 the number of bytes specified by s2 exceeds the area specified by d.
			- the data specified by s2 is recognized as "0".
R9008	%MX0.900.8	for an instant	- the converted result exceeds the area specified by d.
			 the number of bytes of converted result exceeds the number of bytes specified by s2.

POU In the POU header, all input and output variables are declared that are used for programming this function.

0	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Start	BOOL 🗗	FALSE	
1	VAR 🛓	DINT_input	DINT Ŧ	-12345678	
2	VAR 🛓	ASCII_output	ARRAY [04] OF WORD 🖣	[5(0)]	

Body When the variable *Start* is set to TRUE, the function is executed. The number of bytes to be converted is entered directly at the contact pin for s2. This programming example is based on the example for the conversion of a negative number outlined above.

LD See text above to understand function's storie . F77_DBIN2A internal processing. -EN ENO DINT_input = -12345678 -ASCII_output[0] = 16#2D20-51 d 10-- 52 2 Monitor Header F77 [PRG] Body F77 Structure Start 2#1 at %MX0.4.0 DINT_input -12345678 at %MW5.124 Structure ASCII output [0] 16#2D20 at %MW5.126 [1] 16#3231 at %MW5,127 16#3433 at %MW5.128 [2] 16#3635 at %MW5.129 [3] [4] 16#3837 at %MW5.130

ST IF start THEN

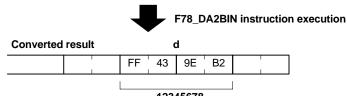
F77_DBIN2A(s1:= DINT_input ,

s2_Number:= 10 ,

d_Start=> ASCII_output[0]);

TREATED ASCII → 32–bit BIN conversion

Steps |11


- **Description** Converts ASCII code that expresses the decimal digits, starting from the 16-bit area specified by **s1** to 32-bit data as specified by **s2**. The converted result is stored in the area starting from the 16-bit area specified by **d. s2** specifies the number of bytes used to express the destination data using decimals.
 - The ASCII codes being converted should be stored in the direction of the last address in the specified area.
 - If the area specified by s1 and s2 is more than that required by the data you want to convert, place "0" (ASCII HEX code: 16#30) or "SPACE" (ASCII HEX code: 16#20) in the extra bytes.
 - ASCII codes with signs (such as +: 16#2B and -: 16#2D) are also converted. The + codes can be omitted.

Example of converting an ASCII code indicating a negative number

ASCII code

s1[4]		s1	s1[3]		2]	s1	[1]	s1[0]				
38	37	36	35	34	33	32	31	2D	20			
 8	7	6	5	4	3	2	1	-	- (Space)			
 		$\sim \sim$										
	E	tra by										

Range specified by s2 (10 bytes)

ASCII HEX code to express decimal characters:

ASCII HEX code	Decimal characters
16#20	SPACE
16#2B	+
16#2D	-
16#30	0
16#31	1
16#32	2
16#33	3
16#34	4
16#35	5
16#36	6
16#37	7
16#38	8
16#39	9

328 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

PLC types	Availability	FP0		FP1	FP-M		
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F78	Х	I	х	I	х	

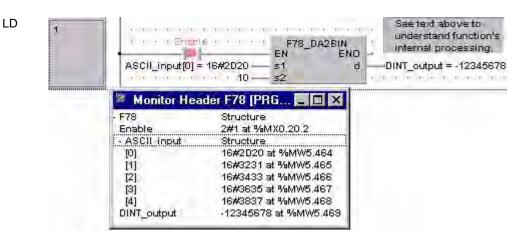
x: available -: not available

Data types	Variable	Data type	Function
	s1	WORD	starting 16-bit area for ASCII code (source)
	s2	INT	specifies number of source data bytes to be converted
	d	DINT, DWORD	area for 32-bit data storage (destination)

Operands

For		Re	lay		Т/	С	R	egiste	er	Constant		
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.		
s1	х	х	х	х	х	х	х	х	х	-		
s2	х	х	x	х	х	х	х	х	х	х		
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.		
d	-	х	х	х	х	х	х	х	х	_		

x: available -: not available


Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	 the number of bytes specified by s2 exceeds the area specified by s1.
				- the data specified by s2 is recognized as "0".
				- the converted result exceeds the area specified by d.
	R9008	%MX0.900.8	for an instant	- the converted result exceeds the 32-bit area.
				 ASCII code not corresponding to decimal numbers (0 to 9) or ASCII characters (+, -, and SPACE) is specified.

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	0	Initial	Comment
0	VAR 🛓	Enable	BOOL	F	FALSE	
1	VAR ±	ASCII_input	ARRAY [04] OF WORD	ī	[16#2D20,16#3:Þ	For values, see Monitor Header
2	VAR 🛓	DINT_output		F	0	

Body When the variable *Enable* is set to TRUE, the function is executed. The number of bytes to be converted is entered directly at the contact pin for s2. This programming example is based on the example for the conversion of a negative number outlined above.

ST IF start THEN

F80_B	SCD	1	6–bit	deci	mal –	→ 4–(digit	BCD	conv	ersio	on Steps	5		
Description	4–digit (in d . Th	decimals	if the data	trigge that c	er EN i	s in th	ne ON	l-state	e. The	conv	ode that expr erted data is in the range o	stored		
		ition 15 . data 0 0		 0 0 0 0 1 0 0 0 16									
				₽	Conve	rsion (to BCE) code)						
	Destination [d]: 16#16 (BCD) Bit position 15 12 11 8 7 4 3 0													
							0	-						
	BCD c BCD H			000	000	0 1 0	110 6	-						
	code		0	0										
Data types	Variah	la Data	a type	E.,	nction									
Data types	ta types Variable				ary data	(sourc	a) ran	ae: 0 to	0000			_		
	d	WOF			-bit area			-		ation)				
		1101			bitaroa			72 00ac	(uooui	lation				
Operands	For		Re	lay		T/	'C	F	Registe	ər	Constant			
	FUI	wx	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.			
	s	x	x	х	х	х	x	x	x	х	x			
	d	-	x	x	x	х	x	x	x	х	-			
			I			1			I		x: availat –: not ava			
Error flags	No.	IEC add	lress	Set		lf								
	R9007	%MX0.9			anently			/ data o 70F) is (ge of 0 (16#0) to			
	R9008	%MX0.9	00.8	for an	instant			,						

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	Enable	BOOL 🗗	FALSE	
1	VAR 🛓	Deci mal Input	INT 于	16	
2	VAR 🛓	BCD_output	WORD 🛨	0	

Body When the variable *Enable* is set to TRUE, the function is executed. The decimal value in *DecimalInput* is converted to a BCD hexadecimal value and stored in the variable *BCD_output*.

LD	1	See description above to understand function's
		Enable F80_BCD internal processing.
		OecimalInput = 16 - s d - BCD_output = 16#0016 · · ·
	l	

ST IF Enable THEN

F80_BCD(DecimalInput, BCD_output);

END_IF;

332 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

5

F81_BIN

4–digit BCD \rightarrow 16–bit decimal conversion

Steps

Description Converts the BCD code that expresses 4–digit decimals specified by **s** to 16–bit binary data if the trigger **EN** is in the ON–state. The converted result is stored in the area specified by **d**.

Source [s]: 16#15 (BCD)

Bit position	15			12	11			8	7			4	3			0
BCD code	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1
BCD Hex 0 code			(C				1		5						

Destination [[d]:	1	5			•	J		Co	nv	er	sic	n	(to	bi	na	ry data)
Bit position																	
Binary data	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	
Decimal								15									

PLC types FP1 FP-M FP0 Availability 2.7k, 5k, 10k 0.9k 2.7k, 5k 0.9k 2.7k, 5k F81 х х х х х

x: available -: not available

Data types	Variable	Data type	Function
	s	WORD	16-bit area for 4-digit BCD data (source)
	d	INT, WORD	16-bit area for storing 16-bit binary data (destination)

Operands	For		Re	lay		Т/	'C	R	egiste	er	Constant
	FOI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
	s	х	х	х	х	х	х	х	х	х	х
	d	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	the data specified by s is not BCD data.
R9008	%MX0.900.8	for an instant	

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	Enable	BOOL	FALSE	
1	VAR 🛓	BCD_input	WORD	16#0015 1 €	
2	VAR 🛓	Deci mal Output	INT	₹lo	

Body When the variable *Enable* is set to TRUE, the function is executed. The BCD value assigned to the variable *BCD_input* is converted to a decimal value and stored in the variable *DecimalOutput*. The monitor value icon is activated for both the LD and IL bodies.

LD	1	See descrip to understar	
		Enable F81_BIN internal proc	
		BCD_input = 16#0015 — s d — Decimal Output	t = 15 · · ·

ST IF Enable THEN

```
F81_BIN(BCD_Input, DecimalOutput);
```

7

DBCD 32-bit decimal \rightarrow 8-digit BCD conversion

Steps

Converts the 32-bit binary data specified by s to the BCD code that expresses Description 8-digit decimals if the trigger EN is in the ON-state. The converted data is stored in d. The binary data that can be converted to BCD code are in the range of 0 (0 hex) to 99,999,999 (5F5E0FF hex).

Source (s): 72811730

Bit position	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0
Binary data	0	0	0	0	0	1	0	0	0	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1	0
Decimal															72	81	17	30														

Higher 16-bit area

Lower 16-bit area

Destination (d): 16#72811730 (BCD)

Bit position	15	•	•	12	11	•	•	8	7	•	•	4	3			0	15		•	12	11		•	8	7			4	3	•	•	0
BCD code	0	1	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1	0	0	1	1	0	0	0	0
BCD Hex code		-	7			2	2			8	3			,	1				1				7				3			()	

Higher 16-bit area

Lower 16-bit area

Da

ata types	Variable	Data type	Function
	S	DINT, DWORD	binary data (source), range: 0 to 99,999,999
	d	DWORD	32-bit area for 8-digit BCD code (destination)

Operands

For		Re	lay		Т/	Ċ	R	egiste	er	Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
S	х	х	х	х	х	х	х	х	х	x
d	-	х	х	х	х	х	х	х	х	_

x: available

-: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	32-bit data specified by s outside the range of 0 (16#0) to 99999999 (16#5F5E0FF) is converted.
R9008	%MX0.900.8	for an instant	10 99999999 (16#3F3E0FF) IS convented.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	Enable	BOOL 3	FALSE	
1	VAR 🛓	DINT_input		72811730	
2	VAR 🛓	BCD_output	DWORD 3	fo	

Body When the variable *Enable* is set to TRUE, the function is executed. The decimal value in *DINT_input* is converted to a BCD hexadecimal value and stored in the variable *BCD_output*. You may also assign a decimal, binary (prefix 2#), or hexadecimal (prefix 16#) value directly at the contact pin for s.

LD 1			
	· · Enable · ·	F82_DBCD	101 101 101
	DINT_input		-BCD_output

ST IF Enable THEN

F82_DBCD(DINT_input, BCD_output);

7

F83_DBIN 8-

8–digit BCD \rightarrow 32–bit decimal conversion

Steps

Description Converts the BCD code that expresses 8–digit decimals specified by **s** to 32–bit binary data if the trigger **EN** is in the ON–state. The converted result is stored in the area specified by **d**.

Source (s): 16#72811730 (BCD)

Bit position	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0
BCD code	0	1	1	1	0	0	1	0	1	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1	0	0	1	1	0	0	0	0
BCD Hex code			7			2	2			8	3				1				1			7	7			;	3			()	

Higher 16-bit area

Lower 16-bit area

Destination (d): 72811730

Bit position	15	•	•	12	11	•	•	8	7	•	•	4	3	•	•	0	15	•	•	12	11	•	•	8	7	•	•	4	3			0
Binary data	0	0	0	0	0	1	0	0	0	1	0	1	0	1	1	1	0	0	0	0	0	1	0	0	1	1	0	1	0	0	1	0
Decimal															72	.81	17	30														

Higher 16-bit area

Lower 16-bit area

PLC types	Availability	FP0		FP1	F	P–M	Ĩ
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F83	Х	х	х	х	х	x: available –: not available

Data types	Variable	Data type	Function
	s	DWORD	area for 8-digit BCD data (source)
	d	DINT, DWORD	32-bit area for storing 32-bit data (destination)

Operands

For		Re	lay		Т/	C	R	egiste	er	Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	x
d	-	х	х	х	х	х	х	х	х	-

x: available

-: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	the data specified by s is not BCD data.
R9008	%MX0.900.8	for an instant	

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR ±	Enable	BOOL	Ŧ	FALSE	
1	VAR 🛓	BCD_input	DWORD	Ŧ	16#72811730	
2	VAR 🛓	DINT_output	DINT	Ŧ	0	

- Body When the variable *Enable* is set to TRUE, the function is executed. The BCD value assigned to the variable *BCD_input* is converted to a decimal value and stored in the variable *DINT_output*.
 - LD 1 BCD_input = 16#72811730 = F83_DBIN BCD_input = 16#72811730 = DINT_output = 72811730
 - ST IF Enable THEN

F83_DBIN(BCD_input, DINT_Output);

3

INV

Steps 16-bit data invert (one's complement)

Inverts each bit (0 or 1) of the 16-bit data specified by d if the trigger EN is in the Description ON-state. The inverted result is stored in the 16-bit area specified by d. This instruction is useful for controlling an external device that uses negative logic operation.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F84	Х	х	х	х	х	x: available –: not avail

e ilable

Data types	Variable	Data type	Function
	d	INT, WORD	16-bit area to be inverted

Operands

For		Re	lay		Т/	C	R	egiste	er	Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	start	BOOL 편	FALSE	activates the function
1		invert_value	WORD Ŧ		result after a 0->1 leading edge from start: 2#0110110010001110

When the variable start changes from FALSE to TRUE, the function is executed. Body

LD

	· ·	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	· ·	·	s	tar	t٠	·	·		FS	34	IN	V		·	·	·	·	·	·	·
1	-	_	-1	P	⊢	_		E	N.		Ξ Ε	ENI	0	-	·	·	·	·	·	·
	·	·	•	•	•	·	·						d	-	—ir	۱V	ert	_v	alu	Je
	· ·	·	·	·	·	·		•	•	•	•	•	•							

ST IF DF(start) THEN

F84_INV(invert_value);

END IF;

F85_NEG

16-bit data two's complement

```
Steps 3
```

Description Gets the two's complement of 16–bit data specified by **d** if the trigger **EN** is in the ON–state. The two's complement of the original 16–bit data is stored in **d**.

Two's complement: A number system used to express positive and negative numbers in binary. In this system, the number becomes negative if the most significant bit (MSB) of data is 1. The two's complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16–bit data from positive to negative or from negative to positive.

PLC types	Availabilit		FP0	1		FP1		F	P–M				
	Availabilit	.y 2	.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5				
	F85		х		х	х		х	х		: available : not available		
		_											
Data types	Variable		i type	Fu									
	d	INT, V	NORD	16	-bit area	data and i	ts two'	s complement					
Operands	For		Re	lay		T/	C		Registe	er	Constant		
	101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.		
	d	-	х	х	х	х	x	x	х	х	-	1	
	·							L			x: availa –: not av		
Example	text (ST).	In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.											
POU header		DU header, all input and output variables are declared th ning this function.									d that are us	sed fo	

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR ±	negotiate_value	WORD Ŧ	2#1001001101110001	result after a 0->1 leading edge from start: 2#0110110010001111

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

LD start F85_NEG P EN ENO d negotiate_value

ST IF DF(start) THEN
 F85_NEG(negotiate_value);
 END_IF;

3

F86_DNEG 32-bit data two's complement

Steps

Description Gets the two's complement of 32–bit data specified by **d** if the trigger **EN** is in the ON–state. The two's complement of the original 32–bit data is stored in **d**.

Two's complement: A number system used to express positive and negative numbers in binary. In this system, the number becomes negative if the most significant bit (MSB) of data is 1. The two's complement is obtained by inverting all bits and adding 1 to the inverted result.

This instruction is useful for inverting the sign of 16–bit data from positive to negative or from negative to positive.

PLC types	Availabilit		FP0			FP1		FF	P–M							
	Availabilit	y 2.	.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5	k						
	F86		х		х	х		х	х		available not available					
_																
Data types	Variable	Data	type	F	unctio	unction										
	d	DINT	, dwof	RD 3	2-bit ar	ea for s	toring	original	data an	d its two	o's complement					
Operands			_			T/C Registe										
Operands	For	Rela		-	-				Registe		Constant					
		DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.					
	d	-	х	х	х	x	х	х	х	х	-					
											x: available –: not available	;				
Example POU header	text (ST). 1 can find an	The s i instr J hea	ame F fuction der, al	POU n list (Il inpu	heade IL) ex ut and	er is us ample	ed fo in th	or both e onlir	n progr ne help	ammi o.	LD) and structure ng languages. Yo d that are used fo	u				
	Class le	dentifier		Туре	Initia	al				Comme	ent					
	0 VAR 当 st	tart		BOOL	FALS	3E				activat	es the function					
		egotiate_	_value	DWORD	2#11	01000100	0011000	01100000	11101111	edge fr 2#0010	fter a 0->1 leading om start: 111011110011 111100010001					
Body	When the v	/ariab	ole sta	rt cha	anges	from I	FALS	E to T	RUE,	the fu	nction is executed	J.				
LD	start F86_DNEG					negoti	 ate_va	 alue · 								
ST	ST IF DF(start)															

F86_DNEG(negotiate_value);

EXT 89

16-bit data sign extension

16-bit data is converted to 32-bit data without signs and values being changed. Description F89 copies the sign bit of the 16-bit data specified in s to all the bits of the higher 16-bit area (extended 16-bit area) in **d**.

> If the sign bit (bit position 15) of the 16-bit data specified by s is 0, all higher 16 bits in the variable assigned to d will be 0. If the sign bit of s is 1, the higher 16 bits of d will be 1.

	Sign bit (0: positive, 1: negative)										
	Source		S								
	Bit position	15 1211 .	.874	430							
	Binary data	1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 0							
	Decimal data	\sim	-2								
	/	\mathbf{X}	Start:	ON							
	/	\mathbf{X}		ÖN							
Destination	/		∖ q								
Bit position	3128 <mark>27</mark> 24	232019 .	. 1615 12	211 8 7	7 4 3 0						
Binary data	1 1 1 1 1 1 1 1	1 1 1 1 1 1 1	111111		1 1 1 1 1 1 1 0						
Decimal data			-2								

Higher (extended) 16-bit area

Lower 16-bit area

available

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F89	Х	х	х	х	х	x: available –: not availal

Data types	Variable	Data type	Function
	s	INT, WORD	16-bit source data area, bit 15 is sign bit
	d	DINT, DWORD	32-bit destination area, s copied to lower 16 bits, higher 16 bits filled with sign bit of s

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant		
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.	
S	-	х	х	x x		х	х	х	х	-	
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
d	-	х	х	х	х	х	х	х	х	-	

x: available

-: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>±</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	Var_16bit	INT 📑	0	16bit value
2	VAR 🛓	Var_32bit	DINT 📑	0	32bit value

Body When the variable *start* is set to TRUE, the function is executed.

		Sign bit (0: positive, 1: negative)																				
	D	estinatio	n	\checkmark				D	то													
	E	Bit positio	on/it	<u>,</u>	. 12	211		8	7		4	3			0							
	E	Binary da	ta 1	Jı	11	1	1 1	1	1 '	11	1	1	1	1	0							
	0	Decimal da	ta					K-	-2													
		****			·•••	••••••	•••		R	20:	ON	I										_
Destination			DT1				•	•							DT	0						
Bit position	15 1	211	8 7		. 4	3		0	15		12	11			8	7.		4	3			0
Binary data	1 1 1	1 1 1 1	1 1	1	1 1	1	1 1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	1	1	0
Decimal data								K-	-2													

Higher 16-bit area (extended 16-bit area)

Lower 16-bit area

LD

D F89_EXT F80_EXT F80_

ST IF start THEN

F89_EXT(Var_16bit, Var_32bit);

F90_DECO

Decode hexadecimal -> bit state

Steps

7

Description Decodes the contents of 16–bit data specified by **s** according to the contents of **n** if the trigger **EN** is in the ON–state. The decoded result is stored in the area starting with the 16–bit area specified by **d**.

n specifies the starting bit position and the number of bits to be decoded using hexadecimal data:

Bit no. 0 to 3: number of bits to be decoded

Bit no. 8 to 11: starting bit position to be decoded

(The bits nos. 4 to 7 and 12 to 15 are invalid.)

e.g. when $\mathbf{n} = 16\#0404$, four bits beginning at bit position four are decoded.

Relationship between number of bits and occupied data area for decoded result:

Number of bits to be decoded	Data area required for the result	Valid bits in the area for the result
1	1-word	2-bit*
2	1-word	4-bit*
3	1-word	8-bit*
4	1-word	16-bit
5	2-word	32-bit
6	4-word	64-bit
7	8-word	128-bit
8	16-word	256-bit

*Invalid bits in the data area required for the result are set to 0.

PLC types

Availability	FP0		FP1	F	P–M	Ţ
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F90	x	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
S	INT, WORD	source 16-bit area or equivalent constant to be decoded
n	INT, WORD	control data to specify the starting bit position and number of bits to be decoded
d	INT, WORD	starting 16-bit area for storing decoded data (destination)

The variables **s**, **n** and **d** have to be of the same data type.

Operands

For	Relay			T/C		Register		Constant		
	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s, n	х	х	х	х	х	х	х	х	х	x
d	_	х	х	х	х	х	х	х	х	_

x: available -: not available

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class Identifier Typ		Туре	Initial	Comment
0	VAR <u>±</u>	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	WORD 편	2#1100011000011110	
2	VAR 🛓	specify_n	WORD 편	16#0003	specifies decoding
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 2#0000000001000000

Body When the variable *start* is set to TRUE, the function is executed.

LD

	• • start• • • •	F90 DECO	
- 1		EN ENO	
	 input_value — 	s d	
	· · specify_n —	n	

ST IF start THEN

F91_SEGT

16-bit data 7-segment decode

Steps

3

Description

Converts the 16-bit equivalent constant or 16-bit data specified by **s** to 4-digit data for 7-segment indication if the trigger **EN** is in the ON-state. The converted data is stored in the area starting with the 16-bit area specified by **d**. The data for 7-segment indication occupies 8 bits (1 byte) to express 1 digit.

7-segment conversion table:

One digit o conve			b b	е		8-bit data for 7-seg- ment indication							7-segment	Organization of 7-segment
Hexadecimal	I	Bin	ary	/	/	g	f	е	d	С	b	а	indication	indication
16#0	0	0	0	0	0	0	1	1	1	1	1	1	8	
16#1	0	0	0	1	0	0	0	0	0	1	1	0	1	
16#2	0	0	1	0	0	1	0	1	0	0	1	1	2	
16#3	0	0	1	1	0	1	0	0	1	1	1	1	З	
16#4	0	1	0	0	0	1	1	0	0	1	1	0	Ч	
16#5	0	1	0	1	0	1	1	0	1	1	0	1	5	а
16#6	0	1	1	0	0	1	1	1	1	1	0	1	6	f
16#7	0	1	1	1	0	0	1	0	0	1	1	1	7	g
16#8	1	0	0	0	0	1	1	1	1	1	1	1	8	e c
16#9	1	0	0	1	0	1	1	0	1	1	1	1	9	
16#A	1	0	1	0	0	1	1	1	0	1	1	1	R	d
16#B	1	0	1	1	0	1	1	1	1	1	0	0	Ь	
16#C	1	1	0	0	0	0	1	1	1	0	0	0	Ľ	
16#D	1	1	0	1	0	1	0	1	1	1	1	0	ർ	
16#E	1	1	1	0	0	1	1	1	1	0	0	1	ε	
16#F	1	1	1	1	0	1	1	1	0	0	0	1	F	

PLC	ty	pes
-----	----	-----

pes	Availability	FP0	P0 FP1			P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F91	Х	х	х	х	х	x: available –: not available

Data types

Va	riable	Data type	Function
	s	INT, WORD	16-bit area or equivalent constant to be converted to 7-segment indication (source)
	d	DINT, DWORD	32-bit area for storing 4-digit data for 7-segment indication (destination)

Operands

For		Re	lay		T/C		Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	х
d	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
	_	х	х	х	х	х	х	х	х	-

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	input_value	WORD 편	16#A731	
2	VAR ±	output_value	DWORD Ŧ	0	result after 0->1 leading edge from start: 16#77274F06

Body When the variable *start* is set to TRUE, the function is executed.

LD

· · start· · · ·				
· input_value —	 d –			

ST IF start THEN

F91_SEGT(input_value, output_value); END_IF;

F92_ENCO Encode bit sta

Encode bit state -> hexadecimal

Steps

7

Description Encodes the contents of data specified by **s** according to the contents of **n** if the trigger **EN** is in the ON–state. The encoded result is stored in the 16–bit area specified by **d** starting with the specified bit position. Invalid bits in the area specified for the encoded result are set to 0.

n specifies the starting bit position of destination data **d** and the number of bits to be encoded using hexadecimal data:

Bit no. 0 to 3: number of bits to be encoded

Bit no. 8 to 11: starting bit position of destination data to be encoded (The bit nos. 4 to 7 and 12 to 15 are invalid.)

e.g. **n** = 16#0005

- Number of bits to be encoded: $2^5 = 32$ bits

Starting bit position to be encoded for destination data: bit position 0

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F92	x	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
s	INT, WORD	starting 16-bit area to be encoded (source)
n	INT, WORD	control data to specify the starting bit position and number of bits to be encoded
d	INT, WORD	16-bit area for storing encoded data (destination)

The variables **s**, **n** and **d** have to be of the same data type.

i Pr

Put at least one bit into the area to be checked to avoid an error message from the PLC.

• When several bits are set, the uppermost bit is evaluated.

Operands

For		Re	lay		Т/	Ċ	Register			Constant	
FOI	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
S	х	х	х	х	х	х	х	х	х	-	
n	x	х	х	х	х	х	х	х	х	x	
d	-	х	х	х	х	х	х	х	х	_	

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment		
0	VAR ±	start	BOOL 📑	FALSE	activates the function		
1	VAR 🛓	input_value	WORD 📑	2#0000000001000000			
2	VAR 🛓	specify_n	WORD 📑	16#0003	specifies the encodation		
з	VAR ±	output_value	WORD Ŧ	0	result after a 0->1 leading edge from start: 2#0000000000000110		

Body When the variable *start* is set to TRUE, the function is executed.

		· · · · · · · · · · · · · · · ·
	· · start· · ·	F92_ENCO
1	· input_value —	s d output_value
	· · · specify_n —	

ST IF start THEN

LD

F93_UNIT

16-bit data combine

Steps

7

Description Extracts each lower 4 bits (bit position 0 to 3) starting with the 16–bit area specified by **s** and combines the extracted data into 1 word if the trigger **EN** is in the ON–state. The result is stored in the 16–bit area specified by **d**. **n** specifies the number of data to be extracted. The range of **n** is 0 to 4.

The programming example provided below can be envisioned thus:

Source

Bit position	15	•	•	12	11	·	•	8	7	•	·	4	3	•	·	0
Array[0] at s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Array[1] at s	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Array[2] at s	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
							, s	star	t: C	DN						

Destination						•										
Bit position	15	•	•	12	11		ŀ	8	7	•	ŀ	4	3		ŀ	0
value at d	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1
		/	l										-			

Bit positions 12 to 15 are filled with 0s.

PLC types	Availability	FP0		FP1	F	T	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F93	Х	х	х	х	х	x: ava -: not

x: available -: not available

Data types	Variable Data type		Function
	s	WORD	starting 16-bit area to be extracted (source)
	n	INT	specifies number of data to be extracted
	d	WORD	16bit area for storing combined data (destination)

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant	
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
S	х	х	х	х	х	х	х	х	х	-
n	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	_

x: available -: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	 the area specified using the index modifier exceeds the limit
R9008	%MX0.900.8	for an instant	– the value at $n \ge 5$

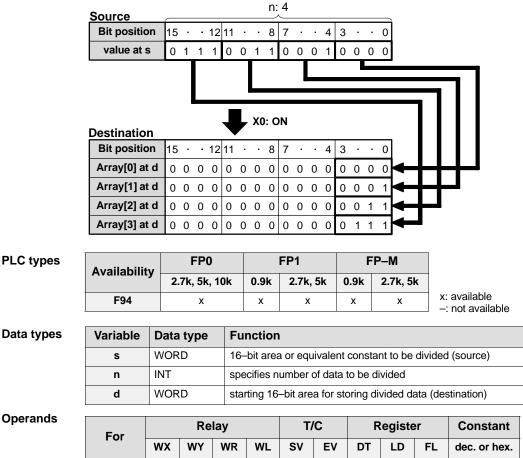
IL

Example In this example the function F93_UNIT is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL	TRUE	
1	VAR 🛓	data_input	ARRAY [02] OF WORD	[1,2,4] 🗂	
2	VAR ±	data_number	INT 3]3	
3	VAR 🛓	data_united	WORD] o	
4	VAR 🛓	result_integer	INT 3	jo	

- Body When the variable *start* is set to TRUE, the function is carried out. The binary values in the illustration on the previous page serve as the array values in *data_input*. In this example, variables are declared in the POU header. However, you may assign constants directly at the input function's contact pins instead.
 - LD In this example, the view icon was activated so you can see the results immediately.


start = 2#1 EN ENO = 16#0001 s d data_united = 16#0421 · number = 3 n
16#0421 — a_Wordresult_integer = 1057
start data_input[0], data_number, data_united
data_united _ (* 16#0421 *) r result_integer (* 1057 *)

F94 DIST

Steps 7

Divides the 16-bit data specified by s into 4-bit units and distributes the divided Description data into the lower 4 bits (bit position 0 to 3) of 16-bit areas starting with d if the trigger **EN** is in the ON-state. **n** specifies the number of data to be divided. The range of **n** is 0 to 4). When 0 is specified by **n**, this instruction is not executed.

The programming example provided below can be envisioned thus:

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s, n	х	х	х	х	х	х	х	х	х	x
d	Ι	х	х	х	х	х	х	х	х	-

x: available -: not available

Error flags

5	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	 the area specified using the index modifier exceeds the limit
	R9008	%MX0.900.8	for an instant	- the value at $n \ge 5$ - the last area for the result exceeds the limit

Example In this example the function F94_DIST is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	integer	INT 📑	29456	
1	VAR 🛓	data_input	WORD 📑	0	
2	VAR 🛓	start	BOOL 📑	TRUE	
3	VAR 🛓	output_distrib	ARRAY [03] OF WORD 편	[4(0)]	
4	VAR 🛓	int_result_0	INT 📑	0	
5	VAR 🛓	int_result_1	INT 📑	0	
6	VAR 🛓	int_result_2	INT 📑	0	
7	VAR ±	int_result_3	INT 📑	0	

- Body When the variable *start* is set to TRUE, the function is carried out. The binary values in the illustration on the previous page serve as the values calculated. In this example, variables are declared in the POU header. Also, a constant value of 4 is assigned directly at the contact pin for **n**.
 - LD In this example, the view icon was activated so you can see the results immediately.

integer = 29456a_intdata_input = 16#7310
F94_DIST • • • • • start = 2#1 — EN EN EN EN edata_input = 16#7310 — s data_input = 16#7310 — s data_input = s data_input = s data_input = s data_input = s s s
output_distrib[0] = 16#0000
word_TO_INT output_distrib[1] = 16#0001 a_Word
wordint_result_2 = 3
wordint_result_3 = 7 ·

IL Activating the Monitor Header window (Monitor -> Monitor Header) while online also allows you to see results immediately.

1	LD INT_TO_WORD	, integer	
	ST -	data_input	
2	LD F94_DIST	, start , data_input, 4, ou	tput_distrib(0)
3	WORD_TO_INT	output_distrib[0]	Monitor Header F94awl [PRG]
	ST in	nt_result_0	F94awl Structure integer 29456 at %MW5.790
4	LD o WORD TO INT	output_distrib[1]	data_input 16#7310 at %MW5.791 start 2#1 at %MX0.20.0
	STi	nt_result_1	+ output_distrib Structure
5	WORD_TO_INT	utput_distrib[2] 	int_result_00 at %MW5.796 int_result_11 at %MW5.797 int_result_23 at %MW5.798 int_result_37 at %MW5.799
	•		
6	LD WORD_TO_INT	output_distrib[3]	
	ST	int_result_3	

F95_ASC

iq

d

WORD

Character → ASCII transfer

Steps |15

Description Converts the character constants specified by **s** to ASCII code. The converted ASCII code is stored in 6 words starting from the 16-bit area specified by **d**.

[s] Character constants ABC1230 DEF

														•											
	Data register		d[5]			d[4]			d[3]			d[2]			d[1]			d[0]	
[d]	ASCII HEX code	2	0	4	6	4	5	4	4	2	0	3	0	3	3	3	2	3	1	4	3	4	2	4	1
	ASCII character			I	=	E	Ξ	[D	ł			0		3	:	2		1		С	I	В		Ą
SPACE																									

If the number of character constants specified by s is less than 12, the ASCII code 16#20 (SPACE) is stored in the extra destination area, e.g. s = '12345', d[0] = 3231, d[1] = 3433, d[2] = 2034, d[3] - d[5] = 2020.

Starting 16-bit area for storing 6-word ASCII code (destination).

PLC types	Availability	FP0			FP1	F	P–M		
	Availability	2.7k, 5k, 10)k	0.9k	2.7k, 5k	0.9k	2.7k, 5k		
	F95	х		-	х	-	х	x: available –: not available	
Data types	Variable	Data type	Fur	nction					
	,	constant, no variable pos- sible	Character constants, max. 12 letters (source).						

Operands	perands For		Re	lay		Т/	C	R	egiste	Constant	
	101	WX	WY	WR	WL	SV	EV	DT	LD	FL	character
	s	-	_	-	-	-	-	-	-	-	х
	d	Ι	х	х	х	х	х	х	х	х	-

x: available

Error flags	No.	IEC address	Set	lf
R9007		%MX0.900.7	permanently	the last area for ASCII code exceeds the limit (6
	R9008	%MX0.900.8	for an instant	words: six 16-bit areas).

ASCII HEX code									b7	7								
								*	be	6	0	0	0	0	1	1	1	1
									b	5	0	0	1	1	0	0	1	1
								>	b4		0	1	0	1	0	1	0	1
									ASCII		Most significant digit							
	b ₇	b ₆	b ₅	b4	b ₃	b ₂	b ₁	b ₀	HEX	code	0	1	2	3	4	5	6	7
					0	0	0	0		0	NUL	DLE	SPACE	0	@	Ρ		р
					0	0	0	1		1	SOH	DC1	!	1	А	Q	а	q
					0	0	1	0		2	STX	DC2	"	2	В	R	b	r
					0	0	1	1		3	ΕТХ	DC3	#	3	С	S	с	s
					0	1	0	0		4	EOT	DC4	\$	4	D	Т	d	t
					0	1	0	1	t	5	ENQ	NAK	%	5	Е	U	е	u
					0	1	1	0	t digi	6	ACK	SYN	&	6	F	V	f	v
					0	1	1	1	ifican	7	BEL	ΕТВ	,	7	G	W	g	w
					1	0	0	0	Least significant digit	8	BS	CAN	(8	Н	х	h	x
					1	0	0	1	Leas	9	ΗT	EM)	9	Ι	Y	i	у
					1	0	1	0		А	LF	SUB	*	:	J	Z	j	z
					1	0	1	1		В	VT	ESC	+	;	к	[k	{
					1	1	0	0		С	FF	FS	,	<	L	١	Ι	
					1	1	0	1		D	CR	GS	-	=	М]	m	}
					1	1	1	0		Е	SO	RS		>	Ν	^	n	~
					1	1	1	1		F	SI	US	/	?	0	-	0	DEL

LD

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	Enable	BOOL 🗗	FALSE	
			ARRAY (05) OF WORD 🝸	[6(0)]	

Body When the variable *Enable* is enabled, the character constants entered at the input s are converted to ASCII code and stored in the variable *ASCII_Output*.

Enable 1 ħ F95_ASC 1 . 1 EN END 1.0 . . ABC1230 DEF d ASCII_Output[0] \$ Monitor Header F95 [PRG] Body F95 Structure 2#1 at %MX0.20.12 Enable - ASCIL Output Structure [0] A at %MW5.502 BC at %MW5.503 [1] 12 at %MW5.504 [2] Set to display [3] 30 at %MW5.505 **ASCII characters** [4] D at %MW5.506 EF at %MW5.507 [5]

ST IF Enable THEN

F95_ASC(s:= 'ABC1230 DEF' ,

d_Start=> ASCII_Output[0]);

F96_SRC Table data search (16–bit search)

Steps

7

Description Searches for the value that is the same as **s1** in the block of 16–bit areas specified by **s2** (starting area) through **s3** (ending area) if the trigger **EN** is in the ON–state.

When the search operation is performed, the searching results are stored as follows: the number of data that is the same as **s1** is transferred to special data register DT9037/DT90037. The position the data is first found in, counting from the starting 16-bit area, is transferred to special data register DT9038/DT90038. Be sure that **s2** \leq **s3**.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F96	x	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	16-bit area or equivalent constant to store the value searched for
s2	INT, WORD	starting 16-bit area of the block
s3	INT, WORD	ending 16-bit area of the block

The variables **s1**, **s2** and **s3** have to be of the same data type.

Operands

For		Re	lay		Т/	Ċ	R	egiste	Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1	х	х	х	х	х	х	х	х	х	x
s2, s3	-	х	х	х	х	х	х	х	х	_
							•			

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 📑	FALSE	activates the fuction
1	VAR ±	search_value	WORD Ŧ	16#20	specifies the value to search for
2	VAR ±	data_array	ARRAY [03] OF WORD ₹	· · · · · · · · · · · · · · · · · · ·	2 matches for 16#20 data_array[2] = 1st match
з	VAR 🛓	number_matches	INT 📑	0	
4	VAR 🛓	position1_match	INT 📑	0	

Body When the variable *start* is set to TRUE, the function is executed.

LD

	EN ENO ENO
2	start. E_MOVE EN ENO DT90037 a_Num
3	····start···· E_MOVE ······ ······ EN ENO ······ ····· ······ ···· DT90038 a_Num position1_match·

```
ST IF start THEN
```

HMSS 38

Var

h:min:s \rightarrow s conversion

Steps

7

Description Converts the hours, minutes, and seconds data stored in the 32-bit area specified by s to seconds data if the trigger EN is in the ON-state. The converted seconds data is stored in the 32-bit area specified by d. All hours, minutes, and seconds data to convert and the converted seconds data is BCD. The max. data input value is 9,999 hours, 59 minutes and 59 seconds, which will be converted to 35,999,999 seconds in BCD format.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F138		х	-	х	-	х	x: available –: not available

Data types

riable	Data type	Function
S	DWORD	source area for storing hours, minutes and seconds data
d	DWORD	destination area for storing converted seconds data

Operands

For	Relay				Т/	Ċ	er	Constant		
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
S	х	х	х	х	х	х	х	х	х	_
d	_	х	х	х	х	х	х	х	х	_
										v: ovoilok

x: available -: not available

- Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	time_value	DWORD 편	16#00010101	the time in hhhh-mm-ss
2		seconds_value	DWORD Ŧ	o	result after a 0->1 leading edge: 16#3661 (BCD)

Body

When the variable start is set to TRUE, the function is executed.

LD start · · · F138 HMSS ENO -1 |-EN `time_value s d -seconds_value ST IF start THEN F138_HMSS(time_value, seconds_value); END_IF;

Description Converts the second data stored in the 32–bit area specified by **s** to hours, minutes, and seconds data if the trigger **EN** is in the ON–state. The converted hours, minutes, and seconds data is stored in the 32–bit area specified by **d**. The seconds prior to conversion and the hours, minutes, and seconds after conversion are all BCD data. The maximum data input value is 35,999,999 seconds, which is converted to 9,999 hours, 59 minutes and 59 seconds.

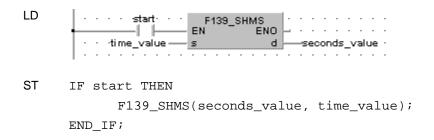
PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F139		Х	-	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s	DWORD	source area for storing seconds data
d	DWORD	destination area for storing converted hours, minutes and sec- onds data

Operands

For		Re	lay		Т/	Ċ	Register			Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	_
d	-	x	х	х	x	х	x	x	х	_
										x: availa


-: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	seconds_value	DWORD 편	16#3661	the seconds
2	VAR ±	time_value	DWORD Ŧ	0	the time in hhhh-mm-ss; result after a 0->1 leading edge from start: 16#00010101

Body

When the variable *start* is set to TRUE, the function is executed.

Floating point data → 16–bit integer data (the largest integer not exceeding the floating point data)

Steps 8

Description The function converts a floating point data at input **s** in the range –32767.99 to 32767.99 into integer data (including +/– sign). The result of the function is returned at output **d**.

The converted integer value at output **d** is always less than or equal to the floating point value at input **s**:

When there is a positive floating point value at the input, a positive pre-decimal value is returned at the output.

When there is a negative floating point value at the input, the next smallest pre-decimal value is returned at the output.

If the floating point value has only zeros after the decimal point, its pre-decimal point value is returned.

PLC types	Availabili	4.7	FP0	1	FP1			FP-M			
	Availabili	2	2.7k, 5k, 10		0.9k	2.7k ,	5k ().9k	2.7k, 5	k	
	F327		х		_	_		-	_		available not available
Data types	Variable	Data	a type	Fι	Inction	1					
	s	REAL			source REAL number data (2 words)						
	d	INT	INT		destination for storing converted data						
Operands											
oporando	For		Re	lay		T/	T/C Register			er	Constant
	FOI	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.
S		x	х	х	х	х	х	х	х	х	х
		WX	WY	WR	WL	sv	EV	DT	LD	FL	floating pt.
	d	_	х	х	х	х	х	х	x	х	_

x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number, or the converted result exceeds the range of output d
	R9008	%MX0.900.8	for an instant	
	R900B	%MX0.900.11	to TRUE	- the result is 0

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR <u>±</u>	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	REAL 🛨	-1.234	
2	VAR 🛓	output_value	INT 于	0	result: here -2

362 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

Body When the variable *start* is set to TRUE, the function is carried out. It converts the floating point value –1.234 into the whole number value –2, which is transferred to the variable *output_value* at the output. Since the whole number may not exceed the floating point value, the function rounds down here.

LD		
20		
	· · · start — EN ENO - · · · ·	
	input_value — s d —output_va	alue
		• •

ST IF start THEN

F327_INT(input_value, output_value);

Fiction Floating point data → 32–bit integer data (the largest integer not exceeding the floating point data)

Description The function converts a floating point data at input **s** in the range –2147483000 to 214783000 into integer data (including +/– sign). The result of the function is returned at output **d**.

The converted integer value at output **d** is always less than or equal to the floating point value at input **s**:

When there is a positive floating point value at the input, a positive pre-decimal value is returned at the output.

When there is a negative floating point value at the input, the next smallest pre-decimal value is returned at the output.

If the floating point value has only zeros after the decimal point, its pre-decimal point value is returned.

PLC types	Availabili	4 .7	FP0)		FP1		FF	P–M			
	Availabili	2	2.7k, 5k, 10		0.9k	2.7k, 5k	5k (0.9k	2.7k, 5	k		
	F328		х		_	_		-	_		available not available	
Data taman		_										
Data types	Variable	Data	a type									
	s	REA	REAL		source REAL number data (2 words)							
	d	DINT	-	de	destination for storing converted data							
Operands												
Operands	For		Relay			T/C		Register			Constant	
	For	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.	
		DUIN	Ditt	Diik	DIL	501					nouting pt.	
	S	x	x	x	x	×	x	x	x	x	x	
	s d											

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number, or the converted result exceeds the range of output d
	R9008	%MX0.900.8	for an instant	
	R900B	%MX0.900.11	to TRUE	- the result is 0

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	-1234567.89	
2	VAR 🛓	output_value	DINT 📑	0	result: here -1234568

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

- Body When the variable *start* is set to TRUE, the function is carried out. It converts the floating point value –1234567.89 into the whole number value –1234568, which is transferred to the variable *output_value* at the output. Since the whole number may not exceed the floating point value, the function rounds down here.

 - ST IF start THEN
 - F328_DINT(input_value, output_value);

5

d

х

х

FINT Rounding the first decimal point down

Steps 8

The function rounds down the decimal part of the real number data and returns it Description at output d.

> The converted whole-number value at output **d** is always less than or equal to the floating-point value at input s:

> If a positive floating-point value is at the input, a positive pre-decimal point value is returned at the output.

> If a negative floating-point value is at the input, the next smallest pre-decimal point value is returned at the output.

> If the negative floating-point value has only zeros after the decimal point, its predecimal point position is returned.

PLC types	Availabili	h.	FP0		FP1			FP–M				
	Availabili	2	2.7k, 5k, 10		0.9k	2.7k,	5k (0.9k 2.7k, 5k		k		
	F333		х		-	-					x: available	
Data types	types Variable		Data type Function									
	s	REA	REAL source									
	d	REA	REAL destinatio			n						
Operands												
Operatios	For		Re	lay	r T/C			Register			Constant	
	FOI		DWY	DWF	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.	
	s	х	х	х	х	х	х	х	х	х	x	

х

х

х

х

х

х

x: available

-: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number
	R9008	%MX0.900.8 for an instant		
	R900B	%MX0.900.11	to TRUE	– the result is 0
	R9009	%MX0.900.9	for an instant	-the result causes an overflow

- In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	0.0	
2	VAR 🛓	output_value	REAL 편	0.0	result: here 1234.000

LD

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

- Body The value 1234.888 is assigned to the variable *input_value*. When the variable *start* is set to TRUE, the function is carried out. It rounds down the *input_value* after the decimal point and returns the result (here: 1234.000) at the variable *output_value*.

 - ST input_value:=1234.888;
 - IF start THEN

F333_FINT(input_value, output_value); END_IF;

Steps

8

FRINT Rounding the first decimal point off

The function rounds off the decimal part of the real number data and returns it at Description output d.

If the first post-decimal digit is between 0..4, the pre-decimal value is rounded down. If the first post-decimal digit is between 5..9, the pre-decimal value is rounded up.

PLC types

6	Availability	FP0		FP1	F	P–M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F334	Х	-	-	-	-	x: available –: not available

Data types

Variable	Data type	Function
s REAL		source
d	REAL	destination

Operands

For		Re	lay		T/C		Register			Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.
S	х	х	х	х	х	х	х	х	х	x
d	_	х	х	х	х	х	x	х	х	_

x: available

-: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number
	R9008	%MX0.900.8	for an instant	
	R900B	%MX0.900.11	to TRUE	– the result is 0
	R9009	%MX0.900.9	for an instant	-the result causes an overflow

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	1234.567	
2	VAR 🛓	output_value	REAL 편	0.0	result: here 1235.000

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

- Body When the variable *start* is set to TRUE, the function is carried out. It rounds off the *input_value* = 1234.567 after the decimal point and returns the result (here: 1235.000) at the variable *output_value*.

F335_FSIGN Floating point data sign changes (negative/positive conversion)

Steps 8

Description The function changes the sign of the floating point value at input **s** and returns the result at output **d**.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F335	Х	I	-	-	-	x: available –: not available

Data types

 Variable
 Data type
 Function

 s
 REAL
 source

 d
 REAL
 destination

Operands

For	Relay			T/C		Register			Constant	
FUI	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.
S	х	х	х	х	х	х	х	х	х	х
d	_	х	x	х	х	x	х	х	х	_

x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number
	R9008	%MX0.900.8	for an instant	
	R9009	%MX0.900.9	for an instant	-the result causes an overflow

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	0.0	
2	VAR 🛓	output_value	REAL 편	0.0	result: here -333.444

LD

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

Body The value 333.4 is assigned to the variable *input_value*. When the variable *start* is set to TRUE, the function is carried out. The *output_value* is then –333.4.

1	
2	F335_FSIGN start EN input_value s d output_value

ST input_value:=333.444;

IF start THEN

```
F335_FSIGN(input_value, output_value);
```

F337_RAD Conversion of angle units (Degrees \rightarrow Radians)

Description The function converts the value of an angle entered at input **s** from degrees to radians and returns the result at output **d**.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F337	х	-	-	-	-	x: available –: not available

Data types

Variable	Data type	Function
s	REAL	source angle data (degrees), 2 words
d	REAL	destination for storing converted data

Operands

For	Relay			T/C		Register			Constant	
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.
s	х	х	х	х	х	х	х	х	х	х
d	-	х	х	х	х	х	х	х	х	_

x: available --: not available

Error flags

No.	IEC address	Set	lf
R9007 %MX0.900.7		permanently	-the value at input s is not a REAL number
R9008	%MX0.900.8	for an instant	
R900B	%MX0.900.11	to TRUE	- the result is 0
R9009	%MX0.900.9	for an instant	-the result causes an overflow

Steps 8

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	180.0	angle in °
2	VAR ±	output_value	REAL Ŧ	0.0	angle in radians result: here 3.14159

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

Body When the variable *start* is set to TRUE, the function is carried out.

LD

	FOOT_RAD	
· · · start — input_value —		output_value

ST IF start THEN

F337_RAD(input_value, output_value);

Steps

8

F338 DEG Conversion of angle units (Radians → Degrees)

Description The function converts the value of an angle entered at input **s** from radians to degrees and returns the result at output **d**.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F338	Х	-	-	-	-	x: available –: not available

Data types

Variable	Data type	Function
S	REAL	source angle data (radians), 2 words
d	REAL	destination for storing converted data

Operands

For	Relay			T/C		Register			Constant	
	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	floating pt.
s	х	х	х	х	х	х	х	х	x	х
d	_	х	х	х	х	х	х	х	x	_

x: available --: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	-the value at input s is not a REAL number
R9008	%MX0.900.8	for an instant	
R900B	%MX0.900.11	to TRUE	- the result is 0
R9009	%MX0.900.9	for an instant	-the result causes an overflow

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function
1	VAR 🛓	input_value	REAL 편	3.14159	angle in radians
2	VAR ±	output_value	REAL Ŧ		angle in ° result: here 180.0

In this example, the input variable *input_value* is declared. However, you can write a constant directly at the input contact of the function instead.

Body When the variable *start* is set to TRUE, the function is carried out.

LD

	F338 DEG	
· · · start —	EN ENO	
input_value —	s d	

ST IF start THEN F338_DEG(input_value, output_value); END_IF; Chapter 21

Bit Manipulation Instructions

F13	0	BTS	16

6-bit data bit set

Steps

5

Turns ON the bit specified by the bit position at **n** of the 16-bit data specified by Description d if the trigger EN is in the ON-state. Bits other than the bit specified do not change. The range of **n** is 0 to 15.

/pes	Availability	Availability FP0			F	P–M	
· · · · · · · · · · · · · · · · · · ·		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F130	х	х	х	х	х	x: available –: not available

Data types

PLC ty

Variable	Data type	Function
d	INT, WORD	16-bit area
n	INT	specifies bit position to be set

Operands

For	Relay				T/C		Register			Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	-
n	x	x	х	х	х	х	х	x	х	x

x: available -: not available

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var ±	start	BOOL 편	FALSE	activates the function
1		output_value	WORD Ŧ	2#101010	result after a 0->1 leading edge from start: 2#101011

Body When the variable start is set to TRUE, the function is executed.

LD start F130_BTS ENO ŀ - EN . . . d ¦ · O n -output_value ST IF start THEN F130 BTS(n := 0,

d=> output_value);

END_IF;

378 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

5

Steps

BTR 3

d

n

16-bit data bit reset

Turns OFF the bit specified by the bit position at **n** of the 16-bit data specified by Description d if the trigger EN is in the ON-state. Bits other than the bit specified do not change. The range of **n** is 0 to 15.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F131	x	х	х	х	х	x: available -: not available

Data types

Variable Data type Function INT, WORD 16-bit area INT specifies bit position to be reset

Operands

	For		Re	lay		T/C		Register			Constant	
	101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
n x x x x x x x x x x x	d	-	х	х	х	х	х	х	х	х	-	
	n	х	х	x	х	х	х	х	х	х	x	

x: available -: not available

In this example the function is programmed in ladder diagram (LD) and structured Example text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for header programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR 🛓	output_value	WORD Ŧ		result after a 0->1 leading edge from start: 2#10001

Body When the variable start is set to TRUE, the function is executed.

LD	· · · · start· F131_BTR EN ENO · · · · 2 n d output_value
ST	IF start THEN
	$F131_BTR(n:=2,$
	<pre>d=> output_value);</pre>
	END_IF;

Steps

5

F132_BTI

16-bit data bit invert

Description Inverts [1 (ON) \rightarrow 0 (OFF) or 0 (OFF) \rightarrow 1 (ON)] the bit at bit position **n** in the 16–bit data area specified by **d** if the trigger **EN** is in the ON–state. Bits other than the bit specified do not change. The range of **n** is 0 to 15.

PLC types	Availability	FP0		FP1	F	P–M	1
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	Ţ
	F132	x	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
d	INT, WORD	16-bit area
n	INT	specify bit position to be inverted

Operands

For		Re	lay		T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
d	-	х	х	х	х	х	х	х	х	-	
n	x	х	х	х	х	х	х	х	х	x	

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 편	FALSE	activates the function
1	VAR ±	output_value	WORD Ŧ	2#111	result after a 0->1 leading edge from start: 2#101

Body When the variable *start* changes from FALSE to TRUE, the function is executed.

ST IF DF(start) THEN

 $F132_BTI(n:=1,$

d=> output_value);

			_										
F133_	BTT		16	6–bit	data	test					[Steps	5
Description	Checks the by d if the internal rel	trigg	er EN		•	, -						•	
	 When s ON. 	 When specified bit is 0 (OFF), special internal relay R900B (=flag) turns ON. 											
	 When specified bit is 1 (ON), special internal relay R900B (=flag) turns OFF. 												
	n specifies	s the l	oit pos	ition	to be	check	ed ir	n decir	nal data	a. Ra	nge o	of n : 0 to	15
PLC types	Availabilit	t v	FP0			FP1		F	P–M				
		2	.7k, 5k,	10k	0.9k	2.7k,		0.9k	2.7k, 5		x: available		
	F133		Х		х	X		x	х			available	
Data types	Variable	Data	a type	Fu	nctio	n							
	d	INT,	WORD	16	-bit are	a							
	n	INT		spe	ecifies I	oit positi	on to	be teste	ed				
Operands			Re	lav		т	/C		Registe	r.	6	onstant	
	For	WX	WY	WR	WL	SV	EV		LD	FL	-	. or hex.	
	d	-	x	x	x	x	×	x	x	×		-	
	n	х	x	х	x	x	x	x	x	x		x	
Example	x: available ∴ not available In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.												
POU header	In the POU programm				ut and	l outpu	ut va	riables	s are de	eclare	ed tha	at are us	ed for
	Class	Identi	fier	Туре	1	nitial	С	omment					
	0 VAR 1 start BOOL 7 FALSE activates the function												
	1 VAR 当 bit0_is_TRUE BOOL _ FALSE TRUE if bit LSB of value is TRUE else FALSE												
	VAR * WoRD 2 2*101 result after a 0->1 leading edge: 2#101 2												
Body	When the	varial	ole sta	nrt is s	set to	TRUE	, the	e functi	ion is e	xecu	ted.		
LD	· · · · · · · · · · · · · · · · · · ·	-start· - - ·0 ue · · · ·	F13 EN d	3_ВТТ Е	NO								

ST IF start THEN
 F133_BTT(n:= 0,
 d:= value);
 IF R900B THEN
 bit0_is_TRUE := FALSE;
 ELSE
 bit0_is_TRUE := TRUE;
 END_IF;
 END_IF;

5

F135_BCU

٧

Number of ON bits in 16-bit data

Steps |

Description Counts the number of bits in the ON state (1) in the 16–bit data specified by **s** if the trigger **EN** is in the ON–state. The number of 1 (ON) bits is stored in the 16–bit area specified by **d**.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F135	Х	х	х	х	х	x: available –: not available

Data types

Ρ

ariable	Data type	Function
S	INT, WORD	source
d	INT	destination area for storing the number of bits in the ON (1) state

Operands

For	Relay			Т/	С	Register			Constant	
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
S	х	х	х	х	х	х	х	х	x	х
d	I	х	x	х	х	х	х	х	x	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL 편	FALSE	activates the function
1	VAR ±	checked_value1	WORD Ŧ	2#11011	this value will be checked for ON-bits
2	VAR ±	output_value		0	result after a 0->1 leading edge from start: 4

Body When the variable *start* is set to TRUE, the function is executed.

LD

C	· · · · start· · ·	E425 DCU
	checked_value1	s d output_value

ST IF start THEN

```
F135_BCU(checked_value1, output_value);
END IF;
```

F136_DBCU

Number of ON bits in 32-bit data

Steps 7

Description Counts the number of bits in the ON state (1) in the 32–bit data specified by **s** if the trigger **EN** is in the ON–state. The number of 1 (ON) bits is stored in the 16–bit area specified by **d**.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F136	х	х	х	х	х	x: available –: not available

Data types

S	Variable	Data type	Function
	s	DINT, DWORD	source
	d	INT	destination area for storing the number of bits in the ON (1) state

Operands

For	Relay				Т/	C	Register			Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
S	х	х	х	х	х	х	х	х	х	х
_	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
d	-	х	х	х	х	х	х	х	х	-

x: available -: not available

- **Example** In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	var <u>t</u>	start	BOOL 🗗	FALSE	activates the function
1	VAR ±	checked_value	DWORD Ŧ		this value will be checked for ON-bits
2	VAR ±	output_value	INT Ŧ	0	result after a 0->1 leading edge from start: 20

Body When the variable *start* is set to TRUE, the function is executed.

LD

 •
 •
 F136_DBCU
 •
 •

 •
 EN
 ENO
 •
 •

 •
 checked_value
 s
 d
 •

ST IF start THEN

```
F136_DBCU(checked_value, output_value);
END IF;
```

Chapter 22

Process Control Instructions

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

F355_PID PID processing instruction

Steps

4

- We recommend using the Matsushita standard function blocks PID_FB or PID_FB_DUT. They are available for the FP–Sigma, FP0, FP2, FP2SH or FP10SH. They allow you to easily set parameters and correctly switch from manual to automatic operation. For details, see Online Help.
- **Description** The PID processing instruction is used to regulate a process (e.g. a heater) given a measured value (e.g. temperature) and a predetermined output value (e.g. 20°C).

The function calculates a PID algorithm whose parameters are determined in a data table in the form of an ARRAY with 31 elements that is entered at input **s**. The data table contains the following parameters:

Control:]Control mode SP:Set point value PV:Process value MV:Manipulated value LowerLimit]:Output lower limit UpperLimit]:Output upper limit Kp:Proportional gain Ti:Integral time Td:Derivative time Ts:Control cycle AT_Progress]:Auto-tuning progress ARRAY[11] through ARRAY[30]: are utilized internally by the PID controller.

PLC types	Availability		, FP0		FP1			FP-M				
			2.7k, 5k, 10k		0.9k	2.7k,	5k (0.9k 2.7k, 5k		k		
	F355		x								x: available –: not available	
Data types	Variable	ble Data type		F	Function							
	S	ARR [030 or W)] of INT		ease see	descri	ption se	ection				
												T
Operands	s Relay		lay	ay T/C		C	Register		er	Constant		
	101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	

х

х

x: available -: not available

Error flags

s

lags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	- the parameter settings are outside the allowed range
	R9008	%MX0.900.8	for an instant	

х

х

х

х

х

Detailed description of the data table for F355_PID

ARRAY[0]: Control mode With this you select the type of PID processing and the activation (X = 8) of the auto-tuning.

16#X000:	Reverse operation PI–D
16#X001:	Forward operation PI–D
16#X002:	Reverse operation I–PD
16#X003:	Forward operation I–PD

r

The I–PD processing is somewhat more flexible than the PI–D processing and therefore needs more time to adjust.

Forward and Reverse operation:

Reverse operation: The output value (MV) rises when the measured value (PV) sinks (e.g. heating).

Forward operation: The output value (MV) rises when the measured value (PV) rises (e.g. cooling).

- Control: Auto-tuning

When the most significant bit (MSB) in Control is set to 1, the auto tuning is activated. The optimum values for the PID parameters Kp, Ti, and Td are determined by measuring the responses of the process and are stored in Kp, Ti, and Td. Thereafter the auto tuning is deactivated (MSB in Control is set to 0). Since some operations do not permit auto tuning, the MSB in Control can be reset to 0 during the auto tuning process, thereby stopping the auto tuning. In this case the processing is carried out based on the original parameters. During auto-tuning is activ the output value MV is switched from upper limit to lower limit to avoid any damage of systems that have to use different limits or a reduced output span.

- SP: Set value

Here you set the target value that should be reached through the control process. It should fall within the range of the measured value. When using an analogue input, you can use a range between 0 and 10000.

PV: Measured value (PV)

Here you enter the measured value that you want to be corrected via the operation. An analogue–digital converter is necessary for this. Adjust it so that the range of the measured value corresponds to that of the set value.

– MV: Output value

The output value (the result of the PID operation) is stored in this data word. When using an analogue output, the range lies between 0 and 4000 or between -2000 and +2000.

- LowerLimit: Output lower limit

Here you enter a lower limit of the output value between 0 and 10000. The value must be smaller than the output value's upper limit.

- UpperLimit: Output upper limit

Here you enter an upper limit of the output value between 1 and 10000. The value must be larger than the output value's lower limit.

– Kp: Proportional gain

In this data word, you write the parameter Kp. The stored value multiplied by 0.1 corresponds to the actual value of Kp. Values in the range of 1 to 9999 (0.1 to 999.9 in 0.1 steps) can be entered. If the auto tuning control is activated, this value is automatically adjusted and rewritten.

- Ti: Integral time

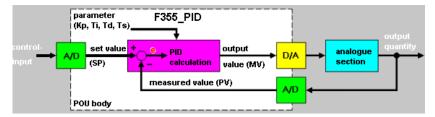
In this data word, you write the parameter Ti. The stored value multiplied by 0.1 corresponds to the actual value of Ti. Values in the range of 1 to 30000 (0.1 to 3000s in 0.1s steps) can be entered. If the auto tuning control is activated, this value is automatically adjusted and rewritten.

- Td: Derivative time

In this data word, you write the parameter Td. The stored value multiplied by 0.1 corresponds to the actual value of Td. Values in the range of 1 to 10000 (0.1 to 1000s in 0.1s steps) can be entered. If the auto tuning control is activated, this value is automatically adjusted and rewritten.

- Ts: Control cycle

Here you set the cycle for executing PID processing. The value of the data word multiplied by 0.01 corresponds to the actual value of Ts. Values in the range of 1 to 6000 (0.01s to 60.0s in 0.01s steps) can be entered.


AT_Progress:Auto-tuning progress

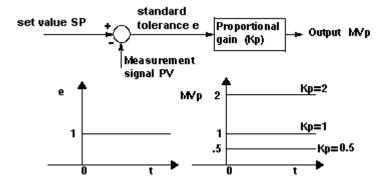
When auto tuning is selected for the specified control mode (Control), a value from 1 to 5 will be stored indicating the progress of auto tuning.

- ARRAY[11..30]: PID work area

The function F355_PID uses this work area internally to calculate the PID operation.

Explanation of the operation of F355_PID

Standard structure of the controller loop with PID processing instruction.

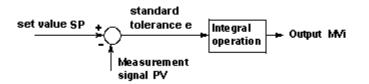

The above POU body represents the standard control loop. The control input is determined by the user (e.g. desired room temperature of 22° C). After the A/D conversion the set value (SP) is entered as the input value for the PID processing instruction. The measured value (PV) (e.g. current room temperature) is normally transmitted via a sensor and entered as the input value for the PID processor. F355_PID calculates the standard tolerance e from the set value and the measured value (e = set value – measured value). With the parameters given (proportional gain Kp, integral time Ti, ...) a new output value (MV) is calculated in increments set by the control cycle Ts. This result is then applied to the actuator (e.g. a fan that regulates room temperature) after the D/A conversion. The

analogue section represents the system's actuator, e.g. heater and temperature regulation of a room.

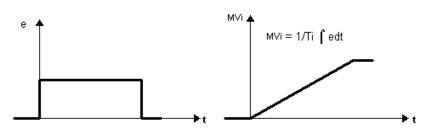
A PID operation consists of three components:

1. Proportional part (P part)

A proportional part generates an output that is proportional to the input. The proportional gain Kp determines by how much the input value is increased or decreased. A proportional part can be a simple electric resistor or a linear amplifier, for example.

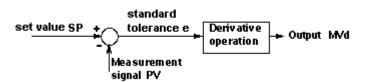


The P part displays a relatively large maximum overshot, a long settling time and a constant standard tolerance.

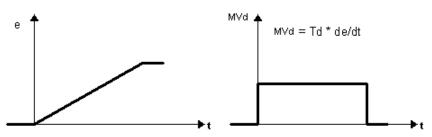

2. Integral part (I part)

An integral part produces an output quantity that corresponds to the time integral and input quantity (area of the input quantity). The integral time thus evaluates the output quantity **MVi**.

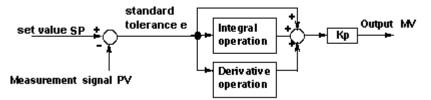
The integral part can be a quantity scale of a tank that is filled by a volume flow, for example. Because of the slow reaction time of the integral part, it has a larger maximum overshot than the P component, but no constant standard tolerance.


Example Input quantity e and the output quantity MVi produced

3. Derivative part (D part)


The derivative part produces an output quantity that corresponds to the time derivation of the input quantity. The derivative time corresponds to the weighting of the derived input quantity.

A derivative component can be an RC–bleeder (capacitor hooked up in series and resistance in parallel), for example.


Example

ble Input quantity e and the output quantity MVd produced

4. PID controller

A PID controller is a combination of a P component, an I component and a D component. When the parameters Kp, Ti and Td are optimally adjusted, a PID controller can quickly control and maintain a quantity at a predetermined set value.

Reference equations for calculating the controller output MV

The following equations are used to calculate the controller output MV under the following conditions:

In general:

The output value at time period **n** is calculated from the previous output value (n-1) and the change in the output value in this time interval.

 $MV_n = MV_{n-1} + \Delta MV$

Reverse operation PI–D ARRAY[0] = 16#X000

$$\Delta MV = Kp \cdot [(e_n - e_{n-1}) + e_n \cdot Ts/Ti + \Delta D_n]$$

$$e_n = SP_n - PV_n$$

$$\Delta D_n = (\eta\beta - 1)D_{n-1} + \beta(PV_{n-1} - PV_n)$$

$$\eta = 1/8 \text{ (constant)}$$

$$\beta = Td/(Ts + \eta Td)$$

Forward operation PI–D ARRAY[0] = 16#X001

$$\begin{split} \Delta \mathsf{MV} &= \mathsf{Kp} \cdot \left[(\mathsf{e}_{\mathsf{n}} - \mathsf{e}_{\mathsf{n}-1}) + \mathsf{e}_{\mathsf{n}} \cdot \mathsf{Ts}/\mathsf{Ti} + \Delta \mathsf{D}_{\mathsf{n}} \right] \\ & \mathsf{e}_{\mathsf{n}} = \mathsf{PV}_{\mathsf{n}} - \mathsf{SP}_{\mathsf{n}} \\ & \Delta \mathsf{D}_{\mathsf{n}} = (\eta\beta - 1)\mathsf{D}_{\mathsf{n}-1} + \beta(\mathsf{PV}_{\mathsf{n}} - \mathsf{PV}_{\mathsf{n}-1}) \\ & \eta = 1/8 \ (\mathsf{constant}) \\ & \beta = \mathsf{Td}/(\mathsf{Ts} + \eta\mathsf{Td}) \end{split}$$

Reverse operation I–PD ARRAY[0] = 16#X002

$$\begin{split} \Delta M V &= Kp \cdot \left[(PV_{n-1} - PV_n) + e_n \cdot Ts/Ti + \Delta D_n \right] \\ e_n &= SP_n - PV_n \\ \Delta D_n &= (\eta\beta - 1)D_{n-1} + \beta(PV_{n-1} - PV_n) \\ \eta &= 1/8 \ (constant) \\ \beta &= Td/(Ts + \eta Td) \end{split}$$

Forward operation I–PD ARRAY[0] = 16#X003

$$\begin{split} \Delta M V &= K p \cdot [(PV_n - PV_{n-1}) + e_n \cdot Ts/Ti + \Delta D_n] \\ e_n &= PV_n - SP_n \\ \Delta D_n &= (\eta\beta - 1)D_{n-1} + \beta(PV_n - PV_{n-1}) \\ \eta &= 1/8 \ (constant) \\ \beta &= Td/(Ts + \eta Td) \end{split}$$

- **Example** In this example the function F355_PID is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - GVL In the Global Variable List, you define variables that can be accessed by all POUs in the project.

	Class	Identifier	Matsu	IEC_Add	Туре	Initial	Aut	Comment
D	VAR_GLOBAL	EnableAutoTuning	хо	%.IXO.0	BOOL Ŧ	FALSE		Switch Auto Tuning On
1	VAR_GLOBAL 🛓	Set_Value_SV	W0X4	%1004	WORD 편	D		A/D CH1
2	VAR_GLOBAL 🛓	Process_Value_PV	W035	%1005	WORD 편	D		A/D CH2
3	VAR_GLOBAL 🛓	Output_Value_MV	WY4	%.QW/4	WORD 편	D		D/A

POU In the POU header, all input and output variables are declared that are used for programming this function.

Class	Identifier	Туре	Initial	Comment
0 VAR_EXTERNAL ±	EnableAutoTuning 📑	BOOL 📑	FALSE	Switch Auto Tuning On
1 VAR_EXTERNAL 🛓	Set_Value_SV 📑	WORD 📑	0	A/D CHO
2 VAR_EXTERNAL 🛓	Process_Value_PV 📑	WORD 📑	0	A/D CH1
3 VAR_EXTERNAL 🛓	Output_Value_MV 📑	WORD 📑	0	D/A
4 VAR 🛓	Lookup_Table	ARRAY (030) () 🗗	[16#000 ▷ 🕇	PID Lookup Table

IL

In the initialization of the ARRAY *Lookup_Table*, the upper limit of the controller output is set to 4000. The proportional gain Kp is initially set at 80 (8), Ti and Td at 200 (20s) and the control cycle Ts at 100 (1s).

Body The standard function E_MOVE copies the value 16#8000 to the first element of the *Lookup_Table* when the variable activeautotuning is set from FALSE to TRUE (i.e. activates the control mode auto tuning in the function F355_PID). The variables *Set_Value_SP* and *Process_Value_PV* are assigned to the second and third elements of data table. They receive their values from the A/D converter CH0 and CH1. Because of EN input of F355_PID is connected to the power rail, the function is carried out, when the PLC is in RUN mode. The calculated controller output is stored in the fourth element of data table and assigned to the variable *Output_Value_MV*. Its value is returned via a D/A converter from the PLC to the output of the system.

LD	1	Enable AutoTuning · E_MOVE EN EN EN EN EN Lookup_Table[0] · · · · · · · · · · · · · · · · · · ·
	2	Set_Value_SP ——Lookup_Table[1] Copy Set Value into the Lookup Table
	3	Process_Value_PV —— Lookup_Table[2]: Copy Process Value into the Lookup Table
	4	F355_PID EN ENC Calculate PID arithmetic
		· · Lookup_Table — s
	5	Lookup_Table[3]Output_Value_MV Copy PID result to the Output Value MV

1	LD DF E_MOVE	EnableAutoTuning 16#8000, Lookup_Table[0]	(* Enable Auto Tuning Process *)
2	LD ST	Set_Value_SP Lookup_Table[1]	(* Copy Set Value into the Lookup Table *)
3	LD ST	Process_Value_PV Lookup_Table[2]	(*Copy Process Value into the Lookup Table*)
4	LD F355_PID	TRUE Lookup_Table	(*Calculate PID arithmetic*)
5	LD ST	Lookup_Table[3] Output_Value_MV	(*Copy PID result to the Output Value MV*)

Chapter 23

Timer Instructions

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

TM_1s

Timer for 1s intervals

Steps 4-5

Description The **TM_1s** instruction sets the ON–delay timer for 1s units (0 to 32767s).

The areas used for the instruction are:

- Preset (Set) value area: SV
- Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the **SV**. If the trigger of the timer instruction **start** is in the ON–state, the Preset (Set) value is transferred to the **EV** from the **SV**. During the timing operation, the time is subtracted from the **EV**. The scan time is also subtracted from the **EV** in the next scan. The timer contact **T** turns ON, when the **EV** becomes 0.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	†
TM_1s	x	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
start	BOOL	starts timer
Num*	INT, WORD	timer address in system registers 5 and 6
SV	INT, WORD	set value
Т	BOOL	timer contact

Operands

For	Relay			T/C		Register			Constant	
101	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
start	х	х	х	х	х	х	-	-	-	_
т	-	х	х	х	-	-	-	-	-	-
Num*	-	-	-	-	-	-	-	-	-	х
sv	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
57	-	-		-	х	-	-	-	-	х

x: available -: not available

r

It is not possible to use this function in a function block POU.

- Every used timer must have a separate constant Num*. Available Num* addresses depend on system registers 5 and 6. Timers of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the same Num* address range.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

nple	Below is a	n example o	of an instruction list (IL) body for the instruction.	
	LD	start	(* EN = start; Starting signal for the TM_1s function. *)	•
	TM_1s	13,SV1 3	(* Num* = 13 (Address of the timer *)	:)
			(* SV = SV13 (containing the time for the timer) *)	
	ST	Var_O	(* T = Var_0; The variable Var_0 turns ON, *)	
			(* when the EV	

becomes 0. *)

of an instruction list (II) body for the instruction Example

available

TM_100ms

Timer for 100ms intervals

Steps 3-4

Description The **TM_100ms** instruction sets the ON–delay timer for 0.1s units (0 to 3276.7s). The **TM** instruction is a down type preset timer.

The areas used for the instruction are:

- Preset (Set) value area:
 SV
- Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the **SV**. If the trigger of the timer instruction **start** is in the ON–state, the Preset (Set) value is transferred to the **EV** from the **SV**. During the timing operation, the time is subtracted from the **EV**. The scan time is also subtracted from the **EV** in the next scan. The timer contact **T** turns ON, when the **EV** becomes 0.

PLC types

Availability	FP0		FP1	F		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_100ms	x	х	х	х	х	x: _:

Data types

Variable	Data type	Function
start	BOOL	starts timer
Num*	INT, WORD	timer address in system registers 5 and 6
SV	INT, WORD	set value
Т	BOOL	timer contact

Operands

For	Relay			T/C		Register			Constant	
101	Х	Y	R	L	Т	С	DT	LD	FL	dec. or hex.
start	x	х	х	x	х	x	-	-	-	-
т	-	х	х	х	-	-	-	-	-	-
Num*	_	-	-	-	-	-	-	_	-	x
ev.	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
SV	_	-	-	-	х	-	-	_	-	x

x: available -: not available

i Por

- It is not possible to use this function in a function block POU.
- Every used timer must have a separate constant Num*. Available Num* addresses depend on system registers 5 and 6. Timers of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the same Num* address range.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In or-

der to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

Example Below is an example of an instruction list (IL) body for the instruction.

LD	start	(* EN = start; Starting signal for
		the TM_100ms function. *)
	16,32123	(* Num* = 16 (Address of the timer)
TM_100ms		*)
		(* SV = 32123 (Time, corresponding
		3212,3 sec.) *)
ST	Var_0	(* T = Var_0; The variable Var_0
		turns ON, *)
		(* when the EV becomes 0. *)

Steps

3

TM_10ms

TM 10ms

Timer for 10ms intervals

Description The TM_10ms instruction sets the ON-delay timer for 0.01s units (0 to 327.67s).

The areas used for the instruction are:

- Preset (Set) value area:
 SV
- Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the **SV**. If the trigger of the timer instruction **start** is in the ON–state, the Preset (Set) value is transferred to the EV from the **SV**. During the timing operation, the time is subtracted from the EV. The scan time is also subtracted from the EV in the next scan. The timer contact **T** turns ON, when the EV becomes 0.

PLC types

Availabi	itv	FP0 2.7k, 5k, 10k		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k		
TM_10m	IS	х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
start	BOOL	starts timer
Num*	INT, WORD	timer address in system registers 5 and 6
SV	INT, WORD	set value
Т	BOOL	timer contact

Operands

For		Re	lay		T/C		Register			Constant	
101	х	Y	R	L	т	С	DT	LD	FL	dec. or hex.	
start	х	х	х	х	х	х	-	Ι		_	
т	-	х	х	х	-	-	-	-	-	-	
Num*	-	-	-	-	-	-	-	-	-	х	
sv	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
50		-	Ι	-	х	-	-		Ι	х	

x: available -: not available

r

• It is not possible to use this function in a function block POU.

- Every used timer must have a separate constant Num*. Available Num* addresses depend on system registers 5 and 6. Timers of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the same Num* address range.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In or-

der to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

Example Below is an example of a ladder diagram (LD) body for the instruction.

		•	•	•	•	•
	TM 10ms	۰.		•		۰.
 start — 		-	-/	/ar	_0	•
· · 30	Num*	2				· .
· SV30	SV	÷	·	÷	·	•

TM_1ms

Timer for 1ms intervals

Description The **TM_1ms** instruction sets the ON–delay timer for 0.001s units (0 to 32.767s).

The areas used for the instruction are:

FP0

- Preset (Set) value area:
 SV
- Count (Elapsed) value area: EV

When the mode is set to RUN mode, the Preset (Set) value is transferred to the **SV**. If the trigger of the timer instruction **start** is in the ON–state, the Preset (Set) value is transferred to the **EV** from the **SV**. During the timing operation, the time is subtracted from the **EV**. The scan time is also subtracted from the **EV** in the next scan. The timer contact **T** turns ON, when the **EV** becomes 0.

FP_M

PLC types

Data types

Availability	,			•••	•		
Availability	2.7k, 5k, 1	0k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
TM_1ms	х		х	х	х	х	x: available –: not available
Variable	Data type	Fu	nction				

FP1

Variable	Data type	Function
start	BOOL	starts timer
Т	BOOL	timer contact
Num*	INT, WORD	timer address in system registers 5 and 6
SV	INT, WORD	set value

Operands

For		Re	lay		T/C		Register			Constant	
101	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.	
start	x	х	х	х	х	х	-	-	-	_	
т	-	х	х	х	-	-	-	-	-	-	
Num*	-	-	-	-	-	-	-	-	-	x	
ev/	wx	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
sv	-	-	-	-	х	-	-	-	-	x	

x: available -: not available

r

- It is not possible to use this function in a function block POU.
- Every used timer must have a separate constant Num*. Available Num* addresses depend on system registers 5 and 6. Timers of type TM_1s, TM_100ms, TM_10ms, TM_1ms use the same Num* address range.
- The Matsushita timer functions (TM_1s, TM_100ms, TM_10ms, and TM_1s) use the same NUM* address area as the Matsushita timer function blocks (TM_1s_FB, TM_100ms_FB, TM_10ms_FB, and TM_1s_FB). For the timer function blocks the compiler automatically assigns a NUM* address to every timer instance. The addresses are assigned counting downwards, starting at the highest possible address. In order to avoid errors (address conflicts), these timer functions and function blocks should not be used together in a project.

Example Below is an example of a ladder diagram (LD) body for the instruction.

•	•	\cdot \cdot \cdot \cdot	TM_1ms	•	•	•	1	•
		start —	start T	-	-\	/ar	_0	•
•		· 10	Num*			•	•	•
	•	SV10	SV	•	:			
•	÷			•		•		•

F137_STMR Auxiliary timer (sets the ON–delay timer for 0.01s units)

Steps 5

- **Description** The auxiliary timer instruction **F137 (STMR)** is a down type timer. The formula of the timer–set time is 0.01 sec. * set value **s** (time can be set from 0.01 to 327.67 sec.). If you use the special internal relay R900D as the timer contact, be sure to program it at the address immediately after the instruction. Timer operation:
 - If the trigger **EN** of the auxiliary timer instruction (STMR) is in the ON– state, the constant or value specified by **s** is transferred to the area specified by **d**.
 - During the timing operation, the time is subtracted from the value in the area specified by **d**.
 - The output ENO turns ON when the value in the area specified by **d** becomes 0.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F137	Х	-	5k	Ι	х	x: available –: not available

Data types

Variable	Data type	Function				
s INT, WORD 16-bit area or equivalent constant for timer set value						
d	INT, WORD	16-bit area for timer elapsed value				

The variables **s** and **d** have to be the same data type.

Operands

For		Re	lay		T/C		Register			Constant	
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
s	х	х	х	х	х	х	х	х	х	x	
d	I	х	х	х	х	х	х	х	х	_	

x: available -: not available

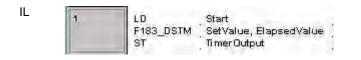
Example Below is an example of a ladder diagram (LD) body for the instruction.

0.2 0.2 0	F137 ST	MR	1	÷	2	•	3
 start — 	EN T	ENO	-	-0	ut	•	
· Var_0	S	d	-	-1	/ar	_1	2
		· · ·					

Description The F183 instruction activates an upward counting 32–bit timer which works on–delayed. The smallest counting unit is 0.01s. During execution of F183 (start = TRUE), elapsing time is added to the elapsed value d. The timer output will be enabled when the elapsed value d equals the set value s. If the start condition start is set to FALSE, execution will be interrupted and the elapsed value d will be reset to zero. The set value s can be changed during execution of F183.
The delay time of the timer can be calculated using the following formula: (Set

The delay time of the timer can be calculated using the following formula: (Set Value s) * (0.01s) = on-delay

PLC types			FDA			FD4										
FLO types	Availabili	tv	FP0			FP1		FF	Р–М							
	Atunaom	2	.7k, 5k,	10k	0.9k	2.7k,	5k (0.9k	2.7k, 5	k						
		х		-						x: available –: not available						
Data types	Variable	Data	ı type		Functio	on										
	s	DINT	, DWOI	VORD set value, range 0 to 2147483647												
	d	DINT	, DWOI	RD	elapsed value, range 0 to 2147483647											
- ·												-				
Operands	For		Relay			T/C			Registe	ər	Constant					
	FOI	DWX	DWY	DW	R DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	1				
	s	х	х	х	-	x	х	х	-	_	х					
	d	-	- x x		-	x	x	х	-	-	-					
											x: availa –: not av					


- **Example** In this example the function F183_DSTM is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

		Class		Class		Identifier	Туре		Initial	Comment
25	0	VAR	Ŧ	Start	BOOL	Ŧ	FALSE			
	1	VAR	Ŧ	SetValue	DINT	Ŧ	1000	10 seconds		
-	2	VAR	*	Ti mer Output	BOOL	Ŧ	FALSE	turns on when 10s have elapsed		
	З	VAR	ŧ	ElapsedValue	DINT	Ŧ	0			

Body This example uses a variable at the input contact. You may also use a constant.

LD

1	· Start· · ·	F183_DSTM	•••• Timer Output
	· ·SetValue	-s d	ElapsedValue

Chapter 24

Counter Instructions

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

			Co	ount	er						Steps			
cription	Decrements a preset counter. The function has the following parameters: Co Reset, Num*, SV, and C . Their functions are listed in the Data types table be													
	When the F The set val		•				•				-			
		When the Count input changes from off to on, the set value begins to decrew When this value reaches 0, the counter output (C) turns on.												
	If the Count input and Reset input both turn on at the same time, the Reset is given priority.													
	If the Coun is ignored a						nput	falls a	t the s	ame t	ime, the cou			
LC types			FP0			FP1		F	P-M					
	Availability	2.7k, 5k, 10k		0.9k	2.7k,	5k	0.9k	2.7k, 5k						
	СТ		х		x	x		x	х	: available -: not available				
Data types	Variable	Data	type	Fu	Inction									
	Count	BOO		su	btracts 1 from the set value each time it is activated									
		BOO	L	res	esets the counter when it is ON									
	Reset			nu	umber assigned to the counter (see System Register 5)									
	Reset Num*	decin const						et value is the number the counter starts subtracting from						
		const		se	t value is	s the nu	mber	the cou	nter star	ts subt	racting from			
	Num*	const	ant WORD		t value is e counte						racting from			
perands	Num*	const INT, \	ant WORD L	the		r turns (on wh	en it rea	ches the	e SV				
ərands	Num*	const INT, \	ant WORD	the		r turns (en it rea		e SV	Constant dec. or hex			
erands	Num* SV C	const INT, \ BOO	ant WORD L	the	e counte	r turns (T/	on wh	en it rea	ches the	e SV	Constant			
rands	Num* SV C For	const INT, V BOO	ant WORD L Rel Y	the lay R	e counte	r turns (T/ T	on wh	en it rea	ches the Registe	e SV er FL	Constant dec. or hex			
erands	Num* SV C For C Count	const INT, \ BOO X x	ant NORD L Re Y x	the	E counte	r turns o T/ T x	C C C x	en it rea	ches the Registe LD –	er FL –	Constant dec. or hex			
erands	Num* SV C For Count Reset	const INT, \ BOO X x	ant NORD L Re Y x	the	E counte	r turns o T/ T x	C C C x	en it rea	ches the Registe LD –	er FL –	Constant dec. or hex			
erands	Num* SV C For Count Reset Num*	const INT, \ BOO X x x x -	Ant WORD L Y X X X	lay R x x x	L X X -	r turns (T/ T X X -	C C X x -	en it rea	Registe	e SV er FL – – –	Constant dec. or hex			

For FP–M/FP0 T32C/FP1, the following point numbers can be used for counters.

Туре	Number of points	Nos. that can be used
FP-M C16T	28 points	100 to 127
FP1 C14, C16		
FP-M C20, C32	44 points	100 to 143
FP0 T32C		
FP1 C24, C40, C56, C72		

The number of counter points can be changed using System Register 5. The number of points can be increased up to 3,072 with the FP2SH and FP10SH, up to 256 with the FP–C and FP3, up to 1,024 with the FP–Sigma and FP2, up to 128 with the FP–M C16T and FP1 C14, C16, and up to 144 with the FP–M C20, C32 and FP1 C24, C40, C56 and C72, and FP0. Be aware that increasing the number of counter points decreases the number of timer points.

The following point numbers can be used for counter depending on the type of FP0 C10/C14/C16/C32.

Туре		Useable counter point numbers
FP0	C10, C14 and C16	44 points (C100 to C143) Non-hold type: 40 points (C100 to C139) Hold type: 4 points (C140 to C143)
FP0	C32	44 points (C100 to C143) Non-hold type: 28 points (C100 to C127) Hold type: 16 points (C128 to C143)

For all models except for the FP0 C10, C14, C16 and C32, there is a hold type, in which the counter status is retained even if the power supply is turned off, or if the mode is switched from RUN to PROG, and a non-hold type, in which the counter is reset under these conditions. System register 6 can be used to specify a non-hold type.

Set Value and Elapsed Value area

At the fall time when the reset input goes from on to off, the value of the set value area (SV) is preset in the elapsed value area (EV).

When the reset input is on, the elapsed value is reset to 0.

When the count input changes from off to on, the set value begins to decrement, and when the elapsed value reaches 0, the counter contact Cn (n is the counter number) turns on.

Example In this example the function CT is programmed in ladder diagram (LD).

POU header In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR_EXTERNAN *	Count_input 👎	BOOL	Ŧ	FALSE	Listed in Global Variable List with IEC Address %IX0.0
1	VAR_EXTERNAD *	Reset_input 🖣	BOOL	Ŧ	FALSE	Listed in Global Variable List with IEC Address %IX0.1 Resets SetValue
2	VAR ±	SetValue	INT	Ŧ	10	Decrements by one each time Count_input is activated
3	VAR ±	Counter 100	BOOL	Ŧ	FALSE	Turns on when Count_input has been activated 10 times

Body The set value SV is set to 10 when *Reset_input* is activated. Each time *Count_input* is activated, the value of SV decreases by 1. When this value reaches 0, *Counter100* turns on. *Num** is assigned the counter number, which must be equal to or greater to the number assigned to Data in System Register 5.

LD

1				Co							
	· · · · Reset input · Count C				-1		ŀ,				
	Reset	1	•	52	<i>.</i> "		•	2	•		
	• • • • • • • • • • 100 Num*	1				•		•			
	· · · · · · SetValue — SV			523		-	20		2.2	\sim	

5

UDC 118

UP/DOWN counter

Steps

UD_Trig: DOWN counting if the trigger is in the OFF state. Description UP counting if the trigger is in the ON state.

Cnt_Trig: Adds or subtracts one count at the leading edge of this trigger.

Rst_Trig: The condition is reset when this signal is on.

The area for the elapsed value **d** becomes 0 when the leading edge of the trigger is detected (OFF \rightarrow ON). The value in **s** is transferred to **d** when the trailing edge of the trigger is detected (ON \rightarrow OFF).

s: Preset (Set) value or area for Preset (Set) value.

d: Area for count (elapsed) value.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
СТ	x	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function						
UD_Trig	BOOL	sets counter to count up (ON) or down (0FF)						
Cnt_Trig	BOOL	starts counter						
Rst_Trig	BOOL	resets counter						
S	INT, WORD	16-bit area or equivalent constant for counter preset value						
d	INT, WORD	16-bit area for counter elapsed value						

The variables **s** and **d** have to be of the same data type.

Operands

For		Re	lay		Τ/	'C	R	egiste	Constant	
101	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
UD_Trig, Cnt_Trig, Rst_Trig	x	x	x	x	x	x	_	_	_	_
_	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
S	х	x	х	х	х	x	х	х	x	x
d	-	х	x	x	х	х	х	х	x	_

x: available -: not available

Example

Below is an example of a ladder diagram (LD) body for the instruction.

	F118 UDC	
 Switch0 — 	UD_Trig d	Var_1 ·
 Switch1 — 	Cnt_Trig	
 Switch2 — 	Rst_Trig	
· · Var_0	s	

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

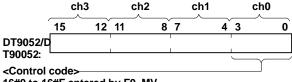
Chapter 25

High–Speed Counter Special Instructions

Description Controls the software reset, disabling of the counter, and stops pulse outputs.

For more information on the high-speed counter, pulse and PWM output, see Appendix A.

Description for FP0:


This instruction is used when performing the following operations while using the high-speed counter:

- Performing a software reset.
- Disabling the count.
- Temporarily disabling the hardware reset by the external input X2 and X5.
- Stopping the positioning and pulse outputs.
- Clearing the controls executed with the high-speed counter instructions F166, F167, F168, F169, and F170.
- Setting the near home input during home return operations for decelerating the speed of movement.
- When a control code is programmed once, it is saved until the next time it is programmed.

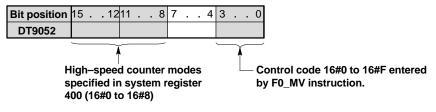
High-speed counter control register (DT9052/DT90052)

The control code program area DT9052/DT90052 divides 4 bits to each channel of the high-speed counter.

The control code entered in the **F0_MV** instruction is stored in special data register DT9052/DT90052.

16#0 to 16#F entered by F0_MV.

Precautions during programming for FP0:


- The hardware reset disable is only effective when using reset inputs (X2 and X5).
- Count disable and software reset during home return operations does not allow near home processing.

• The near home bit is saved, however, to cause near home processing during home return operations, it is necessary to enter 1 to the corresponding bit each cycle.

Description for FP–M/FP1:

- Performing a software reset.
- Disabling the count.
- Temporarily disabling the hardware reset by the external input X2.
- Stopping the pulse outputs.
- Resetting and turning off the pattern output and cam output.
- Clearing the controls executed with the F162_HC0S, F163_HC0R, F164_SPD0 and F165_CAM0 instructions.

Special data register DT9052 stores control code and high–speed counter modes as follows:

Precautions during programming for FP-M/FP1:

- The outputs used for the F164_SPD0, and F165_CAM0 instructions are turned off.
- Special internal relays R903A (high-speed counter control flag) and R903B (cam control flag) turn off and the elapsed value is not clear while 1 is set to bit position 3 of DT9052.
- The control operations of the high-speed counter instructions "F162_HC0S, F163_HC0R, F164_SPD0, and F165_CAM0" are executed continuously when 0 is set to bit position 3 of DT9052.

Specifying the control code "s"

Clears high-speed counter instruction 0: Continuous 1: Clear (pulse output stopped during pulse output control for FP0)

Hardware reset 0: Enabled 1: Disabled (near home input effective during pulse output control for FP0) Software reset 0: Does not perform software reset 1: Does perform software reset

Count 0: Enable 1: Disable

e.g.16#1, perform software reset 16#2, count disable 16#4, hardware reset disable 16#8, clear high-speed counter instruction

Data types

Variable	Data type	Function			
s INT, WORD specifies high–speed counter operation					
		controls high–speed counter operation at specified address, DT9052 (DT90052 for FP0 T32–CP)			

Operands

For		Re	lay		T/C		Register			Constant
FUI	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
s	х	х	х	х	х	х	х	х	х	х
d	_	х	х	х	х	х	х	х	х	_

x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	permanently	the value of s exceeds the limit of specified range.
	R9008	%MX0.900.8	for an instant	

Example The following provides generic examples and explanations of F0_MV when used to control high–speed counter functions.

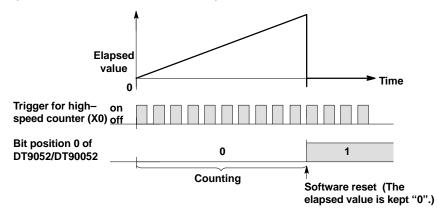
- Perform software reset 16#1(0001)
- Count disable 16#2(0010)

Turn off pulse output and reset elapsed value . 16#9(1001)

Enter the control code into the area DT9052/DT90052 of the corresponding channel.

For FP–M/FP1, when the mode is changed from PROG. to RUN, the lower–byte of DT9052 is set to 16#0.

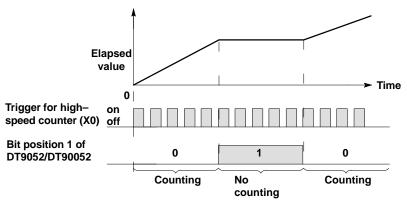
16#0 (0000):


- Software reset operation is not performed.
- Count inputs are accepted.
- Reset input X2 enabled.
- The F162_HC0S, F163_HC0R, F164_SPD0, and F165_CAM0 instructions continue to operate.

Operations of control code

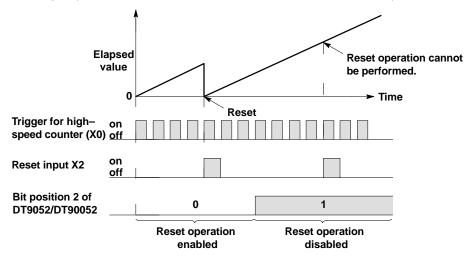
(1) Software reset operation (bit position 0 of DT9052/DT90052)

When 0 is set to bit position 0 of DT9052/DT90052, the elapsed value counts continuously.


When 1 is set to bit position 0 of DT9052/DT90052, the elapsed value of the highspeed counter becomes 0 and keeps its value.

2 Count input control operation (bit position 1 of DT9052/DT90052)

When 0 is set to bit position 1 of DT9052/DT90052, the count input is enabled


While 1 is set to bit position 1 of DT9052/DT90052, the count input is disabled (no counting) and the current elapsed value is kept.

③ Hardware reset control operation (bit position 2 of DT9052/DT90052)

Even if reset input X2 is turned on, the reset operation cannot be performed when 1 is set to bit position 2 of DT9052/DT90052.

The hardware reset input is enabled when 0 is set to bit position 2 of DT9052/DT90052.

You can use reset operation only after system register 400 is set using X2 as the reset input (set value is even number: 16#2, 16#4, 16#6, or 16#8).

(4) Control of high-speed counter instructions (bit position 3 of DT9052/DT90052)

The control operations of the **F162_HC0S**, **F163_HC0R**, **F164_SPD0**, and **F165_CAM0** instructions are stopped and cleared when 1 is set to bit position 3 of DT9052/DT90052.

- **Example** In this example the function F0_MV is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

Global_Variables					
Class	Identifier	Matsus	IEC_Address	Туре	Initial
0 VAR_GLOB/≱ ±	HighSpeedCntrl	DT9052	%MW5.9052	WORD	₹ o
1 VAR_GLOB#	Start_X3	ХЗ	%IX0.3	BOOL	FALSE

POU In the POU header, all input and output variables are declared that are used for programming this function.

1	Class	Identifier	Туре	Initia	Comment
0	VAR_EXTERNAL	Start_X3 📑	BOOL 편	FALS	
1	VAR_CONSTANT	SoftwareReset	WORD 📑	16#1	Resets high-speed counter to 0
2	VAR_EXTERNAL	High Speed Cntrl 📑	WORD 📑	0	
з	VAR 🛓	Count	WORD 📑	16#0	Enables counting to start again

Body

The elapsed value of the high–speed counter is reset to zero (16#1) the first time F0_MV is executed and counting begins again (16#0) the second time it is executed.

LD

1	
-	SoftwareResetsHighSpeedCntrl
2	·Start_X3···· F0_MV ·····
	P EN EN High Speed Cotrl

١L

1	LD	Start_X3	62453 STR - 2020S 50 545-97
	DF		(* edge detection *)
	F0_MV	SoftwareReset, HighSpeedCntrl	(* reset *)
	F0_MV	Count, HighSpeedCntrl	(* restart counting *)

F162_HC0S

High-speed counter output set

Steps

7

Sets the value specified by s as target value of the high-speed counter if the trigger Description EN is in the ON-state. When the elapsed value (DT9045 and DT9044) of the high-speed counter agrees with the target value (DT9047 and DT9046), the external output relay specified by d turns ON. You can use 8 external output relays (Y0 to Y7). The target value is stored in special data registers DT9047 and DT9046 when the F162 (HC0S) instruction is executed and it is cleared when the elapsed value of the high-speed counter agrees with the target value. Use 24 bit binary data with sign data for the target value of HSC (FF800000 hex to 007FFFFF hex / -8,388,608 to 8,388,607). Special internal relay R903A turns ON and stays ON while the F162 (HC0S) instruction is executed and it is cleared when the elapsed value of the high-speed counter coincides with the target value. Even if the reset operation of the high-speed counter is performed after executing the F162 (HC0S) instruction, the target value setting is not cleared until the elapsed value of the high-speed counter coincides with the target value. To reset the external output relay, which is set ON by the F162 (HC0S) instruction, use the F163_HC0R instruction. You can use the same external output relay specified by the F162 (HCOS) instruction in other parts of program. It is not regarded duplicate use of the same output. While special internal relay R903A is in ON state, no other high-speed counter instructions F162 (HC0S), F163 HC0R, F164 SPD0, F165 CAM0 can be executed.

PLC types	Availability	FP0		FP1	F	1	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	1
	F162	_	х	х	х	х	X: a

T	x: available
	-: not available

Data types	Variable	Data type	Function
	s	DINT, DWORD	area or equivalent constant for storing target value of high- speed counter
	d	BOOL	available external output relay: Y0 to Y7

Operands

For		Re	lay		Т/	C	Register			Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
S	х	х	х	-	х	х	х	-	-	х	
	х	Y	R	L	т	С	DT	LD	FL	dec. or hex.	
d	-	х	_	-	_	-	_	_	_	_	

x: available -: not available

Example

le Below is an example of a ladder diagram (LD) body for the instruction.

	F162 HCOS	
 start — 	EN ENO	out 🐳
Var_0	s d	Var_1

7

F163_HC0R

High-speed counter output reset

Steps

Description Sets the value specified by **s** as target value of the high–speed counter if the trigger **EN** is in the ON–state. When the elapsed value (DT9045 and DT9044) of the high–speed counter agrees with the target value (DT9047 and DT9046), the external output relay specified by **d** turns OFF. You can use 8 external output relays (Y0 to Y7). When the F163 (HCOR) instruction is executed, the target value is stored in special data registers DT9047 and DT9046 and it is cleared when the elapsed value of the high–speed counter agrees with the target value. Use 24 bit binary data with sign data for the target value of HSC (FF800000 hex to 007FFFFF hex / -8,388,608 to 8,388,607). Once the F163 (HCOR) instruction is executed, special internal relay R903A turns ON and stays ON. It is cleared when the elapsed value of the high–speed counter agrees the target value. Even if the reset operation of the high–speed counter is performed after executing the F163 (HCOR) instruction, the target value setting is not cleared until the elapsed value of the high–speed counter agrees with the target value.

You can use the same external output relay specified by the F163 (HC0R) instruction in other parts of program. It is not considered duplicate use of the same output. While special internal relay R903A is in ON state, no other high–speed counter instructions F162_HC0S, F163 (HC0R), F164_SPD0, F165_CAM0 can be executed.

PLC types	Availability	, FP0		FP1	F	P-M			
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	*		
	F163	-	х	х	х	х	x: available –: not available		
Data types Variable Data type Function									
	or storing tar	get value of high-							
	d	BOOL	able external output relay: Y0 to Y7						
Operands									
i inoran'ne				=/0		– • •			

Operands

For		Re	lay		Т/	C	Register			Constant	
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.	
s	х	х	х	-	х	х	х	-	-	х	
	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.	
d	-	x	_	_	-	-	-	_	_	_	

x: available -: not available

Example

Below is an example of an instruction list (IL) body for the instruction.LDstart(*EN = start; Starting signal for the F163_HCOR function*)F163_HCORVar_0, Var_1(* s = Var_0*) (* d = Var_1 *)STout(* option *)

F164_SPD0 Pulse output control; Pattern output control

Steps

3

Outputs the pattern of the pulse corresponding to the elapsed value of HSC. When Description the executing condition is ON and HSC control-flag (R903A) is OFF, this instruction starts operation. This instruction executes pattern output or pulse output corresponding to the data of the data table registered at the data register specified by s. You can use pulse output for positioning with a pulse motor and pattern output for controlling an inverter. When you execute pulse output with this instruction, input the pulse of Y7 directly to HSC or input the encoder output pulse. When you execute pattern output, input the encoder output pulse to HSC. Specify at system register No. 400 whether you will use HSC or not. It is not possible to execute this instruction without the following settings: input condition to detect a rising edge (0/1), and the HSC flag (R903A) must be reset.setting. The output coils of pattern output are within the 8 points Y0 to Y7. The output coil of pulse output is Y7 only. Select either pattern outputs or pulse outputs by the content of the first word of the data table. When you input 0 for one word of the first address (all bits are 0), it will be the pulse output. When you execute pattern output, an error occurs unless the No. of the control steps is 1 to F or unless the No. of control points is 1 to 8. An error occurs when the first target value is not FF800000 to 7FFFFF. An error does not occur when the first target value on and after the second one are not FF800000 to 7FFFFF. The operation, however, is stopped and R903A turns OFF. When the frequency data is "0", pulse output ends. It will also end if the area is exceeded during its execution.

PLC types	Availabilit		FP0			FP1			P-M			
	Availabilit	2.7k, 5k, 10		10k	0.9k	2.7k,	5k	0.9k	2.7k, 5	k		
	F164		-		х	х		х	x x		x: available -: not available	
Data types	Variable Data type Function											
	s	INT, WORD			starting 16-bit area for storing control data							
Onenande												т
Operands	For		Re	lay		Т/	Ċ		Registe	er	Constant	
Operands	For	WX	Re WY	lay WR	WL	T/ SV	C EV	DT	Registe	er FL	Constant dec. or hex.	
Operands	For -	wx	1	-	WL		-		- -			- - -

	F164 SPD0	•		
 start —— 	EN ENO	_	-0	ut
Var_0	S	•	•	•

3

Steps

F165_CAM0

Cam control

Description Converts ON/OFF of output specified in the table corresponding to the elapsed value of HSC. This instruction controls the output up to 8 points (Y0 to Y7), corresponding to ON/OFF target value of each coil on the table, which is for the control of cam position specified by **s**. The target value is within the range of 23–bits data and 0 to 8388607 (i.e. 23 bits of data, 16#00000001 to 16#007FFFFF). If you execute cam control, you have to specify the operating mode as addition counter. (If it is not addition counter, you will not be able to execute the control properly.) The target value is maximum 32 steps with FP1–C16, maximum 64 steps with FP1–C24/C40. If you cancel hard reset, soft reset, and control maximum value you can set the initial pattern at output, set the elapsed value to 0 and restart Cam control. You can output the initial pattern at the start of control. However, you cannot clear the elapsed value to 0.

PLC types	Availabilit		FP0			FP1		F	P-M			
	Availabilit	y 2	.7k, 5k,	10k	0.9k	2.7k,	5k	0.9k	2.7k, 5			
	F165		-		х	х		-	х		: available : not available	
Data types	Variable	Data type Function										
	s	INT,	WORD	sta	rting 16	-bit are	a for s	toring o	ontrol da	ata		
Operands	For		Relay			Τ/	'C		Registe	ər	Constant	
		WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.]
	S	-	-	-	-	-	-	x	-	-	-	
					÷						x: availa –: not av	
Example	Below is a	n exa	ample	of an	instru	ction I	ist (II	_) boc	y for th	ne inst	truction.	
	LD	st	art		(*EN =	start; S	tarting	signal	for the F	165_CA	AM0 function*)	
	F165_CAM0) Va	ar_0		(* s = V	ar_0*)						
	ST	ou	out (* option *)									

F166_HC1S Sets Output of High–speed counter (4 Channels)

Steps 11

Description

If the trigger EN of the instruction F166 has the status TRUE, pulses at the HSC will be counted. If the elapsed value of the high–speed counter equals the target value **s**, an interrupt will be executed and the output relay **d** of the PLC will be set. In addition to this the special relay for the HSC **n** (R903A/B/C/D) will be reset and F166 is deactivated.

Target Value (s)	4
Elapsed value of HSC	
F166_start	
R903A/B/C/D PLC output (d)	_ ,

If the high–speed counter is reset (reset input of HSC from 0 to 1, see system register 400/401 in the project navigator) before the elapsed value has reached the target value **s**, the elapsed value will be reset to zero. F166 remains active and counting restarts at zero.The duplicate use of an external output relay in other instructions (OUT, SET, RST, KEEP and other F instructions) is not verifyed by FPWIN Pro and will not be detected. While the special relay(s) R903A/B/C/D is/are in ON state no other high–speed counter instructions can be executed.FP0 provides 4 HSC channels. The channel number is specified by n (0 to 3).

n values	ister:	0	1	2	3			
Elapsed value re		DDT9044	DDT9048	DDT9104	DDT9108			
Target value reg		DDT9046	DDT9050	DDT9106	DDT9110			
Used channel:		CH0 of HSC0	CH1 of HSC0	CH0 of HSC1	CH1 of HSC1			
ON during exect		R903A	R903B	R903C	R903D			
s values FP0 –8388608 or 16#I	FF800000	FP–SIG –2,147,4	MA 483,648 or 16#800	00000				
	FFFFF							
8388607 or 16#7		2,147,48	2,147,483,647 or 16#7FFFFFF					
d values 0 7	output Y0 Y7	t						

PLC types

Availability	FP0		FP1	F		
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F166	x	-	_	-	_	X:

x: available -: not available

Data types

Variable	Data type	Function
n	DINT, DWORD	the channel no. of the high–speed counter that corresponds to the matching output (n: 0 to 3)
s DINT, DWORD		the high-speed counter target value data or the starting address of the area that contains the data
d	BOOL	the output coil that is turned on when the values match (Yn, n: 0 to 7) $% \left({\left({{{\rm{V}}}_{{\rm{N}}}} \right)_{{\rm{N}}}} \right)$

Operands

For	Relay		T/C		Register			Constant		
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
n	-	_	_	-	-	-	_	-	-	х
s	х	х	х	-	х	х	х	-		x
	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
d	_	x	_	_	_	_	_	_		_

x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	ON	– index is too high
	R9008	%MX0.900.8	ON	 parameter s exceeds the valid range

Example In this example the function F166_HC1S is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

Identifier	Address	Туре	Initial	Comment
out_0	%QX0.0	BOOL	FALSE	output Y0 of PLC

POU header

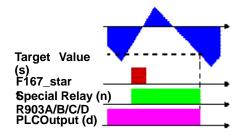
In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR_EXTERNAL	out_0	BOOL	FALSE	output Y0 of PLC
1	VAR	F166_start	BOOL	FALSE	F166 start condition

LD

0

	· · · · · · · · · · · · · · · · · · ·
	F166_start · · · F166_HC1S · · · ·
- 1	
	····dndout_0
	· · · · 10000 — <u>s</u>


IL

LD	F166_start	Load start condition
F166_HC1S	0,10000,out_0	execute F166

F167_HC1R Resets Output of High–speed Counter (4 Channels)

Steps |11

Description If the trigger EN of the instruction F167 has the status TRUE, pulses at the HSC will be counted. If the elapsed value of the high–speed counter equals the target value **s**, an interrupt will be executed and the output relay **d** of the PLC will be reset. In addition to this the special relay for the HSC **n** (R903A/B/C/D) will be reset and F167 is deactivated.

If the high–speed counter is reset (reset input of HSC from 0 to 1, see system register 400/401 in the project navigator) before the elapsed value has reached the target value \mathbf{s} , the elapsed value will be reset to zero. F167 remains active and counting restarts at zero. The duplicate use of an external output relay \mathbf{d} in other instructions (OUT, SET, RST, KEEP and other F instructions) is not verifyed by FPWIN Pro and will not be detected. While the special relay(s) R903A/B/C/D is/are in ON state no other high–speed counter instructions can be executed. FP0 provides 4 HSC channels. The channel number is specified by \mathbf{n} (0 to 3).

n values Elapsed value register:	0 DDT9044	1 DDT9048	2 DDT9104	3 DDT9108
Target value register:	DDT9046	DDT9050	DDT9106	DDT9110
Used channel: ON during execu- tion:	CH0 of HSC0 R903A	CH1 of HSC0 R903B	CH0 of HSC1 R903C	CH1 of HSC1 R903D

S	values	
	20	

FP0	FP–SIGMA
-8388608 or 16#FF800000	-2,147,483,648 or 16#8000000
8388607 or 16#7FFFFF	2,147,483,647 or 16#7FFFFFF
d values	output
0	YO
7	Y7

PLC types

	Availability	FP0		FP1		FP–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F167	x	-	-	-	_	X: a

: available -: not available

Data types

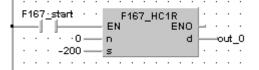
Variable	Data type	Function
n	DINT, DWORD	the channel no. of the high–speed counter that corresponds to the matching output (n: 0 to 3)
S	DINT, DWORD	the high-speed counter target value data or the starting address of the area that contains the data
d	BOOL	the output coil that is turned off when the values match (Yn, n: 0 to 7) $% \left({{\left({{{\rm{YN}}} \right)}_{\rm{T}}}_{\rm{T}}} \right)$

Operands

For	Relay				T/C		Register			Constant
101	DWX	DWY	DWR	DWL	DSV	DEV	DDT	DLD	DFL	dec. or hex.
n	-	-	-	-	-	-	-	-	-	х
S	х	х	х	-	х	х	х	-	-	x
	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
d	_	х	_	_	_	_	_	_	_	_

x: available -: not available

Error flags	No.	IEC address	Set	lf
	R9007	%MX0.900.7	ON	- index is too high
	R9008	%MX0.900.8	ON	-parameter s exceeds the valid range


Example In this example the function F167_CMPR is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.

POU header

In the POU header, all input and output variables are declared that are used for programming this function.

		Class	Identifier	Туре	Initial	Comment
	0	VAR_	out_0	BOOL	FALSE	output Y0 of PLC
ĺ	1	VAR	F167_start	BOOL	FALSE	F167 start condition

LD

IL

LD	F167_start	load start condition
F167_HC1R	0,-200,out_0	execute F167

F168_SPD1 P

Positioning pulse instruction

Description When the corresponding control flag is off and the execution condition (trigger) is in the on state, a pulse is output from the specified output (Y0 or Y1).

The control code, initial speed, maximum speed, acceleration/deceleration time, and target value, are specified by using a Data Unit Type (DUT).

The frequency is switched by the acceleration/deceleration time specified for changing from the initial speed to the maximum speed.

Channel no.	Control flag	Elapsed value area	Target value area	Direction- al output	Near home	Home input
ch0	R903A	DDT9044	DDT9046	Y2	DT9052 bit2	X0
ch1	R903B	DDT9048	DDT9050	Y3	DT9052 bit6	X1

See below for the corresponding areas:

• When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".

• By performing rewrite during RUN during pulse output, more than the set number of pulses may be output.

PLC types

Availability	FP0	FP1		FP1 FP-M 2.7k, 5k 0.9k 2.7k, 5k - - -		
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F168	Х	-	-	-	-	x: available –: not available

Data types

Variable	Data type	Function
S	Data Unit Type (DUT)	starting address for the area that contains the data table
n*	decimal constant	output Yn that corresponds to the pulse output (n: 0 or 1)

Operands

For		Relay			T/C		egiste	Constant	
101	WX	WY	WR	sv	EV	DT	LD	FL	dec. or hex.
s	_	-	-	-	-	х	-	-	-
n*	-	-	-	-	-	-	-	-	x

x: available -: not available

426 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	 – n* is a number other than 0 or 1
			- the control code exceeds the limit of specified range
			– Initial Speed Fmin < 40
R9008	%MX0.900.8	for an instant	 Initial Speed Fmin > Maximum Speed Fmax
			 Target Value (pulse number) exceeds the limit of specified range

Description of operating mode

Incremental <relative value control>

Outputs the pulse set by the target value.

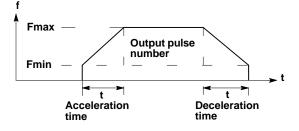
By setting 16#02 (incremental; forward: off; reverse: on) in the control code, when the target value is positive, the directional output is turned off and the elapsed value of the high–speed counter increases. When the target value is negative, the directional output turns on and the elapsed value of the high–speed counter decreases. By setting 16#03 in the control code, the directional output is the reverse of that above.

Absolute <absolute value control>

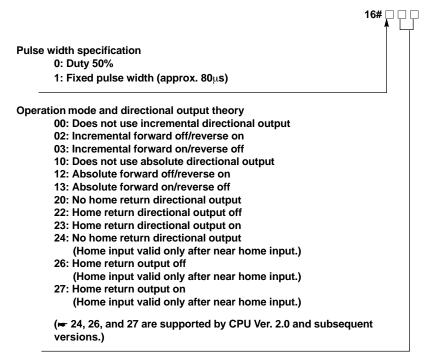
Outputs the pulse set by the difference between the current value and the target value. (The difference between the current value and the target value is the output pulse number.)

By setting 16#12 (absolute; forward: off; reverse: on) in the control code, when the current value is less than the target value, the directional output is turned off and the elapsed value of the high–speed counter increases. When the current value is greater than the target value, the directional output turns on and the elapsed value of the high–speed counter decreases. By setting 16#13 in the control code, the directional output is the reverse of that above.

Home return


Until the home input (X0 or X1) is entered, the pulse is continuously output. To decelerate the movement when near the home, set the bit corresponding to DT9052 to off \rightarrow on \rightarrow off \rightarrow with the near home input.

To return to the home, refer to only the control code, initial speed, maximum speed, and acceleration/deceleration time of the data table.


During operation, the elapsed value area and set value area will become insufficient. At the completion of operations, the elapsed value will become 0.

Data Unit Type settings

		Identifier	Туре	3	Initial	Comment
-	۵	Control_Code	WORD	Ŧ	D	Initial definitions (kind of pulse, working mode, direction output)
	1	Fmin	INT	Ŧ	0	Initial speed 40 to 5000 (Hz)
	2	Fmax	INT	Ŧ	0	Maximum speed 40 to 9500 (Hz)
	-3	AccelDecelTime	INT	Ŧ	0	Acceleration/Deceleration time 30 to 32767 (ms)
-	4	Target Value	DINT	Ŧ	D	Target value (pulse number) -8388608 to 8388607
	5	Termination	INT	Ŧ	D	End of table, value 0

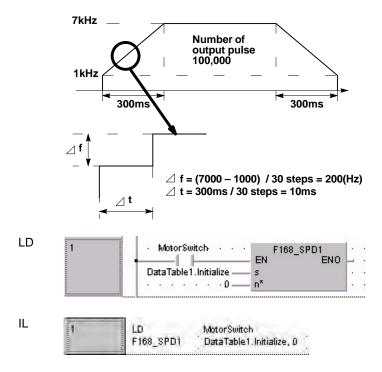
1) Specify the control code (line 0 in DUT above).

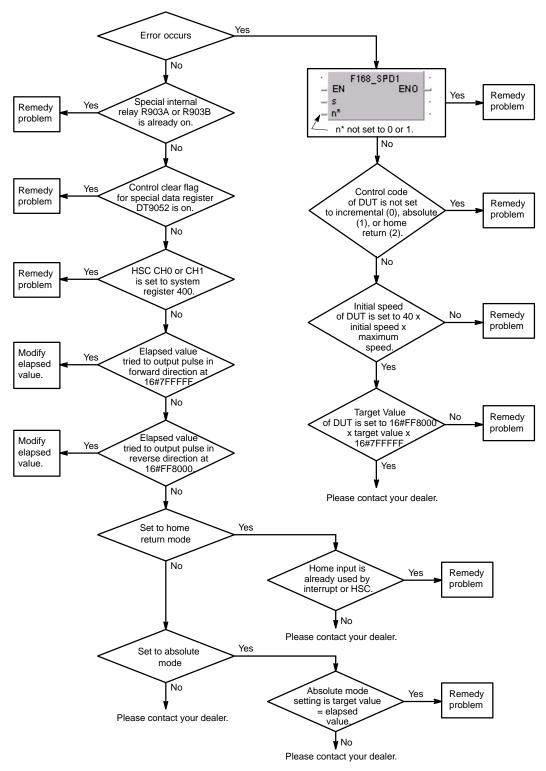
2) When the pulse width is set to duty 50%, the maximum is 6kHz. When the pulse width is set to fixed pulse width (approx. 80μ s), the maximum is 9.5kHz (line 2 in DUT above).

3) The Target Value and Termination specifications are not necessary when a home return is carried out (lines 4 and 5 in DUT above).

- **Example** In this example the function F168_SPD1 is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

🎬 Gle	obal_Variable	\$				
0 -	Class	Identifier	Ma	1EC_Addres	Туре	Initial
D	VAR_GLOBAL	4 MotorSwitch	ХЗ	%IX0.3	BOOL	FALSE


DUT With a **D**ata **U**nit **T**ype you can define a data unit type that is composed of other data types. A DUT is first defined in the DUT_Pool and then processed like the standard data types (BOOL, INT, etc.) in the list of global variables or the POU header.


6-21	Identifier	Туре		Init	Comment
0	Initialize	WORD	Ŧ	0	control code = fiixed pulse width, incremental forward off/reverse on
t	Fmin	INT	Ŧ	٥	init, frequency (Hz)
2	Fmax	INT	Ŧ	0	target frequency (Hz)
3	Tdelay	INT	Ŧ	٥	time between Fmax and Fmin
4	Target Pulse Count	DINT	Ŧ	D	target value, pulse
5	Termination	INT	Ŧ	D	end of table, enter D

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial
0	VAR_EXTERN≬ ≛	MotorSwitch 편	BOOL Ŧ	FALSE
1	VAR ±	DataTable1		Initialize := 16#102, Fmin := 1000, Fmax := 7000, Tdelay := 300, Target Pulse Count := 100000, Termination := 0

Body The parameters defined in the DUT will be executed in the body as illustrated below:

Troubleshooting flowchart if a pulse is not output when instruction F168_SPD1 is executed

F169_PLS

Pulse width modulation >= 40 Hz

Steps 5

Description

When the corresponding control flag is off and the execution condition (trigger) is in the on state, a pulse is output from the specified channel. The pulse is output while the execution condition (trigger) is in the on state.

By specifying either incremental counting or decremental counting in the control code, this instruction can be used as an instruction for JOG operations. For that situation, set the control code with combinations such as 16#xx12 (incremental, directional output off) and 16#xx22 (decremental, directional output on).

The frequency and duty can be changed each scan. (This becomes effective with the next pulse output after this instruction is executed.)

See below for the corresponding areas.

Channel no.	Control flag	Data register for elapsed value
ch0	R903A	DDT9044
ch1	R903B	DDT9048

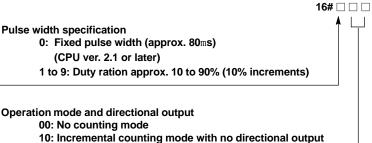
When using the incremental counting mode, the pulse stops when the elapsed value exceeds 16#7FFFF.

When using the decremental counting mode, the pulse stops when the elapsed value exceeds 16#FF800000.

r

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing a rewrite during RUN while operating, the pulse output will stop during rewriting.

PLC types	Availabilit	Availability FP0			FP1		FP–M			
	Availabilit	.y 2	2.7k, 5k, 10k		0.9k	2.7k,	5k	0.9k	2.7k, 5	k
	F169		х		-	-		-	-	x: available –: not avail
Data types	Variable	Data	type		Functio	n				
	S	ARRAY[01] of INT or WORD		data table	Э					
	n*	decin const			output Yr	n that co	orrespo	onds to	the puls	e output (n: 0 or
Operands		const			output Yr		·	onds to		e output (n: 0 or Constant
Operands	n*	const	tant	W	Т/		·			
Operands		const	tant Relay		Т/	ľC	F	Regist	er	Constant


-: not available

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	– n* is a number other than 0 or 1
R9008	%MX0.900.8	for an instant	

Data table settings

ARRAY[0]	Control code	(*1)
ARRAY[1]	Frequency (Hz)	40 to 10000 (Hz) (*2)

1) Specify the control code.

- 12: Incremental counting mode with ho directional output
- 13: Incremental counting mode with directional output on
- 20: Decremental counting mode with no directional output
- 22: Decremental counting mode with directional output on
- 23: Decremental counting mode with directional output off
- 2) Frequency setting range: 40 to 10000 (Hz) If "0 to 39" is set in ARRAY[1], the frequency is set to 40Hz (40).
- **Example** In this example the function F169_PLS is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

í Glo	bal_Variables					
	Class	Identifier	Mar	1EC_Addres	Туре	Initial
0	VAR_GLOBAL 🛓	Start_X2	X2	%1X0.2	BOOL	FALSE

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре		Initial	Comment
0	VAR	≛ Start	BOOL	Ŧ	FALSE	3
1	VAR_EXTERNAL	≝ Start_X2 _ Ē	BOOL	Ŧ	FALSE	
			ARRAY [01] OF WORD		[2(0)]	

Body

The comment fields in the LD and IL bodies explain the function of this example.

LD

Set control code, 1 = duty ratio, 10% pulse, 90% pause 12 = incremental counting with directional output off
a Start a a a a a a a a a a a a a a a a a a
FO_MV
16#0112 s dDataTable2[0]
Define frequency, 300 Hz
· Start. · · · · · · · · · · · · · · · · · · ·
FD MV
a a a a a a EN TENO a a a a a a a a a a a a a
 Start pulse output to output YD
· · Start_X2 · · · · · · · · · · · · · · · · · · ·
F169_PLS FAREFAREFAREFAREFAREFAREFAREFAREFAREFARE
A A A A A A L EN ENO A A A A A A A A A A A A A A A A A A A
DataTable2 — s · · · · · · · · · ·
n

IL

1	LD F0_MV	Start 16#0112, DataTable2[0]	(* Set control code, 1 = duty ratio, 10% pulse, 90% pause 12 = incremental counting with directional output *)
2	LD F0_MV	Start 300, DataTable2[1]	(* Define frequency, 300 Hz *)
3	LD F169_PLS	Start_X2 DataTable2, 0	(* Start pulse output to output YD *)

5

F170_PWM

Pulse width modulation

Steps

Description When the corresponding control flag is off and execution condition (trigger) is in the on state, a PWM is output from the specified channel. The PWM is output while the execution condition (trigger) is in the on state.

The frequency and duty are specified with the data table.

Since the output is delayed near the maximum and minimum levels, the set duty ratio will differ.

The duty can be changed each scan. The frequency settings is only effective at the start of the execution of the instruction (becomes effective after the next pulse output).

See below for the corresponding areas.

Channel no.	Control flag
ch0	R903A
ch1	R903B

r

- When this instruction is used, the setting for the channel corresponding to system register 400 should be set to "High-speed counter not used".
- By performing a rewrite during RUN while operating, the pulse output will stop during rewriting.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F170	x	-	_	-	_	x: available -: not available

Data types

Variable	Data type	Function
S	ARRAY[01] of INT or WORD	data table
n*	decimal constant	output Yn that corresponds to the pulse output (n: 0 or 1)

Operands

For		Relay		T/C		Register			Constant	
101	WX	WY	WR	sv	EV	DT	LD	FL	dec. or hex.	
s	-	Ι	Ι	Ι	Ι	х	-	-	_	
n*	_			I		_	_	_	х	

x: available -: not available

Error flags

No.	IEC address	Set	lf
R9007	%MX0.900.7	permanently	– n* is a number other than 0 or 1
			- the frequency setting value set with the control code
R9008	%MX0.900.8	for an instant	(ARRAY[0]) is outside the specification range – 100% or higher is set with Duty (ARRAY[1])

Data table settings

 ARRAY[0]
 Control code
 16#0 to 16#8, 16#11 to 16#16 (*1)

 ARRAY[1]
 Duty (%)
 1 to 999 (0.1% to 99.9%)

1) Control code contents (frequency settings)

16#11: Frequency 1 kHz	(Cycle 1.0ms)
16#12: Frequency 714 Hz	(Cycle 1.25ms)
16#13: Frequency 500 Hz	(Cycle 2.0ms)
16#14: Frequency 400Hz	(Cycle 2.5ms)
16#15: Frequency 200 Hz	(Cycle 5.0ms)
16#16: Frequency 100 Hz	(Cycle 10ms)
16#0: Frequency 38 Hz	(Cycle 26ms)
16#1: Frequency 19 Hz	(Cycle 52ms)
16#2: Frequency 9.5 Hz	(Cycle 105ms)
16#3: Frequency 4.8 Hz	(Cycle 210ms)
16#4: Frequency 2.4 Hz	(Cycle 420ms)
16#5: Frequency 1.2 Hz	(Cycle 840ms)
16#6: Frequency 0.6 Hz	(Cycle 1.6s)
16#7: Frequency 0.3 Hz	(Cycle 3.4s)
16#8: Frequency 0.15 Hz	(Cycle 6.7s)

► 16#11 to 16#16 are supported by CPU Ver. 2.0 and subsequent versions.

ARRAY[1] -> pulse width

the table below shows all possible values for the first ARRAY element:

ARRAY[1]	ON TIME	OFF TIME	
0	0 %ON	100 %OFF	The pulse width (ON/OFF time) ca be
1	0.1 %ON	99.9 %OFF	changed during execution of F170. The changes are valid after the current period
2	0.2 %ON	99.8 %OFF	is finished .
		%OFF	
998	99.8 %ON	0.2 %OFF	
999	99.9 %ON	0.1 %OFF	
1000	100 %ON	0 %OFF	

- **Example** In this example the function F170_PWM is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - GVL In the **G**lobal **V**ariable List, you define variables that can be accessed by all POUs in the project.

Global_Variables	X.						
Class	Identifier	Ma	(EC_Addres	Туре	Initial	1JA	Comr
0 VAR_GLOBAL ±	Start_X2	X2	\$100.2	BOOL	₹ FALSE		

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
	VAR 🛓	Start	BOOL 🗗	FALSE	
the second se		Start_X2 📑	BOOL 🗗	FALSE	
2	VAR 🛓	DataTable3	ARRAY (D1) OF WORD 📑	[2(0)]	

Body The comment fields in the LD and IL bodies explain the function of this example.

LD

1	Set control code, 1 = frequency of 19 Hz
	s Start
	F0_MV · · · · · · · ·
	A A A A A L EN ENO - A A A A A
	d DataTable3[0]
2	Duty, 50%
*	Start
	F0 MV
	EN ENO
3	Start pulse width modulation to output Y0
·	Start X2
	Start_X2
	F170_PWM
	F170_PWM

IL

1		Start 16#1, DataTable3[0]	(* Set control code, frequency 19 Hz *)
2	LD F0_MV	Start 500, DataTable3[1]	(" Duty, 50%")
3	LD F170_PWM	Start_X2 DataTable3, 0	(" Start pulse width modulation to output YD ")

Chapter 26

Basic Sequence Instructions

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

DF

Leading edge differential

Steps

1

Description DF is a leading edge differential instruction. The **DF** instruction executes and turns ON output **o** for a singular scan duration if the trigger **i** changes from an OFF to an ON state.

- -

1

PLC types

Availability	FP0		FP1	F	·P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
DF	x	х	х	х	х	x: available -: not available

Data types

Data type			
input			
output			

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
i	x	х	х	х	х	х	_	_	-	-
ο	-	х	х	х	-	-	-	-	-	_

x: available -: not available

Example Below is an example of a ladder diagram (LD) body for the instruction.

Var_0 ___ i ___ Var_1

1

DFN

Steps

Description DFN is trailing edge differential instruction. The **DFN** instruction executes and turns ON output **o** for a singular scan duration if the trigger **i** changes from an ON to an OFF state.

PLC types

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
DFN	х	х	х	х	х	x: available -: not available

Data types

Data type
input
output

Operands

For		Re	lay		Т/	C	R	egiste	Constant	
101	Х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
i	х	x	х	х	х	х	-	-	-	-
ο	-	х	х	х	-	-	-	-	_	_

x: available -: not available

Example Below is an example of an instruction list (IL) body for the instruction.

LD	Var_0	$(* i = Var_0 *)$
DFN		<pre>(* i = Var_0 *) (* Trailing edge differential for variable Var 0 *)</pre>
OT I	Mara 1	<pre>variable Var_0. *) (* o = Var_1 *) (* At valid event the output</pre>
ST	Var_1	$(^{\circ} \circ = \operatorname{Var}_{1}^{1}^{\circ})$
		(* At valid event the output
		variable Var 1 *)
		(* is in the ON-state for one scan
		duration. *)

Steps

1

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

KEEP

Keep output ON or OFF depending on input variables

Description KEEP serves as a relay with set and reset points. When the **SetTrigger** turns ON, output of the specified relay goes ON and maintains its condition. Output relay goes OFF when the **ResetTrigger** turns ON. The output relay's ON state is maintained until a **ResetTrigger** turns ON regardless of the ON or OFF states of the **SetTrigger**. If the **SetTrigger** and **ResetTrigger** turn ON simultaneously, the **ResetTrigger** is given priority.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	KEEP	Х	х	х	х	х	x: available -: not available

Data types

Variable	Data type	Function
Set Trigger	BOOL	sets Address output, i.e. turns in ON
Reset Trigger	BOOL	resets Address output, i.e. turns it OFF
Address	BOOL	specifed relay whose status (set or reset) is kept

Operands

For		Relay				T/C		egiste	Constant	
101	х	Y	R	L	т	С	DT	LD	FL	dec. or hex.
SetTrigger ResetTrigger	х	х	х	х	х	х	-	-	-	-
Address	_	х	х	х	-	-	_	-	-	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	SetTrigger1	BOOL Ŧ	FALSE	Set Output
1	VAR 🛓	ResetTrigger1	BOOL Ŧ	FALSE	Reset Output
2	VAR 🛓	Address1	BOOL 于	FALSE	Output

LD

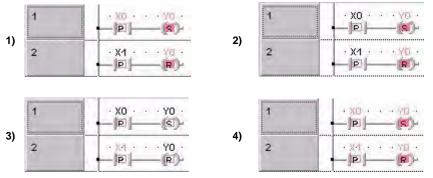
442

SetTrigger 1 · · ·						
	KEEP SetTrigger	Address	·	Ac	idress - ກຳໄປ	s1·
ResetTrigger1	ResetTrigger	Address				

ST Address1:=KEEP(SetTrigger1, ResetTrigger1);

SET, I	RST		Set, F	Reset						Steps	s 3			
Description	and the RST: When tl	SET: When the execution conditions have been satisfied, the output is turned on, and the on status is retained.RST: When the execution conditions have been satisfied, the output is turned off, and the off status is retained.												
	• You can use relays with the same number as many times as you like with the SET and RST instructions. (Even if a total check is run, this is not handled as a syntax error.)													
	 When the SET and RST instructions are used, the output changes with each step during processing of the operation. 													
	•	 To output a result while operation is still in progress, use a partial I/O up- date instruction (F143). 												
	• The output destination of a SET instruction is held even during the opera- tion of an MC instruction.													
	• The output destination of a SET instruction is reset when the mode is changed from RUN to PROG. or when the power is turned off, except when a hold type internal relay is specified as the output destination.													
	 Placing a DF instruction (or specifying a rising edge in LD) before the SET and RST instructions ensures that the instruction is only executed at a ris- ing edge. 													
	• Relays:													
	 Relays can be turned off using the RST instruction. 													
	 Using the various relays with the SET and RST instructions does not result in double output. 													
	 It is no a SET 					ulse r	elay (l	P) as	the o	utput destinat	on for			
PLC types	Availability	FI	P0		FP1		ł	FP-M						
			5k, 10k	0.9k	2.7	7k, 5k	0.9k	2.7k		x: available				
	SET, RST	2	x	x		x	X	X		-: not available				
Operands	Instruction			Rela	iy			T	/C	Constant				
	manuction	X	Y	R	L	Е	Р	sv	EV	dec. or hex.				
	SET, RST	_	x	х	х	х	_	_	_	_				

443 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net **Example** In this example, the SET and RESET instructions are demonstrated in function block diagram (FBD), ladder diagram (LD) and instruction list (IL). Since addresses are assigned directly using Matsushita addresses, no POU header is necessary.


Body Using the DF command or specifying a rising edge refines the program by making the programming step valid for one scan only:

- 1) When the input X0 is activated, the output Y0 is set.
- 2) When the input X0 is turned off, the output Y0 remains set.
- 3) When the input X1 is activated, the output Y0 is reset.
- 4) When the input X0 is reactivated, the output Y0 is set.

1)	1	X0 = 2#1 i o SET
,	2	X1 = 2#0 i i KSTY0 = 2#1 ·
1	1	X0 = 2#0 i o SET Y0 = 2#1
2)	2	X1 = 2#0 i i Y0 = 2#1
3)	1	X0 = 2#0 i o SETY0 = 2#0 ·
	2	X1 = 2#1 i o RST
4)	1	X0 = 2#1 i i SETY0 = 2#1
	2	X1 = 2#1 i i RST Y0 = 2#1

LD In ladder diagram, specify a rising edge in the contact and SET or RESET in the coil:

IL In instruction list, S and R are used for SET and RESET:

0	1	LD XO DF (* edge detection *) S YO
1)	2	LD X1 DF (* edge detection *) R Y0
0	1	LD XO DF S YO
2)	2	LD X1 DF (* edge detection *) R Y0
	1	LD . XO DF . (* edge detection *) S . YO .
3)	2	LD K1 DF (* edge detection *) R (YD)
4)	<u>4</u>	LD XO DF (* edge detection *) S YO
	2	LD X1 DF (* edge detection *) R Y0

445 CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Chapter 27

Control Instructions

available

448				
CTi Automation	- Phone: 800.894.0412	- Fax: 208.368.0415	 Web: www.ctiautomation.net 	: - Email: info@ctiautomation.ne

Master control relay

Steps

2

The MC (Master Control Relay) instruction executes the program between the Description master control relay MC and master control relay end MCE instructions of the same number Num* only if the trigger EN is in the ON-state. When the predetermined trigger EN is in the OFF state, the program between the master control relay MC and master control relay end MCE instructions are not executed. A master control instruction (MC and MCE) pair may also be programmed in between another pair of master control instructions. This construction is called "nesting".

Availability	FP0		FP1	F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
MC	х	х	х	х	х	x: availa -: not av

Data types

Variable	Data type	Function
Num*	constant	Constant number that must correspond to MCE number, both of which delimit a "nested" program that is not executed

i Per

It is not possible to use this function in a function block POU.

Below is an example of a ladder diagram (LD) body for the instruction.

• The maximum possible value that can be assigned to Num* depends on the PLC type.

Example

2.122 5 MC -out · · start — EN ENO Num* · 13 -.

MC

MCE

1

1

MCE		Master control relay end	Steps	2
-		er Control Relay End) instruction executes		

the master control relay **MC** and master control relay end **MCE** instructions of the same number **Num*** only if the trigger **EN** is in the ON–state. When the predetermined trigger **EN** is in the OFF state, the program between the master control relay **MC** and master control relay end **MCE** instructions are not executed. A master control instruction (**MC** and **MCE**) pair may also be programmed in between another pair of master control instructions. This construction is called "nesting".

							_
PLC types	Availabilit	FP0		FP1	F	P–M	
	Availabilit	2.7k, 5k, 10	0.9k	2.7k, 5k	0.9k	2.7k, 5k	T
	MCE	х	х	x	х	х	x: available –: not available
			T				
Data types	Variable	Data type	Function	ı			
	Num*	constant		number that i mit a "nested	MC number, both of texecuted		
19 19	 It is not possible to use this function in a function block POU. The maximum possible value that can be assigned to Num* depends on the PLC type. 						
Example	Below is ar	n example of	an instru	ction list (IL) boo	dy for the	instruction.
	LD s	-		tart; St E funct:		5 5	al for

(* 1 = Num* *) (* ... *)

program part. *)

(* ... *) (* 1 = Num* *)

(* Execute or execute not this

JP	Jump			Step	S	2	
	 	 	 				1

Description The JP (Jump to Label) instruction skips to the Label (LBL) function that has the same number Num* as the JP function when the predetermined trigger EN is in the ON-state. The JP function will skip all instructions between a JP and an LBL of the same number. When the JP instruction is executed, the execution time of the skipped instructions is not included in the scan time. Two or more JP functions with the same number Num* can be used in a program. However, no two LBL instructions may be identically numbered. LBL instructions are specified as destinations of JP, LOOP and F19_SJP instructions. One JP and LBL instruction pair can be programmed between another pair. This construction is called nesting.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	JP	х	х	х	х	х	x: available –: not available

Data types

;	Variable	Data type	Function
	Num*	constant	Constant number that must correspond to LBL number, this "nested" program is jumped over

r

• It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends on the PLC type.

Example Below is an example of an instruction list (IL) body for the instruction.

LD	start	(* EN = start; Starting signal for
		the JP function. *)
JP	1	(* Num* = 1 (Address of Label) *)

LOOP		Lo	Loop						4	
Description	The LOOP (Loop to Label) instruction skips to the LBL instruction with the sa number Num [*] as the LOOP instruction and repeats execution of what follows u the data of a specified operand becomes "0". The LBL instructions are specif as destination of the LOOP instruction. It is not possible to specify two or more L instructions with the same number Num [*] within a program. If the set value s in data area is "0" from the beginning, the LOOP instruction is not executed (ignore									
PLC types	Augilahilite	FP0		FP1		P-M	I			
	Availabilit	2.7k, 5k, 1	0k 0.9k	2.7k, 5k	0.9k	2.7k, 5k	İ			
	LOOP	x	х	х	x	х	x: ava	ilable available		
Data types	Variable	Data type	Function							
	s	INT, WORD	Set value							
	Num*	constant	Constant number that must correspond to LBL number, this "nested" program is looped until the variable at s reaches 0						1	

			T/C		Register			Constant	
WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.	
х	x	х	х	х	х	х	х	_	

x: available -: not available

• It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends on the PLC type.

Example Below is an example of a ladder diagram (LD) body for the instruction.

· · · · · · · LOOP	1000		-0	ut	
· · · · 2 Num*		•	5	55	3
• • Var_0 — s					
		•	÷.		1

	Steps 1								
The LBL (Label for the JP and LOOP) instruction skips to the LBL instruction with the same number Num * as the JUMP instruction if the predetermined trigger E is in the ON–state. It skips to the LBL instruction with the same number Num * a the LOOP instruction and repeats execution of what follows until the data of specified operand becomes "0".									
Availabilit	FP0	FP1		F	P-M	Ţ			
Availability	2.7k, 5k, 1	0k 0.9k	2.7k, 5k	0.9k	2.7k, 5k				
LBL	x	х	x	х	x	x: available -: not available			
Variable Num*	Data type constant			must co	rrespond to				
	the same n is in the ON the LOOP specified of Availability LBL Variable	The LBL (Label for the same number Num is in the ON-state. It sk the LOOP instruction a specified operand becomeAvailabilityFP0 2.7k, 5k, 10 2.7k, 5k, 10LBLxVariableData type	the same number Num* as the J is in the ON-state. It skips to the the LOOP instruction and repea specified operand becomes "0". FP0 Availability FP0 2.7k, 5k, 10k 0.9k LBL x x Variable Data type Function Num* constant Constant	The LBL (Label for the JP and LOOP) instr the same number Num* as the JUMP instr is in the ON-state. It skips to the LBL instr the LOOP instruction and repeats execut specified operand becomes "0".AvailabilityFP0FP12.7k, 5k, 10k0.9k2.7k, 5k, 10k0.9kVariableData typeFunctionNum*constantConstant number that	The LBL (Label for the JP and LOOP) instruction the same number Num* as the JUMP instruction is in the ON-state. It skips to the LBL instruction the LOOP instruction and repeats execution of specified operand becomes "0". $\overline{\text{Availability}}$ $\overline{\text{FP0}}$ $\overline{\text{FP1}}$ $\overline{\text{FP1}}$ $\overline{\text{Availability}}$ $\overline{\text{FP0}}$ $\overline{\text{FP1}}$ $\overline{\text{FP1}}$ $\overline{\text{LBL}}$ x x x x $\overline{\text{Variable}}$ $\overline{\text{Data type}}$ $\overline{\text{Function}}$ Num*constantConstant number that must constant	The LBL (Label for the JP and LOOP) instruction skips to the the same number Num* as the JUMP instruction if the pre- is in the ON-state. It skips to the LBL instruction with the same the LOOP instruction and repeats execution of what follow specified operand becomes "0". $I = I = I = I = I = I = I = I = I = I =$			

• It is not possible to use this function in a function block POU.

• The maximum possible value that can be assigned to Num* depends on the PLC type.

Example Below is an example of a ladder diagram (LD) body for the instruction.

5	tar	t	÷	E	LENE	BL ENI	0	•	_0	ut
÷	• •	1 –	_	N	um	1*			S.	ά.

1 Cor

ICTL			Interrupt control Steps							
Description	The ICTL (Interrupt Control) instruction sets all interrupts to enable or disable Each time the ICTL instruction is executed, it is possible to set parameters like th type and validity of interrupt programs. Settings can be specified by s1 and s2 .									
	● s1:1	16–bit equiv	alent constant or 16-b	bit area for interrupt cont	trol setting					
	 s2: 16-bit equivalent constant or 16-bit area for interrupt trigger condition setting 									
	 The number of interrupt programs available is: 16 interrupt module initiated interrupt programs (INT 0 to INT 15) 8 advanced module (special modules, like positioning,) initiated interrupt programs (INT 16 to INT 23) 									
 1 time-initiated interrupt program (INT 24) (Time base 0.5 ms ar selectable for FP10SH) 										
	Be sure to use ICTL instructions so that they are executed once at the leadin of the ICTL trigger using the DF instruction. Two or more ICTL instruction have the same trigger.									
	Bit	15 8		70						
	o1 16#	Coloction of	control function	Interrupt type coloction						

Bit	15 8	70
s1 16#	Selection of control function 00: Interrupt "enable/disable" control 01: Interrupt trigger reset control	 Interrupt type selection 00: Interrupt module initiated interrupt (INT 0–15) 01: Advanced module initiated interrupt (INT 16–23) 02: Time-initiated interrupt (INT 24)
s1 16# s2 2#	00 Bit 0: 0 Interrupt program 0 disabled Bit 0: 1 Interrupt program 0 enabled Bit 1: 0 Interrupt program 1 disabled Bit 15: 1 Interrupt program 15 enabled ✓ Example: s2 = 2#000000000001010	00

r

- The current enable/disable status of each interrupt module initiated interrupt can be checked by monitoring the special data register DT90025.
- The current enable/disable status of each non-interrupt module initiated interrupt can be checked by monitoring the special data register DT90026.
- The current interrupt interval of the time–interrupt can be checked by monitoring the special data register DT90027.
- If a program is written into an interrupt task, the interrupt concerned will be enabled automatically during the initialization routine when starting the program.

• With the ICTL instruction an interrupt task can be enabled or disabled by the program.

PLC types

Availability	FP0		FP1	F	P–M	
	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
ICTL	-	-	х	-	х	x: available –: not available

Data types

Variable	Data type	Function
s1	INT, WORD	Interrupt control data setting
s2	INT, WORD	Interrupt condition setting

Operands

For		Re	lay		Т/	C	R	egiste	er	Constant
101	WX	WY	WR	WL	sv	EV	DT	LD	FL	dec. or hex.
s1, s2	_	х	х	х	x	х	х	х	х	х

x: available -: not available

- **Example** In this example the function ICTL is programmed in ladder diagram (LD) and instruction list (IL). The same POU header is used for both programming languages.
 - POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	lass Identifier Type		Initial	Comment
0	VAR 🗄	Var_1	WORD Ŧ	16#0002	Input parameter s1
1	VAR 🛓	Var_2	WORD Ŧ	10	Input parameter s2
2	VAR 🛓	start	BOOL Ŧ	FALSE	enable signal

Body The interval for executing INT 24 program is specified as 100 ms (10ms time base selected) when the leading edge of start is detected.

LD	start··· DF ···· ICTL · EN EN EN O
	· · · · · · · · · · · · Var 1 — s1
	······································
	A KA
IL	LD start (* Load value of EN-input*) DF (* Leading edge detection *) ICTL Var_1,Var_2 (* Execute ICTL *)

Chapter 28

Special Instructions

1

			_
F140_STC	Carry–flag set	Steps	

Description Special internal relay R9009 (carry–flag) goes ON if the trigger **EN** is in the ON–state. This instruction can be used to control data using carry–flag R9009, e.g. F122_RCR and F123_RCL instructions.

PLC types	Availability	FP0		FP1	F	P–M	
	Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
	F140	x	х	х	х	х	x: available –: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR ±	start	BOOL Ŧ		activates the function; result after a leading edge from start: carry-flag (R9009) will be set ON

Body When the variable *start* is set to TRUE, the function is executed.

- LD F140_STC
- ST IF start THEN

F140_STC();

END_IF;

1

F141_CLC

Carry–flag reset

Steps

Description Special internal relay R9009 (carry–flag) goes OFF if the trigger **EN** is in the ON–state. This instruction can be used to control data using carry–flag R9009, e.g. F122_RCR and F123_RCL instructions.

PLC types

	Availability	FP0		FP1	F	P-M	
		2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	Ţ
	F141	х	х	х	х	х	x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

CI	ass	Identifier	Туре	Initial	Comment			
0	∖R ±	start	BOOL Ŧ		activates the function; result after a leading edge from start: carry-flag (R9009) will be set OFF			

Body When the variable *start* is set to TRUE, the function is executed.

LD

F141_CLC EN ENO

ST IF start THEN
 F141_CLC();
END IF;

F143_	<u>I</u> ORF	Pa	rtial I/O u	update			Steps 5				
Description	(starting w	The instruction F143_IORF updates the inputs and outputs specified by d1 (starting word address) and d2 (ending word address) immediately after the trigger turns ON even in the program execution stage.									
19		• With the FP0 or FP–Sigma, refreshing initiated by the IORF command is done only for the control unit.									
	 If d1 and d2 are variables and not constants, then the compiler auto- matically accesses the variables' values via the index register. 										
	• With in	put refresh	ing, WX0	should b	e spe	cified for	d1 and d2.				
	• With o	utput refres	hing, WY	0 should	be sp	ecified fo	or d1 and d2.				
PLC types	Availabilit	FP0		FP1	F	P–M					
	Availabilit	2.7k, 5k, 1	0k 0.9k	2.7k, 5k	0.9k	2.7k, 5k	-				
	F143	х	x	х	х	х	x: available -: not available				
Data types	Variable	Data type	Functior	1							
	d1	INT, WORD	WORD starting word address								
	d2	INT, WORD	ending wo	rd address							
	The same	type of opera	and shoul	d be spec	ified fo	or d1 and	d2.				
Operands		Rela	V	T/C		Register	Constant				

For		Re	lay		Т/	C	R	egiste	er	Constant
101	WX ₍₁₎	WY ₍₁₎	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
d1	x	х	-	-	-	-	-	-	-	-
d2	x	x	-	-	-	-	_	-	-	_

x: available -: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	FirstRefreshAddr	INT 📑	10	
1	VAR 🛓	LastRefreshAddr	INT 📑	10	

Body When the variable *start* changes from FALSE to TRUE, the function is carried out. To update WX10 and WY10 based on the master I/O map configuration, set d1 = 10 and d2 = 10.

LD · start· · · · · · · · · · · · · · · · · · P 1 · · · · · F143_IORF EN ENO -out FirstRefreshAddr ---- d1 . . . LastRefreshAddr — d2 . · · · · · · · · · · · · · · · ST (* PLCs without backplanes FP-M/FP-1/FP0/FP-Sigma *) IF start THEN (* Updates the input/output relay of word no. 0 to 1 *) F143_IORF(WX0, WX1); F143_IORF(WY0, WY1); END_IF;

If variables are used for the inputs d1 and d2 then FPWIN Pro internally uses index registers.

F148_ERR

Self-diagnostic error set

Steps

3

- **Description** The error No. specified by \mathbf{n}^* is placed into special data register DT9000 (DT90000 for FP10/10S). At the same time, the self-diagnostic error-flag R9000 is set and ERROR LED on the CPU is turned ON. The contents of the error-flag R9000 can be read and checked using Control FPWIN Pro (**Monitor** \rightarrow **Display Special Relays** \rightarrow **Error Flag**). The error No., special data register DT9000 (DT90000 for FP10/10S), can be read and checked using Control FPWIN Pro (**Monitor** \rightarrow **Display Special Registers** \rightarrow **Basic Error Messages**). When $\mathbf{n}^* = 0$, the error is reset. (only for operation continue errors, $\mathbf{n}^* = 200$ to 299.) The ERROR LED is turned OFF and the contents of special data register DT9000 (DT90000 for FP10/10S) are cleared with 0. When $\mathbf{n}^* = 100$ to 199, the operation is halted. When $\mathbf{n}^* = 200$ to 299, the operation is continued. Flag condition:
 - Error–flag (R9007): Turns ON and keeps the ON state when the **n** exceeds the limit.
 - Error-flag (R9008): Turns ON for an instant when the **n** exceeds the limit.

PLC t	ypes
-------	------

Availability	FP0	FP1		F	P–M	
Availability	2.7k, 5k, 10k	0.9k	2.7k, 5k	0.9k	2.7k, 5k	
F148	Х	х	х	х	х	x: available –: not available

Data types

Variable	Data type	Function
n*	constant	self-diagnostic error code number, range: 0 and 100 to 299

Operands

For		Re	lay		T/C		Register			Constant
101	WX	WY	WR	WL	SV	EV	DT	LD	FL	dec. or hex.
n*	_	-	_	_	-	-	-	_	-	х

x: available –: not available

Example In this example the function is programmed in ladder diagram (LD) and structured text (ST). The same POU header is used for both programming languages. You can find an instruction list (IL) example in the online help.

POU In the POU header, all input and output variables are declared that are used for programming this function.

	Class	Identifier	Туре	Initial	Comment
0	VAR 🛓	start	BOOL 🗗	FALSE	activates the function

Body When the variable *start* is set to TRUE, the function is executed.

LD

ST IF start THEN

- (* Sets the self-diagnostic error 100 *)
- (* The ERROR/ALARM LED of the PLC is on,
- and operation stops. *)

F148_ERR(100);

END_IF;

F149_MSG

Message display

Steps 13

Description This instruction is used for displaying the message on the FP Programmer II screen. After executing **F149_MSG** instruction, you can see the message specified by **s** on the FP Programmer II screen. When the **F149_MSG** instruction is executed, the message–flag R9026 is set and the message specified by **s** is set in special data registers DT9030 to DT9035/DT90030 to DT90035. Once the message is set in special data registers, the message cannot be changed even if the **F149_MSG** instruction is executed again. You can clear the message with the FP Programmer II.

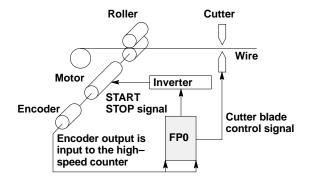
	-										
PLC types	Availabilit	v	FP0			FP1		F	P–M		
	, (vanability	2	2.7k, 5k, 10k		0.9k	2.7k,	5k	0.9k	2.7k, 5		
	F149		х		х	х		х	х		: available : not available
_											
Data types	Variable	Data	type	Fu	nction	า					
	S	STRI	NG(12)	me	essage	to be dis	splay	ed			
Operands											
Operando	For		Re	-	1	-	C		Registe		Constant
		WX	WY	WR	WL	sv	E٧	/ DT	LD	FL	character
	s	-	-	-	-	-	-	-	-	-	x
Example POU header	text (ST). T can find an	The s instr J hea	ame F uction der, al	POU list (Il inpu	heade IL) ex ut and	er is us ample	in t	for bot he onl	h progr ine help	ammi D.	-: not availa (LD) and structu ng languages. d that are used
	Class	lo	lentifier	Тур	be	Initial		Comm	ent		
	0 VAR	± st	art	ВО	ol 🗐	FALSE		activat	es the fu	nction	
Body LD	When the variable <i>start</i> is set to TRUE, the function is executed.										
ST	 IF start	THE	. IN			· ·					

F149_MSG('Hello, world');

END_IF;

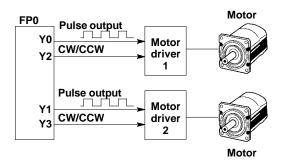
Appendix A

High–Speed Counter, Pulse and PWM Output


A.1 High–Speed Counter, Pulse and PWM Output

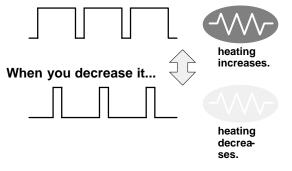
There are three functions available when using the high-speed counter built into the FP0 programmable controller. There are four channels for the built-in high-speed counter. The channel number allocated for the high-speed counter will change depending on the function being used.

The counting range is: K-8388608 to K8388607 (HFF8000 to H7FFFFF), coded 24-bit binary.


A.1.1 High-speed counter function

The high–speed counter function counts external inputs such as those from sensors or encoders. When the count reaches the target value, this function turns the desired output ON and OFF.

A.1.2 Pulse output function


Combined with a commercially available motor, the pulse output function enables positioning control. With the appropriate instruction, you can perform trapezoidal control, origin return, and JOG operation.

A.1.3 **PWM** output function

By using the appropriate instruction, the PWM output function enables a pulse output of the desired duty ratio.

When you increase the pulse width...

A.2 Specifications and Restricted Items

A.2.1 Specifications

			Hig	jh-Spee	d Counte	er				
Input/out	tput contact nu used	umber being	Built–in	Men	nory area i	used		mance cations		
ON/OFF output	Count mode	Input contact number (value in parenthe- sis is reset input)	high– speed counter channel no.	Contro I flag	Elapsed value area	Target value area	Min. input pulse width	Maximum counting speed	Related instructions	
		X0 (X2)	CH0	R903A	DT9044 to DT9045	DT9046 to DT9047		Total of 4 CH with		
Specify the	Incremental input Decrement– al input	X1 (X2)	CH1	R903B	DT9048 to DT9049	DT905 0 to DT905 1	50 ms <10 kHz>			
desired output from Y0 to Y7		Decrement-	X3 (X5)	CH2	R903C	DT9104 to DT9105	DT910 6 to DT910 7	100 ms	4 CH with max. 10 kHz	F0_MV F1 DMV
		X4 (X5)	СНЗ	R903D	DT9108 to DT9109	DT911 0 to DT9111	<5 kHz>		F166_HC1S F167_HC1R	
Specify the desired	2–phase input Incremental/ decremental input Directional distinction	X0 X1 (X2)	CH0	R903A	DT9044 to DT9045	DT904 6 to DT904 7	50 ms <10 kHz>	Total of 2 CH with		
output from Y0 to Y7		X3 X4 (X5)	CH2	R903C	DT9104 to DT9105	DT910 6 to DT910 7	100ms <5 kHz>	max. 2 kHz		

r

Reset input X2 can be set to either CH0 or CH1. Reset input X5 can be set to either CH2 or CH3.

	Pulse Output									
Input/output contact number being used				Built–in high–	Memory area used			Performance specifications	Related	
Pulse output	Direction- al output	Home input	Home proximity input	speed counter channel no.	Control flag	Elapsed value area	Target value area	for maximum output frequency	instructions	
YO	Y2	XO	DT9052 <bit2></bit2>	CH0	R903A	DT9044 to DT9045	DT904 6 to DT904 7	Max. 10 kHz for 1–point output	F0_MV F1_DMV	
Y1	Y3	X1	DT9052 <bit6></bit6>	CH1	R903B	DT9048 to DT9049	DT905 0 to DT905 1	Max. 5 kHz for 2–point output	F168_SPD1 F169_PLS	

The maximum 1-point output for instruction F168 (SPD1) is 9.5 kHz.

PWM Output							
Output number being used	Built–in high–speed	Memory area used	Performance specifications for	Related			
Output number being used	counter channel no.	Control flag	output frequency				
YO	CH0	R903A	Frequency: 0.15 Hz to 38 Hz	F0_MV F1_DMV			
¥1	CH1	R903B	Duty: 0.1 % to 99.9 %	F1_DMV F170_PWM			

A.2.2 Functions and Restrictions

The same channel cannot be used by more than one function, e.g. CH0 cannot be shared by the high–speed counter and pulse output functions.

The number allocated to each function cannot be used for normal input or outputs. Therefore the following examples are **NOT** possible:

- When using CH0 for 2–phase inputting with the high–speed counter function, you cannot allot X0 and X1 to normal inputs.
- When using Y0 for the pulse output function, you cannot allot origin input X0 to a normal input.
- When using Y0 for the pulse output (with directional output operating) function, you cannot allot Y2 (directional output) to a normal input or output.

When using the high–speed counter with a mode that does not use the reset input, you can allot the inputs listed in parenthesis in the specifications table to a normal input.

Example When using the high-speed counter with no reset input and 2-phase input, you can allot X2 to a normal input.

When any of the instructions related to the high–speed counter (F166 to F170) are executed, the control flag (special internal relay: R903A to R903D) corresponding to the used channel turns ON.

When the flag for a channel turns ON, another instruction cannot be executed using that same channel. For example, while executing **F166** (target value match ON instruction) and flag R903A is in the ON state, **F167** (target value match OFF instruction) **CANNOT** be executed with CH0.

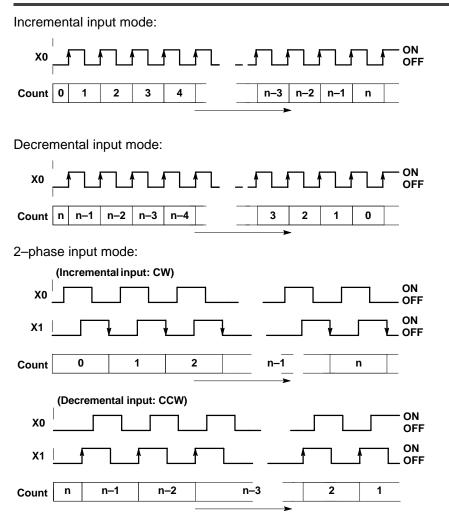
The counting speed when using the high–speed counter function will differ depending on the counting mode as shown in the table. Therefore, the following restrictions apply:

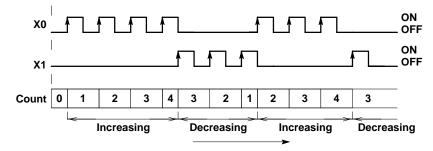
- While in the incremental input mode and using the two channels CH0 and CH1, if CH0 is being used at 8 kHz, then CH1 can be used up to 2 kHz.
- While in the 2–phase input mode and using the two channels CH0 and CH2, if CH0 is being used at 1 kHz, then CH2 can be used up to 1 kHz.

The maximum output frequency when using the **pulse output function** will differ depending on the output contact number as shown in the table:

- When using either only Y0 or only Y1, the maximum output frequency is 10 kHz.
- When using the two contacts Y0 and Y1, the maximum output frequency is 5 kHz.

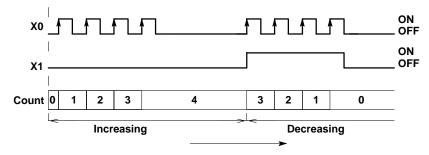
When using the high–speed counter function and pulse output function, specifications will differ depending on the conditions of use.


Example When using one pulse output contact with a maximum output frequency of 5 kHz, the maximum counting speed of the high–speed counter being used simultaneously is 5 kHz with the incremental mode and 1 kHz with the 2–phase mode.

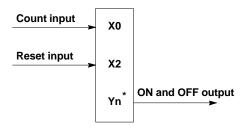

A.3 High–Speed Counter Function

- The high–speed counter function counts the input signals, and when the count reaches the target value, turns ON and OFF the desired output.
- The high–speed counter function is able to count high–speed pulses of frequencies up to 10 kHz.
- To turn ON an output when the target value is matched, use the target value match ON instruction F166. To turn OFF an output, use the target value match OFF instruction F167.
- Preset the output to be turned ON and OFF with the SET/RET instruction.

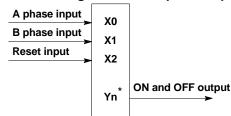
In order to use the high–speed counter function, it is necessary to set system registers No. 400 and No. 401.


A.3.1 Types of Input Modes

Incremental/decremental input mode (separate input mode):


Directional distinction mode:

A.3.2 I/O Allocation


The input allocation, as shown in the table in section LEERER MERKER, will differ depending on the channel number being used. The output turned ON and OFF can be specified from between Y0 to Y7 as desired with instructions **F166** and **F167**.

Example 1: When using CH0 with incremental input and reset input

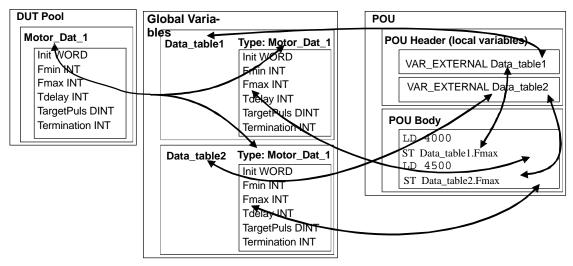
* The output turned ON and OFF when values match can be selected from Y0 to Y7.

Example 2: When using CH0 with 2-phase input and reset input

* The output turned ON and OFF when values match can be selected from Y0 to Y7.

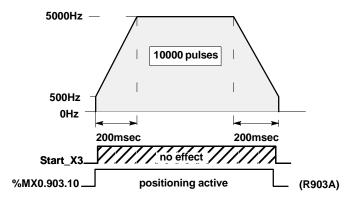
A.4 Pulse Output Function

The pulse function enables positioning control by use in combination with a commercially available pulse–string input type motor driver. It provides trapezoidal control with the instruction **F168** for automatically obtaining pulse outputs by specifying the initial speed, maximum speed, acceleration/deceleration time, and target value. The **F168** instruction also enables automatic home return.

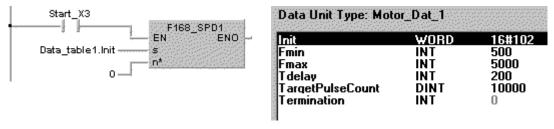

A JOG operation using instruction **F169** for pulse output while the predetermined trigger is in the ON state is also possible.

When using the pulse output function, set the channels corresponding to system registers No. 400 and No. 401 to "Do not use high-speed counter."

A.4.1 SDT Variables


SDT Variables are used in the following example programs. SDT means Structured Data Type. These variables can be comprised of several kinds of variables (e.g. Word and Double Word).

SDT definitions or structures are administered globally and receive a structure name. For this structure, elements of various types are defined. If an SDT variable is to be used in a program, you need to assign an appropriate SDT variable in the global variable list. If one structure element of an SDT variable is to be accessed, the structure element must be separated from the structure variable name by a period (e.g. Data_table1.Fmax).

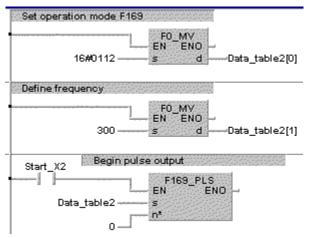


A.4.2 Positioning Function F168

This example illustrates normal positioning with an acceleration and a deceleration ramp.

The following program generates a pulse from output Y0. The initial speed is 500Hz, and the normal processing speed is 5000Hz. The acceleration and deceleration times are 200ms each. The movement amount is 10000 pulses.

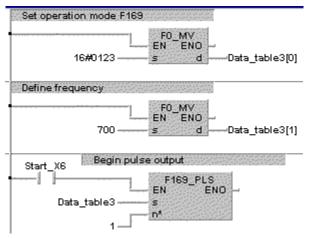
r


- For trapezoidal control the initial and final speeds may not be greater than 5000Hz.
- The sum of maximum frequencies of all axes must not exceed 10000Hz.

A.4.3 Pulse Output Function F169

The following example shows this process in a positive direction. The mode (of operation) 16#0112 sets the following conditions:

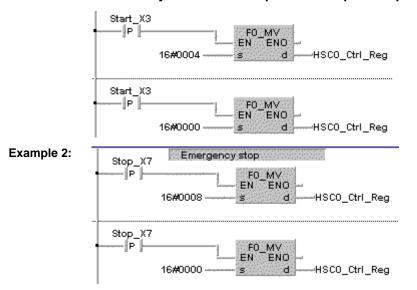
- The duty ratio is 10% pulse and 90% pause
- Incremental counting
- Directional output %QX0.2 (Y2) to "0".


A frequency of 300Hz is output via the input Start_X2. During frequency output, the count of the elapsed value for the high-speed counter CH0 system registers (%MW0.904.8 and %MW0.904.9 (DT9048 u. DT9049), or %MW0.9004.8 and %MW0.9004.9 with the FP0-T32CP) decreases.

The following example shows this process in a negative direction. The mode (of operation) 16#0113 sets the following conditions:

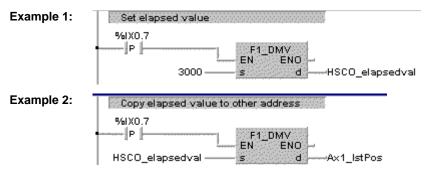
- The duty ratio is 10% pulse and 90% pause
- Decremental counting
- Directional output %QX0.2 (Y2) to "1".

A frequency of 700Hz is output via the input Start_X6. During frequency output, the count of the elapsed value for the high-speed counter CH0 system registers (%MW0.904.8 and %MW0.904.9 (DT9048 u. DT9049), or %MW0.9004.8 and %MW0.9004.9 with the FP0-T32CP) decreases.



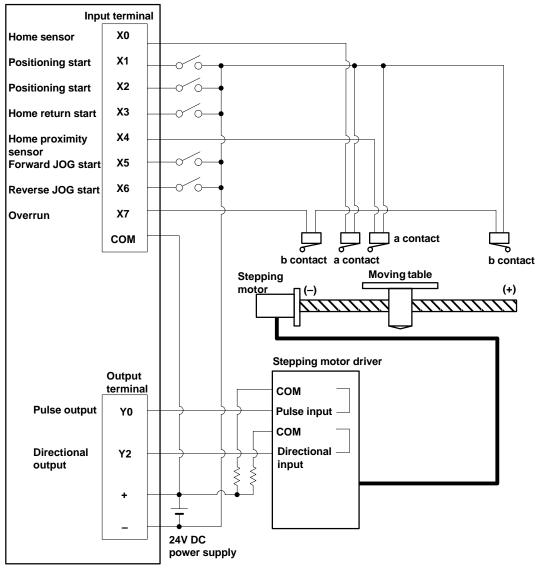
A.4.4 High–Speed Counter Control Instruction F0_MV

The function F0_MV is used for two different tasks. F0_MV is known as a MOVE function that copies values and memory contents. In addition, F0_MV is used to control the high–speed counter (e.g. for positioning a stepping motor). In this respect, F0_MV offers the following functionality:

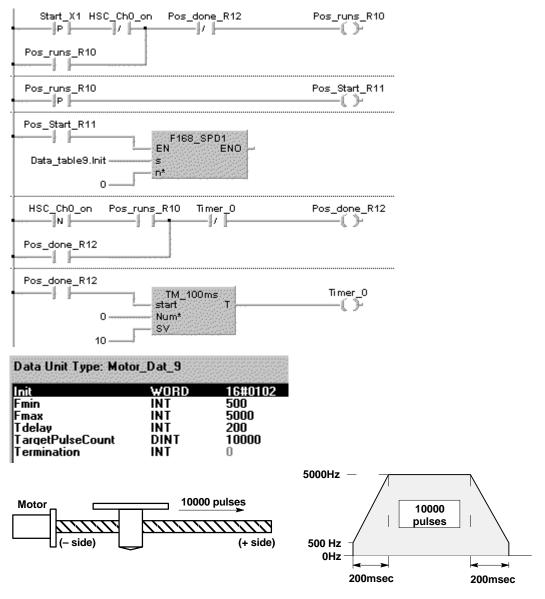

 This instruction is used for resetting the built-in high-speed counter, stopping the pulse outputs, and setting and resetting the home proximity input.

- Specify this instruction together with special data register %MW0.905.2 (DT9052) or %MW0.9005.2 with the FP0–T32CP.
- Once this instruction is executed, the settings will be retained until this instruction is executed again.
- Example 1: The home proximity speed is the starting speed of the ramp. The switching is enabled by assigning the value 4 to the high–speed counter special register (%MW0.905.2 (DT9052) or %MW0.9005.2 with the FP0–T32CP). "0" is entered just after that to perform the preset operations.

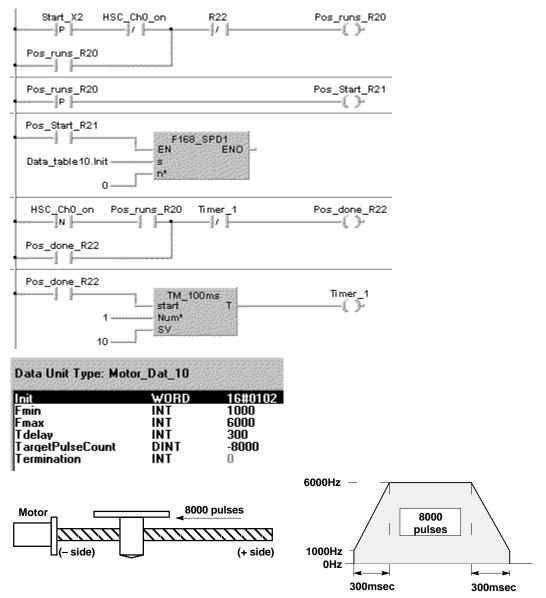
A.4.5 Elapsed Value Change and Read Instruction F1_DMV


In these examples, *HSCO_elapsedval* is assigned to the address %MD0.904.4 (DDT9044) or %MD0.9004.4 with the FP0–T32CP.

A.5 Sample Program for Positioning Control


Wiring example

FP0

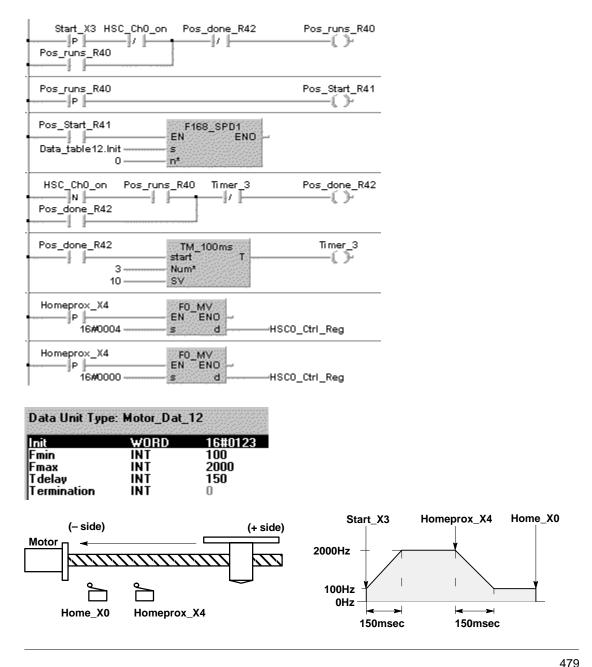

A.5.1 Relative Value Positioning Operation (Plus Direction)

With **Start_X1** positioning starts. **Pos_runs_R10** indicates active positioning. Reaching the target position is indicated by **Pos_done_R12** for 1s.

A.5.2 Relative Value Positioning Operation (Minus Direction)

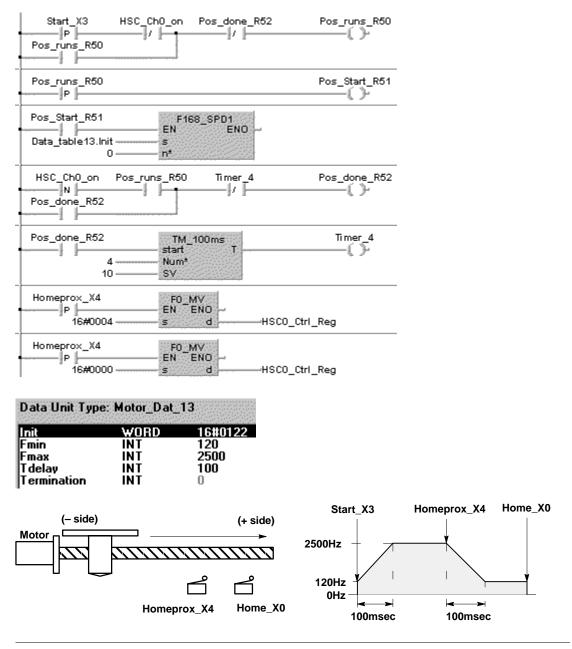
With **Start_X2** positioning starts. **Pos_runs_R20** indicates active positioning. Reaching the target position is indicated by **Pos_done_R22** for 1s.

A.5.3 Absolute Value Positioning Operation


With **Start_X1** positioning starts. **Pos_runs_R30** indicates active positioning. Reaching the target position is indicated by **Pos_done_R32** for 1s. With absolute positioning, the directional output is controlled. The mode of operation 16#112 sets the directional output to "1" when moving backward, and to "0" when moving forward.

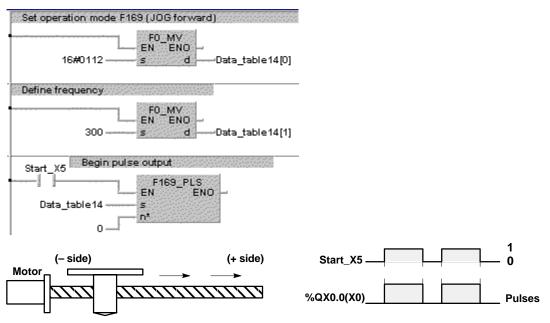
A.5.4 Home Return Operation (Minus Direction)

The return home direction causes the stepping motor to move in a reverse (minus) direction. The ramps are maintained, just as they are with other positioning processes. The braking ramp engages when the home proximity sensor turns on. Then the stepping motor runs at starting speed until the home sensor is activated. Then the pulse output stops, and the elapsed value is set to 0.

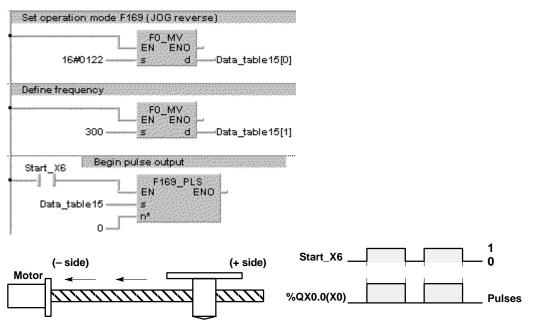

With **Start_X3** positioning starts. **Pos_runs_R40** indicates active positioning. **Pos_done_R42** turns on for 1s after the return home is completed, and the elapsed value (Addr. %MW0.904.4 and %MW0.904.5 (DT9044 and DT9045) or %MW0.9004.4 and %MW0.9004.5 with the FP0–T32CP) is set to 0.

A.5.5 Home Return Operation (Plus Direction)

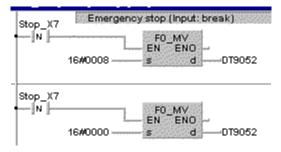
The return home direction causes the stepping motor to move in a forward (positive) direction. The ramps are maintained, just as they are with other positioning processes. The braking ramp engages when the home proximity sensor turns on. Then the stepping motor runs at starting speed until the home sensor is activated. Finally the pulse output stops, and the elapsed value is set to 0.


With **Start_X3** positioning starts. **Pos_runs_R50** indicates active positioning. **Pos_done_R52** turns on for 1s after the return home is completed, and the elapsed value (Addr. %MW0.904.4 and %MW0.904.5 (DT9044 and DT9045) or %MW0.9004.4 and %MW0.9004.5 with the FP0–T32CP) is set to 0.

480


A.5.6 JOG Operation (Plus Direction)

The input Start_X5 starts the pulse output. The directional output %QX0.2 (Y2) is not controlled using this mode of operation (16#112).


A.5.7 JOG Operation (Minus Direction)

The input Start_X6 starts the pulse output. The directional output %QX0.2 (Y2) is set using this mode of operation (16#122).

A.5.8 Emergency Stop

With a falling edge at the input, the pulse output is stopped. A break circuit has to be used as a protective circuit for this program. By using a break circuit, the emergency stop function is made fail–safe.

Appendix B

Special Data Registers

B.1 Special Data Registers FP0

The special data registers are one word (16-bit) memory areas which store specific information. With the exception of registers for which "Writing is possible" is indicated in the "Description" column, these registers cannot be written to.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32		
DT90000	DT9000	Self–diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display. For detailed information, section 8.6.3.
DT90010	DT9010	I/O verify error unit	The position of the I/O for which an error occurred is stored in bits 0 to 3.
DT90014	DT9014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR) or F106 (BSL) instruction is executed.
DT90015	DT9015	Auxiliary register for operation	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32 (%) or F52 (B%) instruction is executed.
DT90016	DT9016		The divided remainder (32-bit) is stored DT9015 and DT9016/DT90015 and DT90016 when F33 (D%) or F53 (DB%) instruction is executed.
DT90017	DT9017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.
DT90018	DT9018	Operation error address (non-hold)	The address where a operation error occurred is stored. Each time an error occurs, the new ad- dress overwrites the previous address. At the be- ginning of scan, the address is 0. Monitor the ad- dress using decimal display.
DT90019	DT9019	2.5ms ring counter	The data stored here is increased by one every 2.5ms. (H0 to HFFFF)
			Difference between the values of the two points (absolute value) X 2.5ms = Elapsed time between the two points.
DT90020	DT9020		Not used
DT90021	DT9021		
DT90022	DT9022	Scan time (current value) (* Note)	The current scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) X 0.1
			K50 indicates 5ms.

r

Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.

Address		Name	Description		
FP0 T32	FP0 C10, C14, C16, C32				
DT90023	DT9023	Scan time (minimum value) (* Note 1)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) X 0.1 K50 indicates 5ms.		
DT90024	DT9024	Scan time (maximum value) (* Note 1)	The maximum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) X 0.1 K125 indicates 12.5ms.		
DT90025 (* Note 2)	DT9025 (* Note 2)	Mask condition monitoring register for interrupts (INT 0 to 5)	The mask conditions of interrupts using ICTL instruction can be monitored here. Monitor using binary display. 15 11 7 3 0 (Bit No.) 23 19 16 (INT No.) 0: interrupt disabled (masked) 1: interrupt enabled (unmasked)		
DT90026	DT9026		Not used		
DT90027 (* Note 2)	DT9027 (* Note 2)	Periodical interrupt interval (INT 24)	The value set by ICTL instruction is stored. – K0: periodical interrupt is not used – K1 to K3000: 10ms to 30s		
DT90028	DT9028		Not used		
DT90029	DT9029		Not used		
DT90030 (* Note 2)	DT9030 (* Note 2)	Message 0	The contents of the specified message are stored in these special data registers when F149 (MSG)		
DT90031 (* Note 2)	DT9031 (* Note 2)	Message 1	instruction is executed.		
DT90032 (* Note 2)	DT9032 (* Note 2)	Message 2			
DT90033 (* Note 2)	DT9033 (* Note 2)	Message 3			
DT90034 (* Note 2)	DT9034 (* Note 2)	Message 4			
DT90035 (* Note 2)	DT9035 (* Note 2)	Message 5			
DT90036	DT9036		Not used		
DT90037	DT9037	Work 1 for F96 (SRC) instruction	The number of data that match the searched data is stored here when F96 (SRC) instruction is executed.		

r

- Scan time display is only possible in RUN mode, and shows the operation cycle time. The maximum and minimum values are cleared when each the mode is switched between RUN mode and PROG. mode.
 Used by the custom
- 2) Used by the system.

Address		Name	Description		
FP0 T32	FP0 C10, C14, C16, C32				
DT90038	DT9038	Work 2 for F96 (SRC) instruction	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC) instruction is executed.		
DT90039 to DT90043	DT9039 to DT9043		Not used		
DT90044 DT90045	DT9044	High-speed counter elapsed value for ch0 The elapsed value (24–bit data) for the high- speed counter is stored here. Each time the instruction is executed, the elapsed value for high-speed counter is automatically transfer the special registers DT9044 and			
D190043	D19045		DT9045/DT90044 and DT90045. The value can be written by executing F1 (DMV) instruction.		
DT90046	DT9046	High-speed counter target value for ch0	The target value (24–bit data) of the high–speed counter specified by the high–speed counter in-struction is stored here.		
DT90047	DT9047		Target values have been preset for the various instructions, to be used when the high–speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.		
DT90048	DT9048	High-speed counter elapsed value area for ch1	The elapsed value (24–bit data) for the high– speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high–speed counter is automatically transferred to		
DT90049	DT9049		the special registers DT9048 and DT9049/DT90048 and DT90049. The value can be written by executing F1 (DMV)instruction.		
DT90050	DT9050	High-speed counter target value area for ch1	The target value (24–bit data) of the high–speed counter specified by the high–speed counter in- struction is stored here.		
DT90051	DT9051		Target values have been preset for the various instructions, to be used when the high–speed counter related instruction F166 to F170 is executed. These preset values can only be read, and cannot be written.		

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32		
		High-speed counter control flag	A value can be written with F0 (MV) instruction to reset the high-speed counter, disable counting, stop high-speed counter instruction (F168) , and clear the high-speed counter.
			Control code setting Control code = (Binary) Software reset 0: Yes / 1: No Count 0: Enable / 1: Disable Hardware reset 0: Enable / 1: Disable High-speed counter clear 0: Continue / 1: Clear Software is not reset: H0 (0000) Perform software reset: H1 (0001) Disable count: H2 (0010) Disable hardware reset: H4 (0100) Stop pulse output (clear instruction): H8 (1000) Perform software reset and stop pulse output: H9 (1001) The 16 bits of DT9052/DT90052 are allocated in groups of four to high-speed channels 0 to 3 as shown below.
DT90053		Clock/calendar monitor (hour/minute)	Hour and minute data of the clock/calendar are stored here. This data is read-only data; it cannot be overwritten.
			Higher 8 bits Hour data Hour data Hour tata Hour ta

Address		Name	Description			
FP0 T32	FP0 C10, C14, C16, C32					
DT90054		Clock/calendar monitor and setting (minute/second)	The year, month, day, hour, minute, second, and day-of-the- week data for the calendar timer is stored. The built-in calen- dar timer will operate correctly through the year 2099 and supports leap years. The calendar timer can be set (the time set) by writing a value using a programming tool software or a program that uses the F0 (MV) instruction.			
DT90055		Clock/calendar monitor and setting (day/hour)	a program that		Higher 8 bits	Lower 8 bits
DT90056		Clock/calendar monitor and setting (year/month) Clock/calendar monitor and setting (day-of-the-week)		D130034	H00 to H59 (BCD)	H00 to H59 (BCD)
				DT90055	Day data H01 to H31 (BCD)	Hour data H00 to H23 (BCD)
DT90057				DT90056	Year data H00 to H99 (BCD)	Month data H01 to H12 (BCD)
				DT90057		Day-of-the-week data H00 to H06 (BCD)

Address		Name	Description		
FP0 T32	FP0 C10, C14, C16, C32				
DT90058		Clock/calendar	The clock/calendar is adjusted as follows.		
		time setting and 30 seconds	When setting the clock/calendar by program		
	correction	correction	By setting the the highest bit of DT90058 to 1, the time be- comes that written to DT90054 to DT90057 by F0 (MV) in- struction. After the time is set, DT90058 is cleared to 0. (Can- not be performed with any instruction other than F0 (MV) instruction.)		
			Example:		
		Set the time to 12:00:00 on the 5th day when the X0 turns on. X0 $(DF) \rightarrow 1$ $1 \rightarrow [F0 MV, H 0, DT90054]$ Inputs 0 minutes and			
		[F0 MV, H 512, DT90055] inputs 12th			
			[F0_MV, H8000, DT90058] Sets the time		
		If you changed the values of DT90054 to DT90057 with the data monitor functions of programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT90058.			
			When the correcting times less than 30 seconds		
		By setting the lowest bit of DT90058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT90058 is cleared to 0.			
			Example:		
			Correct to 0 seconds with X0 turns on		
	X0 				
			At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the between 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 second; and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second.		

r

After discharging the battery (including when the power is turned on for the first time), the values of DT90053 to DT90058 change at random. Once the time and date have been set, these values will function normally.

Address		Name		Description
FP0 T32	FP0 C10, C14, C16, C32			
DT90059	DT9059	Serial commu	nication	bit 15 12 11 8 7 4 3 0 DT9059/ DT90059 Error flag of RS232C port • Tool port • Tool port • RS232C port bit 0 = 1: Over run error bit 2 = 1: Parity error • RS232C port bit 8 = 1: Over run error bit 9 = 1: Framing error bit 10 = 1: Parity error
DT90060	DT9060	Step ladder process	Process number: 0 to 15	Indicates the startup condition of the step ladder pro- cess. When the proccess starts up, the bit correspond- ing to the process number turns on "1".
DT90061	DT9061		Process number: 16 to 31	Monitor using binary display.
DT90062	DT9062		Process number: 32 to 47	DT9060/ DT90060 15 11 7 3 0 (Process No.) 0:
DT90063	DT9063		Process number: 48 to 63	not–executing 1: executing
DT90064	DT9064		Process number: 64 to 79	A programming tool software can be used to write data.
DT90065	DT9065		Process number: 80 to 95	
DT90066	DT9066		Process number: 96 to 111	
DT90067	DT9067		Process number: 112 to 127	
DT90104	DT9104	High-speed co elapsed value ch2	-	The elapsed value (24–bit data) for the high–speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high–speed counter is automatically transferred to the special registers
DT90105	DT9105			DT9104 and DT9105/DT90104 and DT90105. The value can be written by executing a DMV (F1) instruction.
DT90106	DT9106	High-speed co target value an ch2		The target value (24–bit data) of the high–speed counter specified by the high–speed counter instruction is stored here.
DT90107	DT9107			Target values have been preset for the various instruc- tions, to be used when the high–speed counter related instruction F166 to F170 is executed. These preset val- ues can only be read, and cannot be written.

Address		Name	Description
FP0 T32	FP0 C10, C14, C16, C32		
DT90108	DT9108	High-speed counter elapsed value area for ch3	The elapsed value (24–bit data) for the high–speed counter is stored here. Each time the ED instruction is executed, the elapsed value for the high–speed counter is automatically transferred to the special registers
DT90109	DT9109		DT9108 and DT9109/DT90108 and DT90109.
			The value can be written by executing a DMV (F1) instruction.
DT90110	DT9110	High-speed counter target value area for ch3	The target value (24–bit data) of the high–speed counter specified by the high–speed counter instruction is stored here.
DT90111	DT9111		Target values have been preset for the various instruc- tions, to be used when the high–speed counter related instruction F166 to F170 is executed. These preset val- ues can only be read, and cannot be written.

B.2 Special Data Registers FP–M/FP1

The special data registers are one word (16-bit) memory areas which store specific information. With the exception of registers for which "Writing is possible" is indicated in the "Description" column, these registers cannot be written to.

Address	Name	Description	Availability					
			FP1			FP-I	M	
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32	
DT9000	Self-diagnostic error code register	The self-diagnostic error code is stored in DT9000 when a self-diagnostic error occurs.	А	А	А	А	А	
DT9014	Auxiliary register for operation	Stores the error code using decimal number. One shift-out hexadecimal digit is stored in hexadecimal digit position 0 (bit positions 0 to 3) when F105 (BSR) or F106 (BSL) in- struction is executed.	А	A	A	A	А	
DT9015	Auxiliary register for operation	The divided remainder (16–bit) is stored in DT9015 when F32 (%) or F52 (B%) instruction is executed.	А	A	A	A	А	
DT9016		The divided remainder (32–bit) is stored in DT9015 and DT9016 when F33 (D%) or F53 (DB%) instruction is executed.	N/A	A	A	N/A	А	
DT9017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display.	A (*)	A (*)	A (*)	A (*)	A (*)	
DT9018	Operation error address (non-hold)	The address where a operation error oc- curred is stored. Each time an error occurs, the new address overwrites the previous ad- dress. At the beginning of scan, the address is 0. Monitor the address using decimal dis- play.	A (*)	A (*)	A (*)	A (*)	A (*)	
DT9019	2.5ms ring counter register	The data in DT9019 is increased by one ev- ery 2.5ms. Difference between the values of the two points (absolute value) X 2.5ms = Elapsed time between the two points.	A	A	A	A	A	
DT9020		Not used						
DT9021]							

A: Available, N/A: Not available

r

Special data registers DT9017 and DT9018 are available for CPU version 2.7 or later.

Address	Name	Description	Ava	ilabil	ity		
			FP1			FP-I	N
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9022	Scan time (current value) (* Note 1)	The current scan time is stored in DT9022. Scan time is calculated using the formula: Scan time (ms) = data X 0.1ms K50 indicates 5ms.	A	А	A	A	A
		K50 Indicates 5ms.					
DT9023	Scan time (minimum value) (* Note 1)	The minimum scan time is stored in DT9023. Scan time is calculated using the formula: Scan time (ms) = data X 0.1ms	А	А	A	А	А
		K50 indicates 5ms.					
DT9024	Scan time (maximum value) (* Note 1)	The maximum scan time is stored in DT9024. Scan time is calculated using the formula: Scan time (ms) = data X 0.1ms K125 indicates 12.5ms.	A	A	A	A	A
DT9025 (* Note 2)	Mask condition monitoring register for interrupts (INT 0 to 7)	The mask conditions of interrupts using ICTL instruction can be monitored here. Monitor using binary display. 15 11 7 3 0 (Bit No.) 23 19 16 (INT No.) 0: interrupt disabled (masked) 1: interrupt enabled (unmasked)	N/A	A	A	N/A	A
DT9026		Not used		—			
DT9027 (* Note 2)	Periodical interrupt interval (INT24)	The value set by ICTL instruction is stored. – K0: periodical interrupt is not used – K1 to K3000: 10 ms to 30 s	N/A	А	А	N/A	А

- 1) The scan time display is during the RUN mode only and displays the operation cycle time. During the PROG. mode, the operation scan time is not displayed. The maximum and minimum values are cleared when each the mode is switched between the RUN and PRG. modes.
- 2) Used by the system.

Address	Name	Description	Availability					
			FP1			FP-I	М	
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32	
DT9028		Not used		—			—	
DT9029		Not used	_				—	
DT9030 (* Note)	Message 0	The contents of the specified message are stored in DT9030, DT9031, DT9032,	N/A	А	А	N/A	А	
DT9031 (* Note)	Message 1	(MSG) instruction is executed.	N/A	А	А	N/A	А	
DT9032 (* Note)	Message 2		N/A	А	А	N/A	А	
DT9033 (* Note)	Message 3		N/A	А	А	N/A	А	
DT9034 (* Note)	Message 4		N/A	А	А	N/A	А	
DT9035 (* Note)	Message 5		N/A	А	А	N/A	А	
DT9036		Not used		—			—	
DT9037	Work 1 for F96 (SRC) instruction	The number of that match the searched data is stored in DT9037 when F96 (SRC) instruction is executed.	A	А	A	А	А	
DT9038	Work 2 for F96 (SRC) instruction	The position of the first matching data, counting from the starting 16-bit area, is stored in DT9038 when F96 (SRC) instruc- tion is executed.	А	А	A	A	А	
DT9039		Not used	—	—	—	—		
DT9040	Manual dial-set register (V0)	Stores the potentiometer input value (K0 to K255)	А	А	А	А	А	
DT9041	Manual dial-set register (V1)	stored in DT9030, DT9031, DT9032, DT9033, DT9034, and DT9035 when F149 (MSG) instruction is executed. Not used The number of that match the searched data is stored in DT9037 when F96 (SRC) instruc- tion is executed. The position of the first matching data, counting from the starting 16-bit area, is stored in DT9038 when F96 (SRC) instruc- tion is executed. Not used Stores the potentiometer input value (K0 to K255) - FP1 C14, 16: V0 \rightarrow DT9040 - FP1 C24 and FP-M C20, C32: V0 \rightarrow DT9040, V1 \rightarrow DT9041 V2 \rightarrow DT9040, V1 \rightarrow DT9041 - FP-M C16: V0 \rightarrow DT9040, V1 \rightarrow DT9041 V2 \rightarrow DT9040, V1 \rightarrow DT9041 V2 \rightarrow DT9042, V3 \rightarrow DT9043 The high-speed counter elapsed value (24 bits data) is stored in DT9044 and DT9045. The value can be written by executing F1 (DMV) instruction. The high-speed counter target value (24 bits data) specified by F162 (HC0S) to F164 (SPD0) instructions is stored in DT9046 and	N/A	А	А	А	А	
DT9042	Manual dial–set register (V2)	$V0 \rightarrow DT9040, V1 \rightarrow DT9041$ $V2 \rightarrow DT9042$	N/A	A (C40 only)	A	A	N/A	
DT9043	Manual dial–set register (V3)	$V0 \rightarrow DT9040, V1 \rightarrow DT9041$	N/A	N/A	А	N/A	N/A	
DT9044	High-speed counter elapsed value for	bits data) is stored in DT9044 and DT9045.	А	А	А	А	А	
DT9045	built–in high–speed counter	(DMV) instruction.	А	А	A	A	А	
DT9046	High-speed counter target value for built-in	data) specified by F162 (HCOS) to F164	Α	А	A	A	А	
DT9047	high-speed counter	(SPD0) instructions is stored in DT9046 and DT9047.	А	А	А	А	А	

Used by the system.

Address	Name	Description	Ava	ilabil	ity		
			FP1			FP-I	М
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9048 to DT9051		Not used					
DT9052	Built–in high–speed counter control flag	A value can be written with F0 (MV) instruc- tion to reset the high-speed counter, disable counting, stop high-speed counter instruc- tions (F162 to F165), and clear the high- speed counter. Control code = 0 0 0 0 0 0 0 0 0 0 0 0 0 High-speed counter instruction	A	A	A	A	A
DT9053	Clock/calendar monitor (hour and minute)	Hour and minute data of the clock/calendar are stored in DT9053. This data is read–only data; it cannot be overwritten. Higher 8 bits Lower 8 bits Hour data Hour data Hour data Hour tata Hour tata Hour to H23 (BCD)	N/A	A (*)	A (*)	N/A	A (*)

C type FP-M C20, C32 and FP1 C24C, C40C, C56C, and C72C only.

Address	Name	Description	Ava	ilabi	lity		
			FP1			FP-I	М
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9054	Clock/calendar monitor and setting (minute and second)	The year, month, day, hour, minute, second, and day-of-the-week data for the calendar timer is stored. The built-in calendar timer will operate correctly through the year 2099 and supports leap years. For CPU Ver. 2.1 c later, the calendar timer can be set (the time	n/A	A (*)	A (*)	N/A	A (*)
DT9055	Clock/calendar monitor and setting (day and hour)	set) by writing a value using a programming tool software or a program that uses the F0 (MV) instruction.	N/A	A (*)	A (*)	N/A	A (*)
DT9056	Clock/calendar monitor and setting (year and month)	DT9054 Minute data H00 to H59 (BCD) Second data H00 to H59 (BCD) DT9055 Day data H01 to H31 (BCD) Hour data H00 to 23 (BCD)	N/A	A (*)	A (*)	N/A	A (*)
DT9057	Clock/calendar monitor and setting (day–of–the–week)	DT9056Year data H00 to H99 (BCD)Month data H01 to H12 (BCD)DT9057Day-of-the-week data H00 to H06 (BCD)	N/A	A (*)	A (*)	N/A	A (*)

C type FP-M C20, C32 and FP1 C24C, C40C, C56C, and C72C only.

Address	Name	Description	Availability				
			FP1			FP-I	M
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9058	Clock/calendar time setting and 30 seconds correction	The clock/calendar is adjusted as follows, • When setting the clock/calendar by program (CPU version 2.1 or later) By setting the highest bit of DT9058 to 1, the time becomes that written to DT9054 to DT9057 by F0(MV) instruction. After the time is set, DT9058 is cleared to 0. Example: Set to time 12:00:00 on the 5th day with X0 turns on. X_0 1 T_1 T_2 T_2 T_1 T_2 T	N/A	A (*)		N/A	A (*)
		[F0 MV, H800, DT9058] 2) [F0 MV, H8000, DT9058] 3) 1) Inputs 0 minutes and 0 seconds 2) Inputs 12th hour and 5th day 3) Sets the time If you changed the values of DT9054 to DT9057 with the data monitor functions of programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT9058.					

C type FP-M C20, C32 and FP1 C24C, C40C, C56C, and C72C only.

Address	Name	Description	Availability				
			FP1			FP-I	N
			C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9058	Clock/calendar time setting and 30 seconds correction	When the correcting times less than 30 secondsBy setting the lowest bit of DT9058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT9058 is cleared to 0.Example: Correct to 0 seconds with X0:onX0 $ -(DF)$	N/A	A (* 1)	A (* 1)	N/A	A (* 1)
DT9059 (* Note 2)	Serial communica- tion error code	Higher 8–bit: Error code of RS232C port is stored. Lower 8–bit: Error code of tool port is stored.	A (* 1)	N/A	A (* 1)	N/A	A (* 1)

ip

C type FP-M C20, C32 and FP1 C24C, C40C, C56C, and C72C only.
 Used by the system.

Address	Name		Description	Ava	ilabil	ity		
				FP1			FP	Р-М
				C14/ C16	C24/ C40	C56/ C72	C16	C20/ C32
DT9060	Step ladder process	Process number: 0 to 15	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process	A	A	A	A	А
DT9061		Process number: 16 to 31	number turns on "1". Monitor using binary display.	A	A	A	A	А
DT9062		Process number: 32 to 47	15 11 7 3 0 (Bit No.)	A	A	A	A	А
DT9063		Process number: 48 to 63	DT9060 15 11 7 3 0 (Process No.)	A	A	A	A	А
DT9064		Process number: 64 to 79	0: not-executing 1: executing	N/A	A	A	A	А
DT9065		Process number: 80 to 95	A programming tool software can be used to write data.	N/A	A	A	A	А
DT9066		Process number: 96 to 111		N/A	A	A	A	А
DT9067		Process number: 112 to 127		N/A	A	A	A	А

Address	Name		Description	Avail	ability	/
				FP1	FP-	М
					C16	C20/ C32
DT9080	Digital converted value from	Channel 0	These registers are used to store digital converted value of analog inputs from A/D converter board or analog I/O board.			
DT9081	analog control board No.0	Channel 1	The range of digital converted value depends on the type of analog control boards as follows:			
DT9082	-	Channel 2	When A/D converter board is installed K0 to K999 (0 to 20mA/0 to 5V/0 to 10V) Range of digital converted value (10 bits resolution)	N/A	N/A	A
DT9083		Channel 3	If analog data over the maximum analog val- ue (20mA/5V/10V) is input, digital data up to K1023 is available.			
DT9084	Digital converted value from	Channel 0	However, be sure to input analog voltage or analog current within the rated range in or- der to prevent system damages.			
DT9085	analog control board No.1	Channel 1	When Analog I/O board is installed K0 to K255 (0 to 20mA/0 to 5V/0 to 10V)		N/A	А
DT9086		Channel 2	Range of digital converted value (6 bits resolution) Even if analog data outside the specified range is input, digital converted value out-	N/A	N/A	A
DT9087		Channel 3	side K0 to K255 is not available. Be sure to input analog voltage within the rated range in order to prevent system dam-			
DT9088	Digital converted value from	Channel 0	ages. Be sure to use the F0 (MV) instruction to transfer			
DT9089	analog control board No.2	Channel 1	data in these special data registers into other data registers.			
DT9090	50010110.2	Channel 2		N/A	N/A	A
DT9091		Channel 3				
DT9092	Digital converted value from	Channel 0				
DT9093	analog control board No.3	Channel 1			N/A	
DT9094		Channel 2		N/A	IN/A	A
DT9095		Channel 3				

Address	Name		Description		ability		
				FP1	FP-	м	
					C16	C20/ C32	
DT9096	Digital value for	Channel 0	These registers are used to specify data for analog output from D/A converter boards or analog I/O boards.				
	specifying analog data output from		The range of digital value to specify analog output de- pends on the type of analog control boards as follows:				
	analog control board No.0		When D/A converter boards is installed Range of deigital data for specifying analog output (10 bits): K0 to K999 (0 to 20mA/0 to 5V/0 to 10V)	N/A	N/A	А	
DT9097		Channel 1	Be sure to specify data within the range of K0 to K999.				
			 If data K1000 to K1023 is specified, analog data a little bit more than the maxi- mum rated value (20mA/5V/10V) is output. 				
			 If data outside K0 to K1023 is specified, data is handled disregarding data in bit positions 				
DT9098	Digital value for specifying analog data output from	Channel 0	10 to 15. Example: If K–24 is input, analog data is output regarding it as K999. Data configuration when K–24 is input				
DT9099	analog control board No.1	Channel 1	Bit position 15 1211 8 7 4 3 0 Binary data 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 K999 Data in bit position 10 to 15 is ingnored.	N/A	N/A	A	
DT9100	Digital value for	Channel 0	When Analog I/O boards is installed				
	specifying analog data output from		Range of deigital data for specifying analog output (6 bits): K0 to K255 (0 to 20mA/0 to 5V/0 to 10V)				
DT9101	analog control board No.2	Channel 1	Be sure to specifying data within the range of K0 to K255. If data outside K0 to K255 is speci- fied, data is handled disregarding data in bit positions 6 to 15.	N/A	N/A	A	
			Example: If K–1 is input, analog data is output				
DT9102	Digital value for specifying analog data	Channel 0	regarding it as K255. Data configuration when K–1 is input Bit position 15				
DT9103	output from analog control board No.3	Channel 1	Binary data 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N/A	N/A	А	
			Be sure to use the F0 (MV) instruction to transfer data into these special data registers.				

Address	Name		Description			ty	
			FP1		FP-	М	
					C16	C20/ C32	
DT9104 DT9105	Target value 0 of high–speed counter board	Channel 0	These registers are performed for storing data of the FP–M high–speed counter board.				
DT9106 DT9107	Target value 1 of high–speed counter board		 The target values 0 and 1, elapsed value, and capture value are processed in binary in the range of K-8388608 to 8388607. Be sure to use F1 (DMV) instruction to transfer data in these special data registers to other registers. 	N/A	N/A	А	
DT9108 DT9109	Elapsed value of high–speed counter board		 • When changing data in these special data registers. 	N/A	N/A	A	
DT9110 DT9111	Capture value of high–speed counter board		ters, be sure to specify data in the range of K–8388608 to K8388607. If data outside range is input, data handled disre- garding bit positions 24 to 31 (bit positions 8 to 15				
DT9112 DT9113	Target value 0 of high–speed counter board	Channel 1	in the higher 16-bit area of 32-bit data). Example:				
DT9114 DT9115	Target value 1 of high–speed counter board		If K2147483647 is specified, high–speed counter acts regarding it as K–8388608. Data configuration when K2147483647 is input:	N/A	N/A	А	
DT9116 DT9117	Elapsed value of high–speed counter board		Higher 16-bit area Lower 16-bit area				
DT9118 DT9119	Capture value of high–speed counter board		Binary data 011111111111111111111111111111111111				
DT9120	High–speed co board control r		This register is used to control the high–speed counter board by the F0 (MV) instruction.	N/A	N/A	A	

Address	Name	Descrip	otion			Avail	ability	/
						FP1	FP-	М
							C16	C20/ C32
DT9120	High-speed counter board control register	comes e for outpu equal to	out goes or qual to the it transition the target arget value	e target. These bi when the elaps value. If the outp	elapsed value be- ts specify the mode ed value beccomes ut mode is changed, Corresponding			
		position	Channel	target value	output			
		0	0	Target 0	OUT00			
		1	Ŭ	Target 1	OUT01			
		8	1	Target 0	OUT10			
		9		Target 1	OUT11			
				Bit da	ata 0: off \rightarrow on 1: on \rightarrow off			
		positions 3 a External res	External reset control bit (bit positions 3 and 11) External reset input (RST.0/RST.1) on off Reset input ignored				N/A	A
		(ŘST.E0, inputs (R (RST.0/R – extern	By turning on the external reset enable inputs (RST.E0/RST.E1), you can enable the external reset inputs (RST.0/RST.1). The external reset inputs (RST.0/RST.1) effective are: - external reset inputs while the external reset enable input is in the on states.					
		 the first external reset inputs after the external reset enable input turns off. 						
		External res control bit (b positions 3 a External res	oit o and 11) <u>o</u> et enable o	ff n				
		input (RST.E External res input (RST.0		n `				
				Reset in	puts become effective			
				Reset In				<u> </u>

A: Available, N/A: Not available

Address	Name	Description		ability	/
			FP1	FP–M	
				C16	C20/ C32
DT9120	High–speed counter board control register	Target setting: To preset the target values for the high–speed counter board, first, transfer the set values to the special data registers for the target values. Then, turn the target setting bit from 0 to 1. A set value is revised at the mo- ment the leading edge of this bit is detected. Therefore, if the bit is already set to 1, change the bit from 1 to 0 and then change it back to 1. Number system selection: This bit is prepared to select the number system used for the high–speed counter board. If you set this bit to 0, the data counts the number in the BCD code. How- ever, the FP–M usually handles numbers in binary, so use of the binary number system is recommended.	N/A	N/A	A
DT9121	High-speed counter board status register	This register is stored the input and output conditions and error code of high-speed counter board.	N/A	N/A	A

Address	Name	Description	Availa	ability	/
				FP-	М
				C16	C20/ C32
DT9121	High–speed counter board status register	Output disable input: This input disables external output even if the high- speed counter is set to the output enable mode by DT9120. While this input is turned on, the output of the high-speed counter board is not changed even if the elapsed value becomes equal to the target. Error codes: A BCD error is detected only when data for the high- speed couter board is set to BCD operation using F0 (MV) and bit position 7 of DT9120.	N/A	N/A	А
		Bit position Description			
		11 10 9 8 0 0 0 1 BCD error			
		0 0 1 0 CH0 overflow/underflow			
		0 1 0 0 CH1 overflow/underflow			
		1 0 0 0 Watchdog timer error			

Appendix C

Special Internal Relays

C.1 Special Internal Relays

The special internal relays turn on and off under special conditions. The on and off states are not output externally. Writing is not possible with a programming tool or an instruction.

Address	Name	Description			
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs.			
	(Available PLC: All types)	The self-diagnostic error code is stored in:			
		- FP-C/FP-M/FP0/FP1/FP3: DT9000			
		– FP2/FP2SH/FP10SH: DT90000			
R9001	Not used				
R9002	MEWNET-TR master error flag (Available PLC: FP3,	Turns on when a communication error occurs in the MEWNET–TR master unit or MEWNET–TR network. The slot, where the erroneous MEWNET– TR master unit is installed, can be checked using:			
	FP10SH)	- FP3: DT9002 and DT9003			
		– FP10SH: DT90002, DT90003			
	I/O error flag (Available PLC: FP2, FP2SH)	Turns on when the error occurs in the I/O unit. The slot number of the unit where the error was occurred is stored in DT90002, DT90003.			
R9003	Intelligent unit error flag	Turns on when an error occurs in an intelligent unit. The slot number, where the erroneous intelligent unit is installed is stored in:			
		- FP-C/FP3: DT9006 and DT9007			
		– FP2/FP2SH/FP10SH: DT90006, DT90007			
R9004	I/O verification error flag	Turns on when an I/O verification error occurs.			
		The slot number of the I/O unit where the verification error was occurred is stored in:			
		- FP-C/FP0/FP3: DT9010 and DT9011			
		– FP2/FP2SH/FP10SH: DT90010, DT90011			
R9005	Backup battery error flag (non-hold)	Turns on for an instant when a backup battery error occurs.			
	(Available PLC: FP–C/ FP–M C20,C32/FP1 C24,C40,C56,C72/FP2/FP2 SH/FP3/FP10SH)				
R9006	Backup battery error flag (hold)	Turns on and keeps the on state when a backup battery error occurs. To reset R9006,			
	(Available PLC: FP-C/	 turn the power to off and then turn it on, 			
	FP–M C20,C32/FP1 C24,C40,C56,C72/FP2/FP2 SH/FP3/FP10SH)	 initialize, after removing the cause of error. 			
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs. The address where the error occurred is stored in:			
		- FP-C/FP-M/FP0/FP1 CPU Ver.2.7 or later/FP3: DT9017			
		– FP2/FP2SH/FP10SH: DT90017			
		(indicates the first operation error which occurred).			
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in:			
	(Available PLC: FP-C/FP-	- FP-C/FP-M/FP0/FP1 CPU Ver.2.7 or later/FP3: DT9018			
	M/FP1 CPU Ver.2.7 or later/FP2/FP2SH/FP10SH)	– FP2/FP2SH/FP10SH: DT90018			
		The contents change each time a new error occurs.			

Address	Name	Description			
R9009	Carry flag	Turns on for an instant,			
		- when an overflow or underflow occurs.			
		- when "1" is set by one of the shift instructions.			
R900A	> flag	Turns on for an instant when the compared results become larger in the "F60 (CMP)/P60 (PCMP), F61 (DCMP)/P61 (PDCMP), F62 (WIN)/P62 (PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."			
R900B	= flag	Turns on for an instant,			
		- when the compared results are equal in the comparison instructions.			
		- when the calculated results become 0 in the arithmetic instructions.			
R900C	< flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP)/ P60 (PCMP), F61 (DCMP)/P61 (PDCMP), F62 (WIN)/P62 (PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."			
R900D	Auxiliary timer contact (Available PLC: FP–C/	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137 (STMR)/F183 (DSTM) auxiliary timer instruction.			
	FP-M C20,C32/FP0/FP1 C56,C72/FP2/FP2SHFP3/	Available PLC for F183(DSTM) instruction: FP0/FP2/FP2SH/FP10SH CPU Ver.3.0. or later.			
	FP10SH)	The R900D turns off when the trigger for auxiliary timer instruction turns off.			
R900E	Tool port error flag	Turns on when communication error at tool port is occurred.			
	(Available PLC: FP–M/ FP0/FP1/FP2SH/FP10SH)				
R900F	Constant scan error flag	Turns on when scan time exceeds the time specified in system register 34 during constant scan execution.			
R9010	Always on relay	Always on.			
R9011	Always off relay	Always off.			
R9012	Scan pulse relay	Turns on and off alternately at each scan			
R9013	Initial on pulse relay	Turns on only at the first scan in the operation. Turns off from the second scan and maintains the off state.			
R9014	Initial off pulse relay	Turns off only at the first scan in the operation. Turns on from the second scan and maintains the on state.			
R9015	Step ladder initial on pulse relay	Turns on for an instant only in the first scan of the process the moment the step ladder process is opened.			
R9016		Not used			
R9017		Not used			
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.			
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.			
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.			
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles.			
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.			

Address	Name	Description			
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.			
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.			
R901F		Not used			
R9020	RUN mode flag	Turns off while the mode selector is set to PROG.			
		Turns on while the mode selector is set to RUN.			
R9021	Test RUN mode flag (Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	Turns on while the initialize/test switch of the CPU is set to TEST and mode selector is set to RUN. (test run operation start) Turns off during the normal RUN mode.			
R9022	Break flag	Turns on while the BRK instruction is executing or the step run is execut-			
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	ing.			
R9023	Break enable flag (Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	Turns on while the BRK instruction is enabled in the test RUN mode.			
R9024	Output update enable flag in the test RUN mode	Turns on while the output update is enabled in the test RUN mode.			
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)				
R9025	Single instruction flag (Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	Turns on while the single instruction execution is selected in the test RUN mode.			
R9026	Message flag (Available PLC: FP–M C20,C32/FP–C/FP0/FP1 C24,C40,C56,C72/FP2/FP2 SH/FP3/FP10SH)	Turns on while the F149 (MSG)/P149 (PMSG) instruction is executed.			
R9027	Remote mode flag	Turns on while the mode selector is set to REMOTE.			
R9028	Break clear flag (Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	Turns on when the break operation is cleared.			
R9029	Forcing flag	Turns on during forced on/off operation for I/O relay and timer/counter contacts.			
R902A	External interrupt enable flag	Turns on while the external interrupt trigger is enabled by the ICTL instruction.			
	(Available PLC: FP–M/ FP0/FP1 C24, C40, C56, C72/FP2SH/FP3/FP10SH)				
	Interrupt flag	Turns on while the periodical interrupt is executed by the ICTL instruction.			
	(Available PLC: FP2)				
R902B	Interrupt error flag FP–M/FP0/FP1 C24, C40, C56, C72/FP2/FP2SH/FP3/ FP10SH	Turns on when an interrupt error occurs.			
R902C	Sampling point flag	Turns off during instructed sampling.			
		Turns on while sampling is triggered by the periodical interrupt.			

Address	Name	Description
R902D	Sampling trace end flag	Turns on when the sampling trace ends.
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	
R902E	Sampling trigger flag	Turns on when the sampling trace trigger of the F156 (STRG)/P156
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	(PSTGR) instruction is turned on.
R902F	Sampling enable flag	Turns on when the starting point of sampling is specified.
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	
R9030	F145 (SEND)/P145 (PSEND) and F146	Monitors if CPU is in the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions executable condition as follows:
	(RECV)/P146 (PRECV) instruction executing flag	- off: None of the above mentioned instructions can be executed.
		 on: One of the above mentioned instructions can be executed.
R9031	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV)	Monitors if an abnormality has been detected during the execution of the F145 (SEND)/ P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions as follows:
	instruction end flag	 – off: No abnormality detected.
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	 – on: An abnormality detected. (communication error)
	,	The error code is stored in:
		– FP–C/FP3: DT9039
		– FP2/FP10SH: DT90039
R9032	COM port mode flag	Monitors the mode of the COM port as:
	(Available PLC:FP–M C20C.C32C/FP0/FP1	 – on: Serial data communication mode
	C24C,C40C,C56C,C72C/ FP2/FP2SH/FP10SH)	 – off: Computer link mode
R9033	F147 (PR) instruction flag	Turns on while a F147 (PR) instruction is executed.
	(Available PLC: FP–M C20,C32/FP–C/FP0/FP1 C24,C40,C56,C72/FP2/FP2 SH/FP3/FP10SH)	Turns off when a F147 (PR) instruction is not executed.
R9034	Editing in RUN mode flag	Turns on while editing a program in the RUN mode.
	(Available PLC: FP–C/FP0 CPU Ver.2.0 or later/ FP2/FP2SH/FP3/FP10SH)	
R9035	F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT)	Monitors if FP3/FP10SH is in the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions executable condition as follows: – off: None of the above mentioned instructions can be executed.
	instruction execution flag	 on: One of the above mentioned instructions can be executed. on: One of the above mentioned instructions can be executed.
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	
	S–LINK I/0 communication error flag (Available PLC: FP0)	Tuns on when the S–LINK error (ERR1, 3 or 4) occurs using S–LINK system.

Address	Name	Description	
R9036	F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT)	Monitors if an abnormality has been detected during the execution of the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions as follows:	
	instruction end flag	 – off: No abnormality detected. 	
	(Available PLC: FP–C/ FP2/FP2SH/FP3/FP10SH)	 – on: An abnormality detected. (access error) 	
	,	The error code is stored in:	
		– FP–C/FP3: DT9036	
		– FP2/FP2SH/FP10SH: DT90036	
	I/0 link error flag	Turns on when the error occurs using the I/0 link function.	
	(Available PLC: FP–M C20,C32/FP1)		
R9037	COM (RS232C) port communication error flag	Turns on when the serial data communication error occurs using COM port.	
	(Available PLC: FP–M C20C,C32C/FP0/FP1 C24C,C40C,C56C,C72C/ FP0/FP2/FP2SH/FP10SH)	Turns off when data is being sent by the F144 (TRNS) instruction.	
R9038	COM (RS232C) port receive flag	Tuns on when the end code is received during the serial data communicat- ing.	
	(Available PLC: FP–M C20C,C32C/FP0/FP1 C24C,C40C,C56C,C72C/ FP2/FP2SH/FP10SH)		
R9039	COM (RS232C) port send	Tuns on while data is not send during the serial data communicating.	
	flag (Available PLC: FP–M C20C,C32C/FP0/FP1 C24C,C40C,C56C,C72C/ FP2/FP2SH/FP10SH)	Tuns off while data is being sent during the serial data communicating.	
R903A	High-speed counter control flag (ch 0) (Available PLC: FP-M C20,C32/FP0/FP1)	Turns on while the high–speed counter instructions "F166 (HC1S) to F170 (PMW)" is executed.	
R903B	Cam control flag (Available PLC: FP–M/FP1)	Tuns on while the cam control instruction "F165 (CAMO)" is executed.	
	High-speed counter control flag (for ch1)	Turns on while the high–speed counter instruction "F166 (HC1S) to F170 (PWM)" is executed.	
R903C	High-speed counter control flag (for ch2)	Turns on while the high–speed counter instruction "F166 (HC1S) to F170 (PWM)" is executed.	
R903D	High-speed counter control flag (for ch3)	Turns on while the high–speed counter instruction "F166 (HC1S) to F170 (PWM)" is executed.	
R903E		Not used	
R903F		Not used	
R9040	Error alarm (D to 2047)	Turns on while the error alarm relay (E0 to E2047) acts.	
		Tuns off when the all error alarm relay turns off.	

Appendix D

Relays, Memory Areas and Constants

D.1 Relays

ltem			Function	Numbering			
				FP-M			
				C16T	C20R/ C20T/ C32T	C20RC/ C20TC/ C32TC	
Relay	External input relay	(X)	Turn on or off based on ex- ternal input.	208 points (X0	to X12F)		
	External output relay	(Y)	Externally outputs on or off state.	208 points (Y0	to Y12F)		
	Internal relay (* Note 1)	(R)	Relay which turns on or off only within program.	256 points (R0 to R15F)	1,008 points (R0 to R62F)		
	Link relay	(L)	This relay is a shared relay used for MEWNET link system.				
	Timer (* Notes 1 and 2)	(T)	If a TM instruction has timed out, the contact with the same number turns on.	128 points 144 points (T0 to T99/ (T0 to T99/C100 to C143) C100 to C127) (*Note 2)			
	Counter (* Notes 1 and 2)(C)If a CT instruction has counted up, the contact with the same number turns on.(*Note 2)	(*Note 2)					
	Pulse relay	(P)	This relay is used to turn on only for one scan dura- tion programmed with the OT↑ and OT↓ instructions.				
	Error alarm relay	(E)	If turned on while the unit is running, this relay stores the history in a dedicated buffer.Program this relay so that it is turned on at the time of abnormality.				
	Special internal relay	(R)	Relay which turns on or off based on specific condi- tions and is used as a flag.	64 points (R90	00 to R903F)		

r

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. These areas can be specified as hold type or non-hold type by setting system register.

For the FP0 T32C/FP–M/FP1, the selection of hold type and non–hold type can be changed by the setting of system register. For the FP0 C10/C14/C16/C32 series, that area is fixed and allotted tha numbers as shown below.

Hold type and non-hold type areas are listed in the table on the bottom of the next page.

Numbering							
FP0			FP1				
C10/C14/C16 C32 T32C			C14/C16	C24/C40 C56/C72			
208 points (X0 to X	(12F)		208 points (X0 to X	(12F)			
208 points (Y0 to Y	(12F)		208 points (X0 to X	K12F)			
1,008 points (R0 to	o R62F)		256 points (R0 to R15F)	1,008 points (R0 to R62F)			
144 points (T0 to T99/C100 to C143) (*Note 1)			128 points (T0 to T99/ C100 to C127) (*Note 2)	144 points (T0 to T99/C100 to C143) (*Note 2)			
64 points (R9000 t	o R903F)		64 points (R9000 to R903F)				

Timer		Non-hold type: All points	
Counter Non-hold type		From the set value to C139	From the set value to C127
	Hold type	4 points (elapsed values) (C140 to C143)	16 points (elapsed values) C128 to C143
Internal Non-hold type relay		976 points (R0 to R60F)	880 points (R0 to R54F)
		61 words (WR0 to WR60)	55 words (WR0 to WR54)
	Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)	128 points (R550 to R62F) 8 words (WR55 to WR62)
Data register	Non-hold type	1652 words (DT0 to DT1651)	6112 words (DT0 to DT6111)
	Hold type	8 words (DT1652 to DT1659)	32 words (DT6112 to DT6143)

i Pr

2) The points for the timer and counter can be changed by the setting of system register 5. The number given in the table are the numbers when system register 5 is at its default setting.

D.2 Memory Areas

- The data in the following table is based on 16-bit memory areas. You may also access these memory areas in 32-bit increments. The letter "D" in front of the Matsushita address indicates this.
- Example If you access the Matsushita address DDT0 (IEC–Adresse %MD5.0), the program accesses the addresses DT0 + DT1, i.e. the data is processed in double–word units.

Item	Item		Function	Numbering				
				FP–M				
				C16T	C20R/ C20T/ C32T	C20RC/ C20TC/ C32TC		
Memory area	External input relay	(WX)	Code for specifying 16 external in- put points as one word (16 bits) of data.	13 words (V	VX0 to WX12	2)		
	External output relay	(WY)	Code for specifying 16 external output points as one word (16 bits) of data.	13 words (V	13 words (WY0 to WY12)			
	Internal relay	(WR)	Code for specifying 16 internal relay points as one word (16 bits) of data.	16 words (WR0 to WR15)	(WR0 to WR62)			
	Link relay	(WL)	Code for specifying 16 link relay points as one word (16 bits) of data.					
	Data register (DT) (* Note 1)		Data memory used in program. Data is handled in 16-bit units (one word).	256 words (DT0 to DT255)	1,660 wprds (DT0 to DT1659)	6,144 words (DT0 to DT6143)		
	Link data register (* Note 1)	(LD)	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16-bit units (one word).					
	Timer/Counter set (SV) value area (* Note 1)		Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/count- er number.	128 words (SV0 to SV127)	SV0 to			
	Timer/Counter (EV) elapsed value area (* Note 1)		Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.	128 words (EV0 to EV127)	144 words (EV143)	ords (EV0 to 3)		
	File register (FL) (* Note 1)		Data memory used in program. Data is handled in 16-bit units (one word).					
	Special data register	(DT)	Data memory for storing specific data. Various settings and error codes are stored.	70 words 112 words (DT9000 (DT9000 to DT9069) to (DT9080 to DT9121) DT9069) (DT9080 to DT9121)				
	Index register	(I)	Register can be used as an ad- dress of memory area and constants modifier.	2 words (IX	, IY)			

Numbering								
FP0			FP1					
C10/C14/C16	C32	T32C	C14/C16	C24/C40	C56/C72			
13 words (WX0 to	WX12)	<u>, </u>	13 words (WX0 to WX12)					
13 words (WY0 to	WY12)		13 words (WY0 to	WY12)				
63 words (WR0 to	WR62)		16 words (WR0 to WR15)	63 words (WR0 to WR62)				
1,660 words (DT0 to DT1659)	6,144 words (DT0 to DT6143)	16,384 words (DT0 to DT16383)	256 words (DT0 to DT255)	1,660 words (DT0 to DT1659)	6,144 words(DT0 to DT6143)			
144 words (SV0 to SV143)			128 words (SV0 to SV127)	144 words (SV0 to SV143)				
144 words (EV0 to EV143)			128 words (EV0 to EV127)	144 words (EV0 to EV143)				
112 words (DT9000 to DT911	1)	112 words (DT90000 to DT90111)	70 words (DT 9000 to DT 9069)					
2 words (IX, IY)			2 words (IX, IY)					

D.3 Constants

			Numbering FP–M				
			Constant	Decimal constants (integer type)	(K)	K-32768 to K32767 (for 16-bit operation)	
		K-2147483648 to K2147483647 (for 32-bit operation)					
	Hexadecimal	(H)	H0 to HFFFF (for 16-bit operation)				
	constants		H0 to HFFFFFFFF (fo				
	Decimal constants (monorefined real number)	(f)					

Numbering									
FP0			FP1	FP1					
C10/C14/C16 C32 T32C			C14/C16 C24/C40 C56/C72						
K-32768 to K3276	K–32768 to K32767 (for 16-bit operation)			K-32768 to K32767 (for 16-bit operation)					
K-2147483648 to	K2147483647 (for 3	2-bit operation)	K-2147483648 to K2147483647 (for 32-bit operation)						
H0 to HFFFF (for	16-bit operation)		H0 to HFFFF (for 16-bit operation)						
H0 to HFFFFFFF (for 32-bit operation)			H0 to HFFFFFFF (for 32-bit operation)						

Appendix E

System Registers

E.1 System Registers for FP0

C10, C14, C16, C32 and T32C in the table respectively indicate 10-point, 14-point, 16-point and 32-point type FP0 control units.

Item	Address	Name	Default value	Description		
Allocation of user memory	0 Sequence program area capacity			The set values are fixe changed. The stored values vary	ed and cannot be v depending on the type.	
				K3: 3K words (FP0 C10, C14, C16) K5: 5K words (FP0 C32) K10: 10K words (FP0 T32C)		
	1 to 3	Not used				
Hold/ Non– hold	5	Timer and counter division (setting of starting counter number)	K100	K0 to K144		
	6 to 8	Not used (Available type: C10, C14, C16, C32)		With the FP0 C10/C14 with the programming	,	
	6	Hold type area starting number setting for timer and counter	K100	K0 to K144	Set the system regis- ters 5 and 6 to the same value.	
	7	Hold type area starting number setting for internal relays (in word units)	K10	K0 to K63		
	8	Hold type area starting number setting for data registers	K0	K0 to K16384		
	9 to 13	Not used				
	14	Not used (Available type: C10, C14, C16, C32)		With the FP0 C10/C14/C16/C32, values set with the programming tool become invalid.		
		Hold or non-hold setting for step ladder process	K1	K0: Hold K1: Non-hold		
	15	Not used				
Action on error	20	Disable or enable setting for duplicated output	К0	K0: Disable (will be syntax error) K1: Enable (will not be syntax error)		
	21, 22	Not used				
	23	Operation setting when an I/O verification error occurs	К0	K0: Stop K1: Continuation		
	24, 25	Not used				
	26	Operation setting when an operation error occurs	К0	K0: Stop K1: Continuation		
	27	Operation settings when communication error occurs in the remote I/O (S–LINK) system	К1	K0: Stop K1: Continuation		
	28, 29	Not used				
	4	Not used		With the FP0, values s ming tool become inva		

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

Item	Address	Name	Default value	Description	
Time	30	Not used			
setting	31	Wait time setting for multi-frame communication	K2600 (6500ms)	K4 to K32760: 10ms to 81900ms Used of default setting (K2600/ 6500ms) is recommended. set value X 2.5ms = Wait time setting for multi–frame commu- nication (ms) In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).	
	32, 33	Not used	With the FP0, values set with the programming tool become invalid.		
	34	Constant value settings for scan time	КО	K1 to K64 (2.5ms to 160ms): Scans once each specified time interval. K0: Normal scan set value X 2.5ms = Constant value setting for scan time (ms) In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).	

ltem	Address	Name		Default value	Description	
Input setting	400	counter mode				
		X2)				1: 2-phase input (X0, X1)
		,				2: 2-phase input (X0, X1), Reset input (X2)
						3: Incremental input (X0)
						4: Incremental input (X0), Reset input (X2)
						5: Decremental input (X0)
					6: Decremental input (X0), Reset input (X2)	
						7: Individual input (X0, X1)
						8: Individual input (X0, X1), Reset input (X2)
						9: Direction decision (X0, X1)
						10:Direction decision (X0, X1), Reset input (X2)
					CH1	0: Do not set input X1 as high-speed counter.
						3: Incremental input (X1)
				4: Incremental input (X1), Reset input (X2)		
						5: Decremental input (X1)
						6: Decremental input (X1), Reset input (X2)

r

- If the operation mode is set to 2–phase, individual, or direction differentiation, the setting for CH1 is invalid.
- If reset input settings overlap, the setting of CH1 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter]
 [Pulse catch]
 [Interrupt input].

Item	Address	Name	Default value	Desci	ription			
Item Input setting	Address 400	Name High-speed counter mode settings (X0 to X2)	Setting by FP programmer II		Descr CH0/ CH1		1: 2: 3: 4: 5:	Do not use high- speed counter. 2-phase input (X0, X1) 2-phase input (X0, X1), Reset input (X2) Incremental input (X0), Reset input (X2) Decremental input (X0) Decremental input (X0) Decremental input
							8: 9:	 (X0), Reset input (X2) Individual input (X0, X1) Individual input (X0, X1), Reset input (X2) Direction decision (X0, X1) Direction decision (X0, X1), Reset input (X2, X1), Reset input (X2)
							3: 4: 5:	Do not use high- speed counter. Incremental input (X1) Incremental input (X1), Reset input (X2) Decremental input (X1) Decremental input (X1), Reset input (X1), Reset input (X1), Reset input

- If the operation mode is set to 2–phase, individual, or direction differentiation, the setting for CH1 is invalid.
- If reset input settings overlap, the setting of CH1 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter]
 [Pulse catch]
 [Interrupt input].

ltem	Address	Name		Default value	Desc	ription
Input setting	401	High-speed counter mode	Setting by programming	HO	CH2	0: Do not set input X3 as high-speed counter.
		settings (X3 to X5)	tool software			1: 2-phase input (X3, X4)
						2: 2-phase input (X3, X4), Reset input (X5)
						3: Incremental input (X3)
						4: Incremental input (X3), Reset input (X5)
						5: Decremental input (X3)
						6: Decremental input (X3), Reset input (X5)
						7: Individual input (X3, X4)
						8: Individual input (X3, X4), Reset in- put (X5)
						9: Direction decision (X3, X4)
						10:Direction decision (X3, X4), Reset input (X5)
					СНЗ	0: Do not set input X4 as high-speed counter.
						3: Incremental input (X4)
						4: Incremental input (X4), Reset input (X5)
						5: Decremental input (X4)
						6: Decremental input (X4), Reset input (X5)

- If the operation mode is set to 2–phase, individual, or direction differentiation, the setting for CH3 is invalid.
- If reset input settings overlap, the setting of CH3 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter]
 [Pulse catch]
 [Interrupt input].

Item Address	Name		Default value	Desci	iption	
Input setting	High-speed counter mode settings (X3 to X5)	Setting by FP programmer II		CH2/ CH3	HOO	 0: Do not use high-speed counter. 1: 2-phase input (X3, X4) 2: 2-phase input (X3, X4), Reset input (X5) 3: Incremental input (X3) 4: Incremental input (X3),
						 (X3), Reset input (X5) 5: Decremental input (X3) 6: Decremental input (X3), Reset input (X5) 7: Individual input (X3, X4) 8: Individual input (X3, X4), Reset input (X5) 9: Direction decision (X3, X4), Reset input (X5) 9: Do not use high- speed counter. 3: Incremental input (X4), Reset input (X5) 5: Decremental input (X4), 6: Decremental input (X4),

- If the operation mode is set to 2–phase, individual, or direction differentiation, the setting for CH3 is invalid.
- If reset input settings overlap, the setting of CH3 takes precedence.
- If system register 400 to 403 have been set simultaneously for the same input relay, the following precedence order is effective: [High-speed counter]
 [Pulse catch]
 [Interrupt input].

Item	Address	Name	Default value	Description
Input setting	402	Pulse catch input function settings	HO	X5 X4 X3 X2 X1 X0 0: Standard input 0 0 0 0 1: Pulse catch input 1: Pulse catch input In FP Programmer II, enter the above set-
				tings in hexadecimal.
				Example: When X3 and X4 are set to pulse catch input
				15 402: 402: H1 H3 H1 H8 0 0 0 0 1 1 0 0 0 1 1 0 0 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3
				Input H18
				In the case of FP0, settings X6 and X7 are invalid.
	403	Interrupt input settings	HO	Using programming tool software
				X5 X4 X3 X2 X1 X0 Specify the input con- tacts used as interrupt inputs in the upper byte.
				(0: Standard input/1: Interrupt input)
				X5 X4 X3 X2 X1 X0 Specify the effective interrupt edge in the lower byte. (When 0: on/When 1: off)
				Using FP programmer II
				Example: When setting inputs X0, X1, X2, and X3 as interrupts, and X0 and X1 are set as interrupt inputs when going from on to off.
				Specify Specify edge interrupt
				15 403: 000011 ×5×4×3×2×1×0 H0 H3 H0 HF
				Input H30F
	404 to 407	Not used	—	With the FP0, values set with the program- ming tool become invalid.

If system register 400 to 403 are set simultaneously for the same input relay, the following precedence order is effective: [High–speed counter] \rightarrow [Pulse catch] \rightarrow [Interrupt input].

When the high–speed counter is being used in the incremental input mode, even if input X0 is specified as an interrupt input and as pulse catch input, those settings are invalid, and input X0 functions as counter input for the high–speed counter.

No. 400: H1 \leftarrow This setting will be valid. No. 402: H1 No. 403: H1

ltem	Address	Name		Default value	Description
Tool port setting	410	Unit number set port (when conr C–NET)		K1	K1 to K32 (Unit No. 1 to 32)
	411	Communication format setting for tool port Default setting Item • Modem: Disabled • Data length: 8 bits		HO	Using programming tool software Select items from the menu. Using FP programmer II Specify the setting contents using H constants. 15 6 0 Modem communication 0: Disabled 1: Enabled Data length (character bits) 0: 8 bits 1: 7 bits When connecting a modem, set the unit num- ber to 1 with system resister 410.
	414	Baud rate settin	g for tool port	HO	0: 9600bps 1: 19200bps
Tool port/ RS232C port setting	414	Baud rate setting for tool port and RS232C port	Setting by FP programmer II	H1	H 0 0 Tool port RS232C port H0: 9600bps H0: 19200bps H1: 19200bps H1: 9600bps If anything other than H0 or H1 is set for the baud rate of tool port, the baud rate will be 9600bps. H3: 2400bps H4: 1200bps H4: 1200bps H5: 600bps H6: 300bps Example: If 19,200bps is set for both the tool port and RS232C port H100 should be written.

Item	Address	Name		Default value	Description		
RS232C port setting	412	Communicatior setting for RS23		КО	Using programming tool software Select items from the menu. Using FP programmer II K0: RS232C port is not used. K1: Computer link communication mode (when connecting C–NET) K2: Serial data communication mode (gener-		
	413 Communication format setting for RS232C port Setting item/Default setting value - Start code: Without STX - Terminal code: C _R - Stop bit: 1 bit - Parity check: With odd - Data length: 8 bits 414 Baud rate setting for RS232C port		НЗ	al port) Using programming tool software Select items from the menu. Using FP programmer II Specify the setting contents using H constants. 15 6 0 Start code 0: Without STX 1: With STX Terminal code 00: C _R 01: C _R +LF 10: None 11: ETX Stop bit 0: 1 bit 1: 2 bits Parity check 00: None 01: With odd 11: With even Data length 0: 7 bits 1: 8 bits			
			g for RS232C	H1	0: 19200bps 1: 9600bps 2: 4800bps 3: 2400bps 4: 1200bps 5: 600bps 6: 300bps		
	415	Unit number set RS232C port (w connecting C-N	hen	K1	K1 to K32 (unit No. 1 to 32)		
	416 Modem compatib for RS232C port				compatibility setting 32C port		Using programming tool software Select items from the menu. Using FP programmer II H0: Modem disabled H8000: Modem enabled
	417	Starting address setting for received buffer		K0	C10C/C14C/C16C type: K0 to K1660 C32C type: K0 to K6144 T32C type: K0 to K16383		
	418	Capacity C10C/ C14 setting for C16C type		K1660	K0 to K1660		
		received buffer	C32C type	K6144	K0 to K6144		
			T32C type	K16384	K0 to K16384		

E.2 System Registers for FP–M/FP1

ltem	Address	Name	Default value	Description				
Allocation of user memory	0	Sequence program area capacity		The set values are fixed and cannot be changed. The stored values vary depending on the type.				
				K1: FP1 C14/C16, FP-	-M C16T			
				K3: FP1 C24/C40, FP-	-M 2.7K			
				K5: FP1 C56/C72, FP-	-M 5K			
	1 to 3	Not used						
Action on error	4	(Available for CPU version 2.7 or later)	К0	K0: Enabled (R9000, F on, ERROR LED lights				
				K1: Disabled				
Hold/	5 Timer and counter division (setting of starting counter number)		K100	K0 to K144				
Non– hold				(FP1 C14/C16, FP-M C16T: K0 to K128)				
	6	Hold type area starting number setting for timer and counter	K100	K0 to K144 (FP1 C14/C16, FP–M C16T: K0 to 128) Set the system re ters 5 and 6 to the same value.				
	7	Hold type area starting number setting for internal relays (in word units)	K10	(FP1 C14/C16, FP–M C16T: K0 to K16)				
	8	Hold type area starting	К0	K0 to K256 (FP1 C14/C16, FP-M C16T)				
		number setting for data registers		K0 to K1660 (FP1 C24/C40, FP–M 2.7K)				
		registers		K0 to K6144 (FP1 C56	/C72, FP–M 5K)			
	9 to 13	Not used						
	14	Hold or non-hold setting	К1	K0: Hold				
		for step ladder process		K1: Non-hold				
	15 to 19	Not used						
Action on	20	Disable or enable setting for	К0	K0: Disable (will be sy	ntax error)			
error		duplicated output		K1: Enable (will not be syntax error)				
	21 to 25	Not used						
	26	Operation setting when an	K1	K0: Stop				
		operation error occurs		K1: Continuation				
	27 to 29	Not used						

Item	Address	Name	Default value	Description
Time	30	Not used		
setting	31	Wait time setting for multi-frame communication	K2600 (6500ms)	K4 to K32760: 10ms to 81900ms Used of default setting (K2600/ 6500ms) is recommended. set value X 2.5 = Wait time setting for multi- frame communication (ms) In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).
	32, 33	Not used	—	
	34	Constant value settings for scan time	КО	K1 to K64 (2.5ms to 160ms): Scans once each specified time interval. K0: Normal scan set value X 2.5 = Constant value setting for scan time (ms) In programming tool software, enter the time (a number divisible by 2.5). In FP Programmer II, enter the set value (equal to the time divided by 2.5).

Input setting 400 High–speed counter mode settings Internal connection	Default value	Description				
Internal connection	H0					
Internal connection				peed counter		
Internal connection			Set value	Input contact of FP–Ms and FP1s		
Internal connection			value	X0	X1	X2
Internal connection			H0	High-speed	counter funct	ion not used.
Internal connection			H1	2-phas	se input	
Internal connection			H2	2–phas	se input	Reset input
Internal connection			H3	Up input		
			H4	Up input		Reset input
setting for pulse			H5		Down input	
output (FP1 C56/C72, FP–M			H6		Down input	Reset input
(FF1C50/C72, FF-M only)			H7	Up/Down inp	out	
only				(X0: Up input, >	(1: Down input)	
			H8	Up/Down inp		Reset input
				(X0: Up input, >	(1: Down input)	
			– Pulse	output inter	nal connectio	. <u> </u>
		1		nternally not		
		1				
		1	нı. II	nternally con	necled	

r

When system registers 400, 402, 403, and 404 are set at the same time, their priorities are:

- 1st 400 (high–speed counter mode settings)
- 2nd 402 (pulse catch input function settings)
- 3rd 403 (interrupt trigger settings)
- last 404 (input time filtering settings)

Item	Address	Name	Default value	Description	
Input	401	Not used			
setting	402	Pulse catch input function settings	H0	FP1 C14/C16: X0 to X3 FP1 C24/C40/C56/C72: 0 to X7 FP-M C20/C32T: X0 to X7	
				System register 402	
				Bit position $15 \cdot \cdot 12 11 \cdot \cdot 8 7 \cdot \cdot 4 3 \cdot \cdot 0$	
				Corresponding input X7 X6 X5 X4 X3 X2 X1 X0	
					0: Standard input 1: Pulse catch input
				In the FP programmer II, enter the above setting in hexa- decimal.	
				Example: If the pulse catch function is used for inputs X3 and X4, input H18.	
				System register 402	
				Bit position 15 · · · 12 11 · · · 8 7 · · · 4 3 · · · 0	
				Corresponding input X7 X6 X5 X4 X3 X2 X1 X0	
				Data input 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1	
				H1 H8	
				FP1 C14/C16 and FP–M C16T: X0 to X3	
				X3X2X1X000000: Standard input1: Pulse catch input	
				In the FP programmer II, enter the above setting in hexa- decimal.	
				Example: If the pulse catch input function is used for input X3, input H8.	
				402: 0 402: 1 0 0 0	
				X3 X2 X1 X0 H8	

ltem	Address	Name	Default value	Description																
Input setting	403	Interrupt input settings	H0	Bit position	15 · · 12	11 • • 8	3 7 · · 4	3 · · 0												
setting		settings		Corresponding input				X3 X2 X1 X0												
				0: Standard input 1: Interrupt input																
				In the FP progra decimal.	ammer II,	enter the a	bove setting	g in hexa-												
				Example: If the to X7, input HE		nput functi	on is used fo	or inputs X5												
				System regis	ster 403															
					15 · · 12	2 11 • • •	8 7 · · 2	43 • • 0												
				Corresponding input		<u> </u>	X7 X6 X5 X4	X3 X2 X1 X0												
						Data input	0000	0000	0 1 1 1 0	0000										
							HE	HO												
				• FP1 C14/C16	series: No	ot available		ΠU												
																	FP–M C16T: 2 i By setting the ir when the interru instruction cann	nterrupt inp upt input tu	put, the inp urns on du	out program ring RUN (th
				X5	X4															
				0	0			dard input rupt input												
				In the FP progra decimal.	ammer II,	enter the a	ibove settinę	g in hexa-												
				Example: If the H20.	interrupt in	nput is use	d for input X	(5, input												
				403:		0	0 1 0 0	0 0 0												
						<u> </u>	X5 X4 H2	H0												

ltem	Address	Name	Default value	Des	cription		
Input setting	404	Input time constant setting (X0 to X3)	H0001	In the FP–M C16T: Enter the set value to change the input constant time. The input constant time corresponding to the set value is set to X0 to X3. • Set value of input time constant			
					Input time constant	Set value of digit	
					1ms	HO	
					2ms	H1	
					4ms	H2	
					8ms	H3	
					16ms	H4	
					32ms	H5	
					64ms 128ms	H6 H7	
					git and corresponding inpu	ıt (4 points)	

ltem	Address	Name	Default value	Description	
Input con- stant	404	Input time constant setting (X0 to X1F)	H1111	Sets the input constant time • Set value of input time constant	•
				Input time constant	Set value of digit
				1ms 2ms	H0 H1
				4ms	H2
				8ms	H3
				16ms 32ms	<u>H4</u> H5
				64ms	H6
				128ms	H7
	405	Input time constant	H1111		
		setting (X20 to X3F)		• Set system registers 404, 4 the following:	105, 406, and 407, referring to
				404 = H 🗆 🗆 🗖	
					5 X7
				X8 to	o XF to X17 Control board
					to X1F Control board
				405 = H 🗔 🗔 1 🗔	
	406	Input time constant	H1111	X20	to X27) d
		setting (X40 to X5F)		X30	to X37
				X38	to X3F
				406 = H 🗔 🖸 1 🗔	FP1 Primary expansion
				X40	to X47
				Fixe	d to X57
				X58	to X5F
				407 = H 0 0 1 🖂	FP1 Secondary expansion
				Fixed Fixed Fixed	
	407	Input time constant setting (X60 to X6F)	H0011	Fixed └─ X60 to	o X67 ↓
		3(11111)		Example: If you specify the in	
				to X7 as 4ms, input H1112 to	o system register 404.
				System register 404	
					· · 8 7 · · 4 3 · · 0
					0010010010010
				H1	
	100,100			X18 to X1F X	10 to X17 X8 to XF X0 to X7
	408, 409	Not used			

ltem	Address	Name	Default value	Description
Tool port setting	410	Unit number setting for tool port (when connecting C–NET)	K1	K1 to K32 (Unit No. 1 to 32)
	411	Communication format settings for tool port	H0	
		Default setting items		Modem communication 0: Disabled
		Data length: 8 bits		1: Enabled
		Modem: Disabled		Data length (character bits)
		The modem communication		1: 7 bits
		settings are available only for CPU version 2.7 or later and it setting are not available for FP–M C16 and FP1 C14/C16.		When connecting a modem, set the unit number to 1 with system register 410.
RS232C	412	Communication	К0	K0: RS232C port is not used.
port setting		method setting for RS232C port		K1: Computer link communication (when connecting C–NET)
				K2: Serial data communication (general port)

Item	Address	Name	Default value	Description
RS232C port setting	413	Communication format settings for RS232C port Default setting items • Data length: 8 bits • Parity check: With odd • Stop bit: 1 bit • Terminal code: C _R • Start code: Without STX (The settings for the header and the terminator in system register 413 become effective when system register 412 is set to K2 (GENERAL). If you select K1 (COMPTR LNK) or K0 (UNUSED), the settings are discarded.)	H3	Bit position $15 limits 12 limits 11 limits 8 limits 7 limits 4 limits 3 limits 0Start code (Bit position 6)0: without STX1: with STXTerminal code (Bit position 5 & 4)00: C_R01: C_R + LF11: EXTStop bit (Bit position 3)0: 1 bit1: 2 bitsParity check (Bit position 2 & 1)00: none01: with odd11: with evenData length (Bit position 0)0: 7 bits1: 8 bitsExample: If you want to set the RS232C port as follows, inputH13 to system register 413.Start code: without STX- Terminal code:: C_R + LFStop bit: 1 bitParity check: with oddData length: 8 bitsSystem register 413It position 15 \cdot 12 ext{ 11 } \cdot 8 ext{ 7 } \cdot 4 ext{ 3 } \cdot 0 ext{ 10 } 0 ext{ 10 } 0 ext{ 11 } 11 ext{ 11 } H3$

Item	Address	Name	Default value	t Description	
RS232C port setting	414	Baud rate settings (for computer link and serial data communication)	К1	Set value Baud rate K0 19,200bps K1 9,600bps K2 4,800bps K3 2,400bps K4 1,200bps K5 600bps K6 300bps	
	415	Unit number setting for RS232C port (when con- necting C–NET)	К1	K1 to K32 (Unit number 1to 32)	
	416	Modem compatibili- ty setting for RS232C port	HO	 Settings: H0: modem communication disabled H8000: modem communication enabled When modem communication is enabled, set system registers 412, 413, 415. 412: K1 Computer link communication 413: Set the communication format in order to set total number of bits in 10 bits. (Example) Data length: 8 bits Parity check: none Stop bit: 1 415: K1 Unit No.1 	
Gener- al port setting	417	Starting address setting for received buffer of serial data communication mode (Data register number)	КО	Setting range: C version FP–M 2.7k type and FP1 C24C/C40C types: K0 to K1660 C version FP–M 5k type and FP1 C56C/C72C types: K0 to K6144 For details about its usage, refer to F144 (TRNS) instruc- tion.	
	418	Capacity setting for received buffer of serial data commu- nication mode (Number of word)	K1660	• Setting range: C version FP–M 2.7k type and FP1 C24C/C40C types: K0 to K1660 words C version FP–M 5k type and FP1 C56C/C72C types: K0 to K6144 words For details about its usage, refer to F144 (TRNS) instruc- tion.	

Appendix F

Glossary

Action Assignment

An action combines one sequence (created with the SFC–editor) with parts of the logic which are executed when a specific step is active. An action contains parts of the over–all logic. An action can be assigned to multiple steps and can be coded in FBD, LD or IL.

Body

A POU consists of a header and a body. The body contains the PLC program.

Data Type

Each variable is assigned a data type that determines its bit length. There are elementary (e.g. BOOL, WORD) and user–defined (e.g. ARRAY) data types.

Data Unit Type

A Data Unit Type (DUT) is a group of variables composed of several elementary data types. Such groups are used when data tables are edited.

Declaration

is the definition of Variables for global or local use.

EN (Enable) Input/ENO (Enable Out) Output

Many function blocks have an input and output variable of the data type BOOL in addition to the other input and output variables. The status of the ENO output always reflects the current status of the EN input.

F Instructions

are common Matsushita instructions. The P instructions function exactly the same way as the F instructions with the exception that they are only executed when a leading edge is detected.

Function

Functions are used within the definition of the user logic whenever a routine is needed, which, when executed, yields exactly one result. Since Functions do not access any internal memory, every invocation of one Function with identical input parameters always results in an identical value, the Function result.

As soon as a Function has been declared it

can be accessed from any other Program Organization Unit of the User Logic.

Function Block

Function Blocks define both the algorithm as well as the data declaration of a part of the User Logic. Due to this definition the logic can be considered a class. Not the Function Block itself is invoked but several instances of this Function Block can be created, which can then be used separately. Each instance possesses its own copy of the data declaration memory, which provides the necessary data information for executing the Function Block functionality.

The private data declaration memory of a Function Block Instance persists from one invocation of this instance to the next one. This internal memory allows the implementation of incremental functionality by using Function Blocks.

As a consequence several invocations of one Function Block Instance with the same input variables will not necessarily yield the same results.

In comparison with Functions, Function Blocks allow you to define not only one but a set of output variables representing the Function Block results.

Substances of Function Blocks can be declared locally, for use within one POU. Declaring the instance of a Function Block within a POU defines the scope of this instance at the same time.

Function Block Diagram FBD

is a graphical language for programming connective logic. The individual Program Organization Unit's Variables are connected with the inputs and outputs of function boxes. The connection represents a data flow between variables and inputs/outputs of function boxes.

A Function Block Diagram program is internally structured via Networks.

A Function Block Diagram network is defined by a connected graph of function boxes.

Function Block Instance

An object of the Function Block class

possesses its own copy of the Function Block's data declaration memory. This private data area is linked to the Function Block algorithm for this particular instance.

Global Variables

Global variables have physical addresses. They apply to the entire project and can be copied into the POU headers as VAR_EXTERNAL. The Global Variable List is found in the Project Navigator.

Header

A Program Organization Unit (POU) consists of a header and a body. In the header all variables used in the POU are listed and defined.

Identifier

is the symbolic name of a variable.

Input Variable

Input variables provide a function block/function with values with which calculations are carried out.

Instruction List IL

is a low level textual language which provides the capabilities for effective PLC programming. It is based on individual instructions which define one operation per instruction. Besides the Variables listed explicitly as arguments for an operation the actual value of the accumulator is used as an additional implicit argument. The result of an operation is also stored here after the execution of the appropriate instruction, thus providing a link between a preceeding instruction and one afterwards.

An Instruction List program is internally structured as an assembly of Networks.

Ladder Diagram LD

is a graphical language for programming connective logic. Similar to the Function Block Diagram capabilities, the individual Program Organization Unit's Variables are connected with the inputs and outputs of function boxes. In addition, Boolean connections can be drawn by using coils and contacts. This connection represents a Boolean signal flow.

A Ladder Diagram program is internally structued via Networks.

A Ladder Diagram network is defined by a connected graph of functions boxes linked with the lefthand power rail.

Local Variables

Local variables only apply to the POU in whose header they have been declared.

Logic

The complete PLC program defined by the user for solving the automation problem. The user logic is structured via Program Organization Units.

Network

A network belongs to a POU body and contains the logic (program).

Output Variable

Functions and function blocks write their results in output variables.

P Instructions

F instructions.

POU Pool

The POU Pool is located in the Project Navigator and contains all POUs that are part of the project.

Program

is similar to a Function Block with one implicit Function Block Instance. The differences between Programs and Function Blocks are:

Programs are only allowed on top of a Program Organization Unit invocation hierarchy (i.e. a program may not be invoked from another Program Organization Unit)

Directly represented Variables can be used for defining a Program

Program Organization Unit (POU)

Program Organization Units are used for structuring the complete user logic. Individual Units may invoke other ones, however a recursive POU structure is not allowed.

Program Organization Units are either defined as standard by default or user specific due to the specific automation problem to be solved by the User Logic.

FPWIN Pro differentiates between the Program Organization Unit Header (which contains the Declaration part of the Program Organization Unit) and the Program Organization Unit Body (which contains the Program Organization Unit's algorithm).

Due to different requirements for the solution of a sub–problem, different typs of POUs are provided.

The different Program Organization Unit types are Functions, Function Blocks and Programs.

Project

The project represents the top level of the hierarchy in Control FPWIN Pro. It contains the entire task for the controller.

Sequential Function Chart SFC

consists of the basic elements steps and transitions. While steps represent a specific state during the execution of a POU, a transition allows the definition of the conditions for changing from one state to the next state.

Using either parallel or alternative branches you can complement several types of SFC sequences.

Specific connective logic program code can be associated to the steps via actions by using

the appropriate languages Function Block Diagram, Ladder Diagram, Structured Text and Instruction List.

Structured Text

is a text-based editor exempt from normal syntax. ST is a high-level language that allows you to write complex programs and control structures. It is available for all PLCs and requires no more resources, e.g. steps, labels or calls, than other editors while doing comparable programming.

Task

defines the moment (and other execution parameters) of program execution. A POU of type program contains the logic, i.e., it defines what has to be done. The association of a program to a task defines the moment of the logic's execution.

Variable

enables the association of a specifier to a specific memory area. Due to different requirements, data can be of different types. Variables can be either global, for use within the entire user program, or local, being restricted to the POU in which it has been defined.

Index

Α

ABS, 76 ACOS, 88 ADD_TIME, 98 AND, 114 ASIN, 86 ATAN, 90

В

BCD_TO_DINT, 73 BCD_TO_INT, 72 BOOL_TO_DINT, 27 BOOL_TO_DWORD, 29 BOOL_TO_INT, 26 BOOL_TO_STRING, 30 BOOL_TO_WORD, 28

С

Constants, 518 COS, 87 CT, 406 CT_FB, 164 CTD, 148 CTU, 146 CTUD, 150

D

Decremental input mode, 469 DF, 440 DFN, 441 DINT_TO_BCD, 45 DINT_TO_BOOL, 39 DINT_TO_DWORD, 42 DINT_TO_INT, 40 DINT_TO_REAL, 44 DINT_TO_STRING, 46 DINT_TO_TIME, 43 DINT_TO_WORD, 41 Directional distinction mode, 470 DIV_TIME_DINT, 104 DIV_TIME_INT, 103 DIV_TIME_REAL, 105 DWORD_TO_BOOL, 53 DWORD_TO_DINT, 55 DWORD_TO_DINT, 55 DWORD_TO_STRING, 58 DWORD_TO_TIME, 57 DWORD_TO_WORD, 56

Ε

E_ADD, 79 E_DIV, 82 E_MUL, 81 E_SUB, 80 EQ, 130 EXP, 93 EXPT, 94

F

F_TRIG, 143 F0_MV, 180, 412 F1_DMV, 181 F10_BKMV, 189 F100_SHR, 281 F101_SHL, 282 F105_BSR, 283 F106_BSL, 284 F11_COPY, 191 F110_WSHR, 285

CTi Automation - Phone: 800.894.0412 - Fax: 208.368.0415 - Web: www.ctiautomation.net - Email: info@ctiautomation.net

545

F111_WSHL, 287
F112_WBSR, 289
F113_WBSL, 291
F118_UDC, 409
F119_LRSR, 293
F12_EPRD, 193
F120_ROR, 295
F121_ROL, 297
F122_RCR, 299
F123_RCL, 301
F130_BTS, 378
F131_BTR, 379
F132_BTI, 380
F133_BTT, 381
F135_BCU, 383
F136_DBCU, 384
F137_STMR, 402
F138_HMSS, 360
F139_SHMS, 361
F140_STC, 456
F141_CLC, 457
F143_IORF, 458
F144_TRNS, 200
F147_PR, 208
F148_ERR, 460
F149_MSG, 462
F15_XCH, 197
F157_CADD, 220
F158_CSUB, 230
F16_DXCH, 198
F162_HCOS, 418
F163_HCOR, 419
F164_SPDO, 420
F165_CAMO, 421
F166_HC1S, 422
F167_HC1R, 424
F168_SPD1, 426
-

F169_PLS, 432
F17_SWAP, 199
F170_PWM, 435
F183_DSTM, 403
F2_MVN, 182
F20_ADD, 212
F21_DADD, 213
F22_ADD2, 214
F23_DADD2, 215
F25_SUB, 222
F26_DSUB, 223
F27_SUB2, 224
F28_DSUB2, 225
F3_DMVN, 183
F30_MUL, 232
F309_FMV, 162
F31_DMUL, 234
F310_FADD, 162
F311_FSUB, 162
F312_FMUL, 162
F313_FDIV, 162
F314_FSIN, 162
F315_FCOS, 162
F316_FTAN, 162
F317_ASIN, 162
F318_ACOS, 162
F319_ATAN, 162
F32_DIV, 238
F320_LN, 162
F321_EXP, 162
F322_LOG, 162
F323_PWR, 162
F324_FSQR, 162
F325_FLT, 162
F326_DFLT, 162
F327_INT, 362
F328_DINT, 364

546

F62_WIN, 262

F329_FIX, 162	F63_DWIN, 264
F33_DDIV, 240	F64_BCMP, 266
F330_DFIX, 162	F65_WAN, 270
F331_ROFF, 162	F66_WOR, 272
F332_DROFF, 162	F67_XOR, 274
F333_FINT, 366	F68_XNR, 276
F334_FRINT, 368	F70_BCC, 304
F335_FSIGN, 370	F71_HEX2A, 307
F336_FABS, 162	F72_A2HEX, 310
F337_RAD, 372	F73_BCD2A, 313
F338_DEG, 374	F74_A2BCD, 316
F35_INC, 246	F75_BIN2A, 319
F355_PID, 386	F76_A2BIN, 322
F36_DINC, 247	F77_DBIN2A, 325
F37_DEC, 250	F78_DA2BIN, 328
F38_DDEC, 251	F80_BCD, 331
F40_BADD, 216	F81_BIN, 333
F41_DBADD, 217	F82_DBCD, 335
F42_BADD2, 218	F83_DBIN, 337
F43_DBADD2, 219	F84_INV, 339
F45_BSUB, 226	F85_NEG, 340
F46_DBSUB, 227	F86_DNEG, 341
F47_BSUB2, 228	F87_ABS, 254
F48_DBSUB2, 229	F88_DABS, 255
F5_BTM, 184	F89_EXT, 342
F50_BMUL, 235	F90_DECO, 344
F51_DBMUL, 237	F91_SEGT, 346
F52_BDIV, 242	F92_ENCO, 348
F53_DBDIV, 244	F93_UNIT, 350
F55_BINC, 248	F94_DIST, 352
F56_DBINC, 249	F95_ASC, 355
F57_BDEC, 252	F96_SRC, 358
F58_DBDEC, 253	
F6_DGT, 186	G
F60_CMP, 258	GE, 129
F61_DCMP, 260	GE, 129 GT, 128
F62 WIN. 262	01, 120

Η

High-Speed Counter Function, 469

I

ICTL, 453 Incremental input mode, 469 Incremental/decremental input mode, 470 Input Modes, 469 INT_TO_BCD, 37 INT_TO_BOOL, 31 INT_TO_DINT, 32 INT_TO_DINT, 32 INT_TO_DWORD, 34 INT_TO_REAL, 35 INT_TO_STRING, 38 INT_TO_TIME, 36 INT_TO_WORD, 33

J

JP, 450

Κ

KEEP, 442

L

LBL, 452 LE, 131 LIMIT, 122 LN, 91 LOG, 92 LOOP, 451 LSR, 280 LT, 132

М

MAX, 120

MC, 448 MCE, 449 Memory areas, 516 MIN, 121 MOD, 83 MOVE, 78 MUL_TIME_DINT, 101 MUL_TIME_INT, 100 MUL_TIME_REAL, 102 MUX, 123

Ν

NE, 133 NOT, 117

0

OR, 115

Ρ

P13_EPWT, 195

R

R_TRIG, 142 REAL_TO_DINT, 60 REAL_TO_INT, 59 REAL_TO_STRING, 62 REAL_TO_TIME, 61 Relays, 514 ROL, 110 ROR, 111 RS, 138

548

S

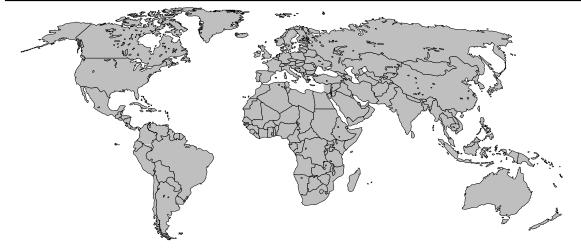
SEL, 125 separate input mode, 470 SET, RST, 443 SHL, 108 SHR, 109 SIN, 85 Special data registers FP-M, FP1, 492 FP0, 484 Special internal relays, 508 SQRT, 84 SR, 136 SUB_TIME, 99 System registers, 522, 531 TRUNC_TO_DINT, 71 TRUNC_TO_INT, 70 2-phase input mode, 469

W

WORD_TO_BOOL, 47 WORD_TO_DINT, 49 WORD_TO_DWORD, 50 WORD_TO_INT, 48 WORD_TO_STRING, 52 WORD_TO_TIME, 51

X

XOR, 116


T

TAN, 89 target value match OFF instruction, 469 target value match ON instruction, 469 TIME_TO_DINT, 65 TIME_TO_DWORD, 67 TIME_TO_INT, 64 TIME_TO_REAL, 68 TIME_TO_STRING, 69 TIME_TO_WORD, 66 TM_100ms, 396 TM_100ms_FB, 173 TM_10ms, 398 TM_10ms_FB, 170 TM 1ms, 400 TM_1ms_FB, 167 TM_1s, 394 TM_1s_FB, 176 TOF, 158 TON, 156 TP, 154

Record of Changes

Manual No.	Date	Description of Changes
ACGM0130END V1.0	June 1998	First edition
ACGM0130END V1.1	Oct. 1999	Updated, appendix, glossary, new commands: IEC Functions: INT_TO_REAL, DINT_TO_TIME, DINT_TO_REAL, DWORD_TO_TIME, REAL_TO_INT, REAL_TO_DINT, TIME_TO_DINT, TIME_TO_DWORD, TRUNC_TO_INT, TRUNC_TO_DINT, SQRT, SIN, ASIN, COS, ACOS, TAN, ATAN, LN, LOG, EXP, EXPT, MUL_TIME_DINT, MUL_TIME_REAL, DIV_TIME_DINT, DIV_TIME_REAL;
		 Matsushita Instructions: CT, DF, DFN, ICTL, JP, KEEP, LBL, LOOP, LSR, MC, MCE, TM_1ms,TM_10ms, TM_100ms, TM_1s, F12_EPRD, EEPROM read from memory P13_EPWT, EEPROM write to memory F327_INT, Floating point data 16-bit integer data (the largest integer not exceeding the floating point data) F328_DINT, Floating point data 32-bit integer data (the largest integer not exceeding the floating point data) F333_FINT, Rounding the first decimal point down F334_FRINT, Rounding the first decimal point off F335_FSIGN, Floating point data sign changes (negative/positive conversion) F337_RAD, Conversion of angle units (Degrees Radians) F338_DEG, Conversion of angle units (Radians Degrees) F355_PID, PID processing instruction.
ACGM0130END V2.0	Feb. 2001	Revision of several commands including F144, F168, F169, F170, F70–F83, CT Inclusion of F0_MV as used to initialize DT9052, SET/RESET. Name change of NAiS Control to FPWIN Pro. Additional appendices: data registers, relays, memory areas and system registers. Layout changes
ACGM0130V3.0END	Oct. 2001	Update for release of FPWIN Pro Version 4.0 Error removal Addition of ST examples
ACGM0130V3.1END	Nov. 2001	Selected IEC commands with STRING functionality added
ACGM0130V3.2END	May 2002	Linear page numbering, instruction indexing in header, minor error corrections (e.g. F355_PID, number of ARRAY elements)

GLOBAL NETWORK

North AmericaEuropeAsia PacificChinaAromat
CorporationMatsushita
Electric Works GroupMatsushita
Electric Works
(Asia Pacific)Matsushita
Electric Works
(Asia Pacific)Matsushita
Electric Works
(Asia Pacific)

Japan

Matsushita Electric Works Ltd. Automation Controls Group

Europe

Austria	Matsushita Electric Works Austria GmbH Stojanstraße 12, 2344 Maria Enzersdorf, Austria, Tel. (02236) 2 68 46, Fax (02236) 46133, http://www.matsushita.at
Benelux	Matsushita Electric Works Benelux B. V. De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. (0499) 37 2727, Fax (0499) 372185, http://www.matsushita.nl
France	Matsushita Electric Works France S.A.R.L. B.P. 44, 91371 Verrières le Buisson CEDEX, France, Tel. 01 60 13 57 57, Fax 01 60 13 57 58, http://www.matsushita-france.fr
Germany	Matsushita Electric Works Deutschland GmbH Rudolf–Diesel–Ring 2, 83607 Holzkirchen, Germany, Tel. (08024) 648–0, Fax (08024) 648–555, http://www.matsushita.de
Ireland	Matsushita Electric Works Ltd., Irish Branch Office Waverley, Old Naas Road, Bluebell, Dublin 12, Republic of Ireland, Tel. (01) 460 09 69, Fax (01) 460 11 31
■ Italy	Matsushita Electric Works Italia s.r.l. Via del Commercio 3–5 (Z.I. Ferlina), 37012 Bussolengo (VR), Italy, Tel. (045) 675 27 11, Fax (045) 670 04 44, http://www.matsushita.it
Portugal	Matsushita Electric Works Portugal, Portuguese Branch Office Avda 25 de Abril, Edificio Alvorada 5º E, 2750 Cascais, Portugal, Tel. (351) 1482 82 66, Fax (351) 1482 74 21
Scandinavia	Matsushita Electric Works Scandinavia AB Sjöängsvägen 10, 19272 Sollentuna, Sweden, Tel. +46 8 59 47 66 80, Fax (+46) 8 59 47 66 90, http://www.mac-europe.com
■ Spain	Matsushita Electric Works España S.A. Parque Empresarial Barajas, San Severo, 20, 28042 Madrid, Spain, Tel. (91) 329 38 75, Fax (91) 329 29 76
Switzerland	Matsushita Electric Works Schweiz AG Grundstrasse 8, 6343 Rotkreuz, Switzerland, Tel. (041) 799 70 50, Fax (041) 799 70 55, http://www.matsushita.ch
United Kingdom	Matsushita Electric Works UK Ltd. Sunrise Parkway, Linford Wood East, Milton Keynes, MK14 6LF, England, Tel. (01908) 231 555, Fax (01908) 231 599, http://www.matsushita.co.uk

North & South America

■ USA	Aromat Corporation Head Office USA 629 Central Avenue, New Providence, N.J. 07974, USA, Tel. 1–908–464–3550, Fax 1–908–464–8513, http://www.aromat.com
Asia	
■ China	Matsushita Electric Works, Ltd. China Office 2013, Beijing Fortune, Building 5, Dong San Huan Bei Lu, Chaoyang District, Beijing, China, Tel. 86–10–6590–8646, Fax 86–10–6590–8647
Hong Kong	Matsushita Electric Works Ltd. Hong Kong Rm1601, 16/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. (852) 2956–3118, Fax (852) 2956–0398
■ Japan	Matsushita Electric Works Ltd. Automation Controls Group 1048 Kadoma, Kadoma–shi, Osaka 571–8686, Japan, Tel. 06–6908–1050, Fax 06–6908–5781, http://www.mew.co.jp/e–acg/
Singapore	Matsushita Electric Works Pte. Ltd. (Asia Pacific) 101 Thomson Road, #25–03/05, United Square, Singapore 307591,Tel. (65) 255–5473, Fax (65) 253–5689

COPYRIGHT © 2002 All Rights Reserved

Specifications are subject to change without notice.