PLC and HMI
Development with
Siemens TIA Portal

Develop PLC and HMI programs using standard methods
and structured approaches with TIA Portal V17

Liam Bee

I\V

PLC and HMI
Development with
Siemens TIA Portal

Develop PLC and HMI programs using standard
methods and structured approaches with TIA
Portal V17

Liam Bee

BIRMINGHAM—MUMBAI

PLC and HMI Development with Siemens
TIA Portal

Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rahul Nair
Publishing Product Manager: Meeta Rajani
Senior Editor: Athikho Sapuni Rishana
Content Development Editor: Sayali Pingale
Technical Editor: Arjun Varma

Copy Editor: Safis Editing

Associate Project Manager: Neil Dmello
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Sinhayna Bais
Marketing Coordinator: Nimisha Dua and Sanjana Gupta

First published: April 2022

Production reference: 1080422

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-80181-722-6

www . packt.com

http://www.packt.com

To my boys, Lewis and Ryan — keep learning! I love you both very much.

— Liam Bee

Contributors

About the author

Liam Bee has worked in automation for over 16 years, after starting his career at 16 years
old as an instrument technician in the water industry. He began his automation journey by
maintaining PLCs and the instruments connected to them. He found very early on that he
had an interest in PLCs and automation, taking the time to learn PLC programming in his
own time, as well as exposing himself as much as possible to automation while working.

After 8 years of working in maintenance, Liam started his own side business, providing
bespoke controls using lower-range PLC solutions. This experience proved invaluable to
his progression; he learned quickly, often through failure, and his knowledge of control
design improved significantly.

12 years into his career, he moved roles again; this time, he was looking for something
to fill knowledge gaps and target Siemens as he was yet to use Siemens extensively.
Liam started at Aquabio Ltd and quickly found himself immersed in Siemens SIMATIC
Manager and TIA Portal. Over the next 3 years, he worked hard to understand
Siemens' tools and development environments, calling on knowledge from other PLC
environments that he had previously worked with.

Over his years working with automation, he has learned many different languages and
development environments. He has worked with Siemens, Allen Bradley, Schneider,
Mitsubishi, and a host of other PLC platforms, all of which have helped shape the design
concepts that he uses today. Liam has also taught himself computer programming
languages such as VBA, VBS, VB.NET, C#, Java, and more. Closing the space between IT
and industrial automation is important as time moves forwards and he has always tried
his hardest to be at the forefront of innovation.

I would like to thank my lovely wife, Ellie, for putting up with my constant
ramblings about PLCs and this book and for giving me the space and
support to achieve this.

I would also like to thank everyone at Aquabio Ltd, for helping me to learn
as much as I have and for allowing me the access to TIA Portal that has
enabled me to write this book.

Thank you to Packt and the great team involved in this process; it's been
very rewarding.

About the reviewer

Anna Goncharova lives near Boston, USA. She attended college at Vanderbilt University,
where she received her degree in electrical engineering. She has over 10 years of
experience working with PLCs and HMIs.

Table of Contents

Preface

Section 1 - The TIA Portal - Project
Environment

1

Starting a New Project with TIA Portal

Windows and panes - layout of Details view 18
the development environment 4 Overview view mode 19
Portal view - windows and panes ® Instructions and libraries 19
Project view - windows and panes 8 .
Instructions 20
Getting started with a new Libraries 22
project in the Project view 9 Project library 23
Starting a new project 9 Globallibrary 27
Chahges to.the project tree ! Online testing environment 31
Adding devices 12
Configuration of devices 14 CPU operator panel 33
Call environment 33
The Reference and Details Breakpoints 34
views - tools to aid development 15 call hierarchy 34
Reference projects 16
Proj Summary 35
Creating Objects and How They Fit Together
Creating a project's structure 38 Hierarchy in TIA Portal 45
Data management 38 Call structure 45

viii Table of Contents

Dependency structure 46 Interfaces and the effects on
Parent/child relationships 47 running PLCs 54
Optimized data/non-optimized dat 54
Instance and global data 48 primized datarmon-optimized cata
Mixing optimized and non-optimized
Using instance and global data 49 data 56
Accessing data 51 Ppassing data through interfaces 56
Configuration options 52
Summary 62
Structures and User-Defined Types
What are structs and UDTs? 64 Passing InOut data as a single struct 79
Structs 64 Structuresin static and temporary
UDTs 66 memory 79
Creating static declarations of UDTs
Creating struct/UDTs - best or structs 80
practices 69 Creating temporary instances of UDTs
Understanding what is required 69 orstructs 80
Defining structure variables % Drawbacks of structs and UDTs 81
Finding commonalities between assets 72 . .
. . Libraries 81
Naming conventions 73
Lack of open protocol support 86
Simplifying interfaces with Cross-referencing 86
structs/UDTs 74 Overusing UDTs/structs 89
Pass!ng inputs as a sm.gle struct 74 Summary 89
Passing outputs as a single struct 78
Section 2 - TIA Portal - Languages,
Structures, and Configurations
PLC Programming and Languages
Getting started with languages 94 Selecting the best language 105
Available languages 94 Understanding the use case 105
Languages in program blocks 929 Memory management 112

Different language types 102

Table of Contents ix

Differences between Siemens

and other PLCs 112
Timers 112
Valid networks in ladder logic 113

5

GRAPH is not SFC 114
Bit access in the byte, Word, and

Dword variables 115
Summary 115

Working with Languages in TIA Portal

The control scenario 118
Control overview 120
Using the HMI 123
Languages used in TIA Portal 123

Ladder logic 123

6

Function Block Diagram 135
Structured Control Language 145
GRAPH 154
Cause and effect matrix 168
Summary 181

Creating Standard Control Objects

Planning standard interfaces 184 General layout 203
Defining variables in an interface 184 Supportive methods 203
Large'varlablesm the |nter'facef 187 Considerations that have an
Planning standard control interfaces 189 impact on usability 205
Creating control data 193 How flexible does the control object
Improving control data accessibility need to be? 205
with UDTs 195 How likely is it that the control object
Example 196 Will need to be modified? 206
What does the control object interact
Creating HMI data 201 with? 208
Setpoints/parameters 201 Summary 211
Structuring logic 202
Simulating Signals in the PLC
Running PLC/HMI in Managing simulated inputs 220

simulate mode 213
Starting a PLC simulation 214

Using watch tables to change inputs 220

x Table of Contents

Using an input mapping

Safeguarding outputs when

layer to change inputs 223 in simulation mode 235
Creating a simulation interface 228 Summary 236
Options to Consider When Creating PLC Blocks
Extending standard functions 238 TIA Portal example 245
Extending standard data 241 Asynchronous data
Managing data through access considerations 249
instance parameters 243 1he correct method 251
Principle to this approach 244
Summary 252

Section 3 - TIA Portal - HMI Development
TIA Portal HMI Development Environment
TIA Portal Comfort Panel 256 Screen objects 264
Adding an HMI to a project 256 Special objects 266
HMI development Elements 267
environment overview 259 Ccontrols 268

. . Graphics and Dynamic widgets 268
Runtime settings 259
Screens 261 Summary 270
Placing Objects, Settings Properties, and Events
Setting static properties 272 Using scripts 283
Types of static values 274 Raising events 287
Key properties 275 Event scripts 290
Setting dynamic properties 276 Summary 290

Assigning tags to dynamization
properties 277

Table of Contents xi

11

Structures and HMI Faceplates

What are faceplates? 292
TIA Portal V17 faceplates 293
Creating a faceplate 293
Available objects and controls 295
Creating interfaces 296

Tag interface 296

12

Property interface 299
Creating and handling events

in faceplates 301
Accessing tags 302
Summary 304

Managing Navigation and Alarms

HMI navigation 306
Managing page changes 307
HMI alarm controls 310
Configuration of HMI alarms 31
The configuration of classes 313
Configuration of alarm controls 317
Setting filters on alarm controls 318

Section 4 - TIA Portal -

Best Practices
13

Downloading to the PLC

Alarm tags 321
PLC-driven alarming 323
Supervision categories 325
Types of supervision 326
Alarm texts 327
Setting global alarm class colors 330
Summary 330

Deployment and

Downloading to a PLC 336
Initiating a download 337
Setting load actions 338
Downloads requiring the PLC

to be stopped 342

Retaining data in optimized and

non-optimized blocks 343
Retaining data in instance data 344
Downloads without reinitialization 348

Snapshots 350

xii Table of Contents

Uploading from a PLC 352 Using functions 358
Considerations 357 Summary 358
Data segregation 357
Downloading to the HMI
Connection parameters 360 Simulating a unified HMI 365
Creating connections 360 Accessing a unified HMI simulation 366
Devices and networks 362 . . .
Security considerations 369
Downloading to an HMI 364 summary 370
Programming Tips and Additional Support
Simplifying logic tips 372 Managing output requests 386
Delay timers 372 Naming conventions
'I“FT constructor :74 and commenting 388
sjcat.e.ments IS Comments in SCL 390
Serializing 376
Refactoring 380 Additional Siemens support 394
Consolidating blocks 381 Using TIA Portal's help system 394
Sequences - best practices 3g2 Slemensforum _ _ 398
. . Siemens documentation archive 399
Using constants instead of
numerical values 382 Further support - Liam Bee 400
Managed transitions 383 Summary 400

Index

Other Books You May Enjoy

Preface

This book is designed to teach the fundamentals behind TIA Portal as well as the latest
features that V17 offers.

TIA Portal V17 is the latest installment of Siemens' flagship development environment. It
is designed to encompass all parts of project development, from PLC program writing to
HMI development. TIA Portal V17 offers a complete solution to manage a project through
design, development, commissioning, and maintenance.

Who this book is for

This book is aimed at anyone who wants to learn about the Siemens TIA Portal
environment. No prior knowledge of Siemens is required, however, a basic understanding
of PLCs/HMIs would be beneficial.

What this book covers

Chapter 1, Starting a New Project with TIA Portal, shows how to get started with a
new project.

Chapter 2, Creating Objects and How They Fit Together, looks at how to create new PLC
objects and how to use them together in a project.

Chapter 3, Structures and User-Defined Types, gives an introduction to UDTs and
structures and how they benefit projects.

Chapter 4, PLC Programming and Languages, explores PLC programming in TIA Portal.

Chapter 5, Working with Languages in TIA Portal, discusses each programming language
that TIA Portal offers, including the latest Cause and Effect language.

Chapter 6, Creating Standard Control Objects, looks at the benefits of standardizing
control objects.

Chapter 7, Simulating Signals in the PLC, covers a writing pattern that creates an easy
method to simulate all signals in the PLC.

xiv Preface

Chapter 8, Options to Consider When Creating PLC Blocks, takes a look at different options
that require some thought before and during the writing of code.

Chapter 9, TIA Portal HMI Development Environment, gives an introduction to TIA
Portal's latest HMI environment, using the new Unified hardware and design platform
built into TIA Portal.

Chapter 10, Placing Objects, Settings Properties, and Events, shows how to create objects in
an HMI and set their properties and events.

Chapter 11, Structures and HMI Faceplates, looks at the benefits of using structures and
faceplates in the HML.

Chapter 12, Managing Navigation and Alarms, shows how to manage navigation between
pages and how to manage alarms.

Chapter 13, Downloading to the PLC, details how to download a PLC program to PLC
hardware.

Chapter 14, Downloading to the HMI, shows how to download an HMI design to HMI
hardware.

Chapter 15, Programming Tips and Additional Support, provides information on
programming tips and where additional support from Siemens can be found.

To get the most out of this book

In order to get the best out of this book, the basic concepts of what a PLC and HMI are
and what they are used for should be understood. A keen interest in advancing learning
beyond what this book offers will help to solidify the learning gained from this book.

Software/Hardware covered in the book | OS Requirements
TIA Portal V17 Windows 8,10,11

Trial licenses can be obtained from the official Siemens website. Search for TIA Portal
V17 Trial License and you should find them.

Preface xv

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801817226 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "If On_Rising Edge is True and Data.Status_Data.Light
Flashesisover 100000, then Data.Status Data.Maintenance Required will
be True."

A block of code is set as follows:

Outlet Valve Position Request =
(((Max Tank Level - Min Tank Level)
/

(Max Valve Position - Min Valve Position))
*

(Current Tank Level - Min Tank Level))

+

Min Valve Position

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Double-click Add new device in the Project tree pane. This will open the Add new
device window, as illustrated in the following screenshot.”

Tips or Important Notes

Appear like this.

https://static.packt-cdn.com/downloads/9781801817226_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801817226_ColorImages.pdf

xvi Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub. com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www . packtpub . com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts

Once you've read PLC and HMI Development with Siemens TIA Portal, wed love to hear
your thoughts! Please click here to go straight to the Amazon review
page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re
delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801817227
https://packt.link/r/1801817227

Section 1 -
The TIA Portal -
Project Environment

Learn about the TIA Portal development environment and how to get started with the
basics of programming with Siemens PLCs.

This part of the book comprises the following chapters:
o Chapter 1, Starting a New Project with TIA Portal

o Chapter 2, Creating Objects and How They Fit Together
o Chapter 3, Structures and User-Defined Types

1

Starting a New
Project with
TIA Portal

This chapter covers the core requirements to get started with TIA Portal. This includes
the physical layout of the environment and different viewpoints, available tools, adding/
configuring devices, and library management. The differences between online and offline
views are also covered.

After reading this chapter, programmers should feel comfortable with the basic navigation
of TIA Portal and have enough knowledge to be confident about the following:

« Adding devices to a new project

« Knowing where instructions and other tools are located
« Using the project library

« Using a global library

« Viewing online and offline views of connected devices

4 Starting a New Project with TIA Portal

The following topics will be covered in this chapter:

« Windows and panes - layout of the development environment
+ Getting started with a new project in theProject view

o The Reference and Details views — tools to aid development

« Instructions and libraries

+ Online testing environment

Windows and panes - layout of the
development environment

Before jumping in and creating a project, let's get familiar with the development
environment. In TIA Portal Version 17 (V17), there are two different ways to view and
use the application, as outlined here:

o Portal view

= Allows for the quick setup of hardware
* Easy navigation of all TIA areas of development

= Easy access to diagnostic and other online tools
o Project view

= More familiar Block & Code view
* Required for programmable logic controller (PLC) programming

» Required for access to more advanced setting dialogs

Windows and panes - layout of the development environment

Depending on the view that TIA is running in, this changes the look and feel of the
development environment and also where/how objects are interacted with.

When opening TIA Portal for the first time, the Portal view will be presented, as
illustrated in the following screenshot:

Figure 1.1 - Portal view

The Portal view is TIA's default setting and will be the mode that is in use every time TIA
Portal V17 is opened (unless changed in the settings).

This view is best for quickly gaining access to different areas of a project.

6 Starting a New Project with TIA Portal

When required, TIA will automatically switch from the Portal view to the Project view.
The following screenshot shows the Project view:

Fotally Intagrated Aulomation
FORTAL

B T TR —————

= Motk

[T WA [T ——

Figure 1.2 - Project view

Note

The Project view is required in order to actually program information in
program blocks.

Portal view - windows and panes

The Portal view is much more simplistic than the Project view. This view is for high-
level tasks such as adding equipment, and the layout of the view does not change much
between different areas.

The windows in the Portal view can be split up into three different key areas, as illustrated
in the following screenshot:

Windows and panes - layout of the development environment

Recantly used
Frojest fah Lot change

171 Chapterapi? VChapter 1 61292021 2:20:36 P

) Tt Prajectapt? VAT Bacie Pojectiest Proec £270021 3124370

BE 0 °EY
7 Actvate basic imegrity ehack

[T [—omen—]

okiSuy TiChapter TChapter 1

Figure 1.3 - Portal view key areas
The three areas are described in more detail here:
1. Main menu: These are the top-level areas of TIA Portal. Nearly all aspects of
development fall into one of these categories.

2. Submenu: These are the navigational items that relate to the main menu area.
For example, switching between Start and PLC programming would change the
options available in this menu.

3. Activity area: This is the area in which interaction with selected processes occurs,
such as creating a new project or navigating PLC programming blocks.

Note

Be careful in the submenu area of the Portal view! In some locations (such
as PLC programming), a device must also be selected. It's very easy to
accidentally leave the last selected item when returning. Make sure to check
which device is active when in these types of menus!

8 Starting a New Project with TIA Portal

Project view - windows and panes

The Project view is a little more involved than the Portal view. It is not as simplistic, and
the menus and navigation can change depending on which area of the project is in view.

Note

The Project views shown in Figure 1.4 are shown with the default layout. In TIA
Portal, windows/panes can be moved around in the Project view to create a
custom environment.

You can select the default layout by navigating to Window | Default Window Layout. The
screen should then look like this:

4 T T TR PE IS TR A e i3 Sl BT

L enpasties [ttn [Dlagenes 1

[t] ot tgte oy}

e

Figure 1.4 - Project view key areas
The four key areas are outlined here:
1. Project tree: This is the pane in which navigation of devices and associated objects

(such as function blocks) is done. The addition of new devices and objects is also
started here.

2. Main activity area: This area is where activities such as PLC programming and
network configuration are completed.

Getting started with a new project in the Project view 9

3. Supportive tools: This pane contains a collection of tabs that offer tools relative to
the activity that is being undertaken. The tabs that are offered also depend on the
current activity.

4. Properties, Info, and Diagnostics pane: This pane changes often and has a multi-
tab approach to display information in different categories. During development,
this pane will most often be displaying information such as Compilation Status and
Properties, which allow the setup of different objects. Details view pane—mini-
project tree that only shows details of the object currently selected in the main
project tree.

5. Details view: This area lists child objects when an object is selected in the project
tree. It is also a useful method of exploring variables within a data block or tag list
without having to open the object itself.

Getting started with a new project in the
Project view

The Project view is the view that most programmers will spend their time in. While the
Portal view has its advantages in simplicity, the Project view is a necessity and offers
methods to do almost everything that the Portal view can do.

With this in mind, creating a brand-new project in the Project view may be easier for
people new to TIA Portal as it follows similar steps to other development platforms.

Note

Remember, on a clean install with default options, TIA Portal will open in the
Portal view. In order to get into the Project view, click the text (Project view) in
the bottom left of the screen to change modes.

This shows the view that will be switched to when clicked, not the current view.

Starting a new project

When in the Project view, TIA expects a project to be available in order to show anything
project-related. At this point, though, no project is available, as none has been created.

10 Starting a New Project with TIA Portal

A new project can be started by clicking the New project icon in the toolbar at the top of
the window, as illustrated in the following screenshot:

Figure 1.5 - New project in the Project view
Once the New project icon has been clicked, the following dialog box is presented:
Project name: | Projectl |
Path: | G:\Alveare-Learning\Packt Publishing|TIA Portal BH

Version: | V17 [~]

Authar: |Liam Bee |

Comment:
P— Cancel

Figure 1.6 — Create a new project dialog box
This allows the setting of the project name, save path, and author, as well as some
comments about the project.

Once the Create button has been clicked, TIA Portal will create (and save) the new project.

Getting started with a new project in the Project view 11

Changes to the project tree

Now that a project has been loaded into TIA (the one just created), the project tree is
updated with additional objects that relate to the project, as shown in the following
screenshot:

Project tree [E | Project tree m 4
[Devices | Plantobjects | [Devices | Plantobjects | |
i} | i =2

= | 7 Project! . ;i
I ~dd new device » (5 Card ReaderUSE memoary
iy Devices & networks

b [k Ungrouped devices

b 5 security zemtings

b 38 Crossdevice functions

k Common data

b !ﬁ Documentation sethings
» [Languages & resources
b [& Version cantrol interface

...

b [0 card ReaderiUSE memary

Figure 1.7 — Project tree differences when a device is added (left) compared to no device added (right)

These objects relate only to this project and may affect any devices or further objects that
are added to the project (Security Settings, for example).

12 Starting a New Project with TIA Portal

Adding devices

In the Project view (once a project has been opened), a device such as a PLC can be added
by double-clicking the Add new device option in the project tree.

By double-clicking the Add new device option, a new dialog box will open, allowing the
selection of supported devices. This is illustrated in the following screenshot:

Project tree o 4

J : ﬁ:ﬁdd II'IIII' device l

-+ [common data
€] Decumentation settings

v
» [i@ Languages & rescurces

Figure 1.8 - Add new device

Once a suitable device has been selected and a name assigned, the OK button can be
clicked, and the new PLC (or other hardware) will appear in the project tree, as illustrated
in the following screenshot:

Getting started with a new project in the Project view

13

* 7 Chapter 1

- w v v

B’ Add new device
i Devices & networks

= [MyTest PLC [CPU 1515-2 PN]

I]'f Device configuration

4| Online & diagnostics
v [mg Software units

[Frogram blocks

[Technology objects

External source files

4
]
4
v [PLCtags
v [PLC data types
v [watch and force tables
v [Online backups
[E Traces
] % OPC UA communication
v [Web applications
v [Device proxydata
o8 Frogram info
¢ PLC supervizions & alarms
] PLC alarm text lists
v [Local modules

¢ [Ungrouped devices

£ Security settings

[Cross-device functions
[g# common data

E Documentation settings
[E Languages & resources
[version contral interface

¢ [Online access
b [Card Reader/USE memory

Figure 1.9 - Project tree with new device expanded

If the new device is expanded, all of the available child objects that are relative to the

device are displayed.

Note

This is a necessary step to complete before software programming takes place.

The Programming Blocks object (where software such as ladder logic is
written) is not available until a device has been added.

14 Starting a New Project with TIA Portal

Configuration of devices

Every device that is added in TIA Portal will require some basic level of configuration,
such as setting the network Internet Protocol (IP) address or adding slave modules.

This can be accessed by right-clicking the new device in the project tree. The Properties
item will be available at the bottom of the context menu.

The Properties dialog will open—this is where the configuration of the device can take
place, as illustrated in the following screenshot:

» General Not networked
PROFINETinterface [X2] -
Startup
Cycle
Communication load
System and clock memory

SIMATIC Memery Card 192 . 168 . 0 .1
System diagnostics 255 255 .255 .0

PLCalarms
Web server
Display

Multilingual support

Time of day
Protection & Security
¥ OPCUA

b System power supply
» Advanced configuration I

Connection resources

Figure 1.10 - Configuration dialog

The same configuration settings can also be accessed by opening the device configuration
from the project tree. Once the Device view opens, the properties are displayed in the
Properties, Info, and Diagnostics pane, as illustrated in the following screenshot:

The Reference and Details views — tools to aid development 15

(P 18152]
anigurstan

3 3| 1o =] - L] < 3
@ Properties | Info 4| %

iagrontics

10 tags | System constants Taxts

b FTREEE) PROFINET interfate [X1]
OFMETinterdsce <)

General

[Emamat addrsser

" interface aetwerked with

Sebaat | ics necwced -

P -

Iternet protocel vession 4 (1P

(&) Sot P adevess in tha pregect

Figure 1.11 - Configuration dialog via the Device view

This pane then allows for the configuration of the device's properties and options.

The Reference and Details views - tools to aid
development

TIA portal has some handy views that aren't immediately obvious as to their usefulness.
Two views are particularly useful, as outlined here:

« Reference project view

» Allows TIA to open a second project in Read-Only mode, to be used as a
reference or guide to the current project

» Blocks and other objects can be copied from the reference project
« Details view

» Offers a quick-peek-style view of the selected object in the project tree

» Allows the selection of internal object data for dragging and dropping into the
programming view

16 Starting a New Project with TIA Portal

Both of these views appear as panels on the left-hand side of the TIA Portal view.

Note

By default, TIA Portal has the Reference projects panel disabled. Both panels
can be enabled (or disabled) by clicking View from the top menu and then
checking the panels to be made visible.

Reference projects

Making use of a previous project as a template is a great way to maintain consistency
between projects. Loading two instances of TIA Portal should be avoided if possible as
TIA Portal can be resource-hungry; lighter development machines may lack the resources
to maintain two or more instances of TTA Portal. You can see the Reference projects panel
in the following screenshot:

b | Reference projects
& Pl

b |] Test Project

b |] Projectl

Figure 1.12 - Reference projects panel

With reference projects, multiple projects can be open at the same time in Read-Only
mode.

Reference projects can be opened and closed via the buttons immediately below the title
banner.

Once the project is expanded in the reference project view, it resembles exactly the same
view as the project tree, with all objects available as they would be if the project were to be
opened normally.

The Reference and Details views — tools to aid development 17

Once a reference project is open and expanded, items within it (such as program blocks)
can be opened and read as normal; however, a gray hue will appear on the object icon to
indicate it is a reference object, as illustrated in the following screenshot:

48 Main (OB1) |. Main (OB1}

Figure 1.13 - Reference object indication example

The difference is very subtle—ensure that the correct blocks are being worked with
(although it is not possible to write to a reference block).

Uses of reference projects

There are many different reasons why a reference project may be used to aid development.
In most cases, a reference project is used to serve as a guide; however, the following
functionalities are also available:

 Copying information between the reference project and main project: Objects from
the reference view can be copied and pasted into the main project tree or dragged and
dropped. This is a useful way to move blocks quickly between two projects.

« Comparison of objects: Objects can be compared between the reference project
and the main project . mp file. This is a useful feature that allows programmers to
quickly check the differences between two offline projects.

Note

To compare the reference project with the main project, right-click on an object
and select Quick compare | Select as left object. Then, select the object to
compare with and right-click, and then select Quick compare | Compare with
<previously selected left object>.

TIA Portal will then compare the objects and display any differences.

18 Starting a New Project with TIA Portal

Details view
The Details view pane is best described as a mini-project tree that shows only the child
objects of the currently selected object in the project tree.

This is particularly useful when programmers want to drag and drop objects into the main
activity area, as in the following screenshot example:

J Devices] Plant abjects | Devices I Plant objects |

[& Devices & netwarks

ﬂil Devices & netwarks
= [l My Test PLC [CPU 1515-2 PH] = [l My Test PLC [CPU 1515-2 PH]
ﬂ" Device confguratian

H‘ Device configuration
1] Gnline & diagnostics

2l Onling & diagnestics
* g8 Sofwere units g8 Sofeware units

B Add mew block . i B Add mew block
& Main [081] & Main [081]

» D Technalogy objects ¢ Dk Technalogy objects

b Lg Externl source files e ¥ @ Externial source files
| Details view | Details view
Hame Details Hame Detaily
F.Mdnmhlmk I.I_M:rnewhln:k
& Main oB1 3 Rain al-]

Figure 1.14 - Example of Project tree and Details view displaying the same child objects

Note
Not all options are available for an object when selected in the Details view. For
example, an object can be opened, but cannot be renamed from the Details

view pane.
Right-click options are also unavailable.

Uses of the Details view
The Details view pane is only capable of showing child objects and will not show any
information when there are no child objects available.

Instructions and libraries 19

The Details view pane would typically be used to do the following:

« Preview child objects in a selected parent object.
« Directly open child objects in a selected parent object.

o Check basic details such as the block number or comments assigned to objects.

Overview view mode

The Details view pane also works in the Overview view mode, behaving in the same
manner as if the object had been selected from the project tree directly.

The Overview view mode is similar to the Details view but uses the main activity area to
display the results and shows all objects within the previously opened object.

The Overview view mode is entered by clicking the persistent Overview button at the
bottom left of TIA Portal.

Note

Users of SIMATIC Manager (Siemens older development software) may find
the Overview mode familiar when in the Details view (using the tabs at the top
of the view). This displays blocks in a familiar way to how SIMATIC Manager
displays blocks in the Details view.

Instructions and libraries

On the right-hand side of TIA Portal are the Tool panes used to develop application logic.
Here, we find two important tabs called Instructions and Libraries, which are outlined in
more detail here:

« Instructions

» Contains instructions for use when developing code

» Contains selection methods for selecting different versions of groups of
instructions

= Contains any optional package instructions that have been loaded into TIA Portal
+ Libraries

= Contains access to the project library

» Contains access to global libraries

20 Starting a New Project with TIA Portal

Instructions

The Instructions tab is the area in TIA Portal where programming instructions are stored.
You can see an overview of the Instructions pane here:

Options =
E—— T =E]H
bt | Favorites 5
<
HF HiF —— {7t —= & =
%
2
=
v | Basic instructions =
Mame Description |‘u|'ersior1 |
v [7] General Zg
» [it logic operations V1.0 L|#
b [@ Timer operations V1.0 I
r EI Counter operations V1.0 &
¥ m Comparator operations —
» [£] Math functions V1.0 L
} |3 Move operations V2.5 et 5
b | Extended instructions g_
Mame Description |‘u|'ersior1 | a
» [7] Date and time-of-day V2.2]
¥ [7] String + Char V37 =]
» [Frocess image Vi1 | =
» [Distributed Ii0 V27 E
» [] PROFlenergy V27
» [7] Module parameter assig... viz
v [Interrupts V12

Figure 1.15 - Instructions pane

There are a lot of items here that are organized into categories (folders).

Some categories contain a selectable version. This allows programmers to use previous
versions of operations/instructions in a newer environment if required by the project. The
default version will always be the most recent, and it is not advised to change it unless
there is a specific reason to do so.

Instructions and libraries 21

Adding instructions from the Instructions tab

Instructions are the objects that are used in the programming window—the building
blocks of the logic. These are used together to build the logical part of the program. An
example is shown in the following screenshot:

= .
i:)rletmrk T e | Basic instructions
somment MNarme Description Version

* 5] Move operations V2.5

MOVE MOVE Move value
EN — ENO—— 1 Deserialize Deserialize V2.2
TN 3 OUT1 — <77 Serialize Serialize V2.2

MOVE_BLK Move block

MOVE_BLK_VARIANT Move block V1.2

Figure 1.16 — Example of instruction added from the Instructions pane

Instructions are easily added to the program block in use through one of the two
following methods:

« Double-clicking on the instruction in the Instructions pane. This will add the
instruction to the current location in the Program block window.

« Dragging the instruction from the Instructions pane and placing it in the desired
location in the Program block window.

Box instructions

A third option is also available for box instructions. Adding an empty box instruction

(from the general category) will result in the following being added to the Program block

window:
4

=IN our=
Figure 1.17 - Empty box instruction

22 can be replaced with the name of an instruction that uses the box notation, such as the
previously shown MOVE instruction, as illustrated in the following screenshot:

viovE

- N ouT— = —IN ouT = =N — Enof-
N 3 DUTI

Figure 1.18 - Example of an empty instruction box being defined as a MOVE instruction

22 Starting a New Project with TIA Portal

Adding favorite instructions

Favorites can be added to a Favorites bar in both the Instructions pane and in the
Program block window below the Block interface pane, as illustrated in the following
screenshot:

e L, EREP8rgraE G| wma e

v | Favorites

I« T

HF HiF A4 =0— {7 — HF HiF A4 =0 7} = 2

Figure 1.19 - Two instances of the Favorites bar

Instructions can be added to the Favorites bar by simply dragging and dropping them
into place. There are some limitations to the Favorites bar, as outlined here:

« Only instructions from the basic instructions set can be added.

« Favorites cannot be re-organized once placed; however, they can be slotted between
existing items. This means that if an instruction needs to be moved, it must be
deleted and re-added.

Libraries

The library feature in TIA Portal is an extremely well-developed and feature-rich
part of the development environment but is often underused and not appreciated by
programmers.

Library management allows programmers to keep versions of program blocks so that
they can be distributed throughout a project or shared between other projects. This offers
the ability to use consistent and pre-tested code, wrapped up in a very well-controlled
environment.

Note

It's best to start using libraries right at the beginning of a project (and
throughout its life cycle) when defining a project structure is easier.

The Libraries tab consists of the following two areas:
+ Projectlibrary

= This contains Types and Masters that are relative to the current project

= Can only be used by the currently opened project

Instructions and libraries 23

+ Global library

» This also contains Types and Masters that are used to update or populate the
project library

= Can be updated via the project library

Types and Masters

Throughout the library system in TIA Portal, two common terms are used:
Types and Masters (master copies). These refer to how objects placed inside
the library behave.

Types: Program blocks placed in the Types folder will be explicitly connected
to the project library. This means that they cannot be edited without first
confirming the requirement to be edited. If a type is edited, it must be saved as
a new version; TIA Portal will manage this appropriately.

Masters: Any object placed in the master copies will be a copy of the object
placed. Unlike Types, these serve as templates and can be edited at will in the
project without updating the library. If more than one object is placed in the
Master copies folder at once, TIA Portal will group them together as a
single object to ensure they are copied back together.

Project library

The Project library is a locally held collection of program blocks that directly relate to the
current project, as illustrated in the following screenshot:

Options
] Library view (£

~ | Project library

E E (A -] =
Mame Status Version

% [=] - [=]
= Ll Project library
- [5 Types F
K Add new type
~ iF Type_Function_Block [l voo1
20y V0.0.1 [default] V.01
~ Eﬁ Master copies
48 FunctionBlock1

Figure 1.20 - Example of typed objects and master copies

24 Starting a New Project with TIA Portal

This library is used to help programmers ensure that the program blocks used throughout
the project are strictly version-controlled, or to provide templates in order to get started
with a program block quickly.

The Libraries tab is found on the right-hand side of the TIA Portal application, below the
Instructions tab.

Blocks that are used in the project library can only be opened if they are instantiated in
the project itself. This means that in order to edit or open a project library object, it must
at least exist in the project tree.

Note — Master Copies

Master copies cannot be opened at all from the Libraries pane and must be
copied (dragged) into the project tree before an object can be opened.

Types

Types are version-controlled program blocks. Only function blocks, functions, and user-
defined types (UDTs) can exist as a type in a library.

Types can be in one of the following two modes:

o Released

e In test

The following screenshot shows an example of a program block in test:

o Eﬂ Types T
K Add new type
~ &F Type_Function_Block L VvVoo0a
& V002 [intest] | V0.02
R Vo.0a [default] V0.0

Figure 1.21 - Example of a program block in test

When a type is released, it has been added to the library, versioned, and is now available
to be used in the project tree. At this point, it is protected and cannot be edited without
creating a new version.

Instructions and libraries 25

When a type is in test, it is available to be edited, versioned, and then committed back
to the library. A type must be put into test to create a new version. The test version can
be downloaded into the PLC via the project tree so that tests on the new version can be
performed.

Editing Library Blocks (In Test)

The block to be edited must exist in the project tree before it can be edited. A
block can be edited by right-clicking and choosing Edit type in the Libraries
pane.

The project library should be used in order to release multiple in-test blocks at once.
The status indication in the library will show the following symbols for different types of
inconsistencies between the project library and project tree:

— Multiple inconsistencies: More than one object is in test (including dependents)

¢ Non-Default version instantiated: The project tree has an in-test version
instantiated

=n Default dependent not used: The default version of this block does not use the
same default version of a dependent block (inconsistent versioning)

B Consistent: No inconsistencies detected

In order for library objects to be used correctly, all items should be consistent unless
testing is actively occurring.

There is more than one method for releasing versions, as outlined here:

Via the yellow information banner at the top of a typed block that is in test

Via the right-click menu when clicking an object in test in the project library

26 Starting a New Project with TIA Portal

When either is clicked, the following dialog box is presented:

FunctionBlock1

Figure 1.22 - Release type version dialog box

In this dialog box, information about the type can be entered, including an author and a
comment.

The version number will automatically increase the minor revision number; however, this
can be overridden to make larger version increments.

Checkboxes at the bottom of the dialog box allow programmers to change the behavior of
the release.

Deleting unused types is a good way of keeping the project library clean and easy to use.
Setting dependent types to edit mode will be pre-selected if the block being released has
dependent types that are not in test yet (these dependent blocks will need to be updated to
maintain library consistency).

Discarding Changes

Be careful! Clicking Discard changes will immediately delete the test version,
without confirmation!

Instructions and libraries 27

Master copies

Master copies work very differently from types. While master copies still reside in the
library, they are not version-controlled, and modifying a master copy does not cause other
blocks to need to adapt.

Master copies are also not restricted to just function blocks, functions, and UDTs. Other
types—such as data blocks, tag lists, and even groups of objects and folders—can have
master copies.

Editing Master Copies

Unlike types, master copies cannot be edited at all. In order to update a master
copy, a new instance of the object must replace it. This can be done by simply
deleting the existing version and dragging the new version (with the same
name) into the Master copies folder.

Usage

A master copy serves as a template and can simply be dragged from the Libraries pane
into the project tree in the position required. If the object dragged into the project tree
contains more than one object (is a group of objects), all of the objects will be unpacked
into their single instances, retaining any structural layout.

lcons

Different icons for master copies symbolize different meanings, as outlined here:

. Tl aS

Standard singular objects: Objects retain their normal icons

¥ Group of data blocks: A folder containing only data blocks

@ Group of function blocks: A folder containing only function blocks

o Group of mixed objects: A folder containing more than one type of object

. &= Empty folder: A folder/group with no content (useful for templating project-
tree layouts)

Global library

The global library is a library that can be used by more than one project. The global
library behaves slightly differently from the project library, but still maintains a familiar
approach to updating and maintaining objects within it.

28 Starting a New Project with TIA Portal

Libraries Pane

Just as with the project library, the global library is found on the left-hand side
of TIA Portal in the Libraries pane.

Creating a new global library

Global libraries exist outside of the project and can be saved in different directories from
the active project. To create a new global library, click the & icon.

A familiar dialog box will open that is similar to the one used to create a new project, as
shown here:

Create new global Tibrary

Library name: |Library? |

Path: |C:1U5er51Liam BeelDocumentslAutomation |'_]
Version: | V17 [+]

Author: |Liam Bee |

Comment: b

Figure 1.23 — Create new global library dialog box

By default, global libraries are saved in the Automation folder; however, this can be
changed to any location.

It's important to note the version number of the global library—the version of TIA Portal
must match in order to use the library. If an older version library is opened in a newer
version of TIA Portal, a conversion to the new version takes place. You cannot downgrade
TIA Portal libraries to lower versions.

Instructions and libraries 29

Opening a global library

Just as with a project, a global library must be browsed for and opened. This can be done
in the same place as when creating a new global library, by clicking the (¥ icon.

A new dialog will open that allows a global library to be browsed for and opened, as
illustrated in the following screenshot:

Look in: | Library1 V| <) ? % [

* MNarmne - Date modified Type
) AdditionalFiles 15/07/2021 21:39 File fe
AlzemE M 15/07/2021 21:39 File fo
System 15/07/2021 21:39 File fc
- T™MP 15/07/2021 21:39 File fe
Desktop UserFiles 15/07/2021 21:39 File fe
- Vei 15/07/2021 21:39 File fe
™ XRef 15/07/2021 21:39 File fe
Libraries E Library1.al17 15/07/2021 21:39 Sierm
3
This PC
< >
Network File name: | ~ Open
Files of type: Global library R4 Cancel
Open as read-only

Figure 1.24 — Open dialog for a global library

If a global library is to be edited, remember to uncheck the Open as read-only checkbox.
If this is left checked, objects can be read from the global library but cannot be written to
the global library.

Note

A project doesn't have to be opened to open a global library; however, without
a project, the use of a global library is limited!

30 Starting a New Project with TIA Portal

Using a global library

Before any objects in the global library can actually be used, it is important to understand
the differences between a global library and a project library. Almost all of the differences
relate only to types, with master copies still behaving as templates.

If a type is required from a global library, it will automatically be added to the project
library if dragged into the project tree, as will all of its required dependents.

Upgrading a global library

A global library is easily updated from a project library by right-clicking the object to be
upgraded in the project tree and selecting Update types | Library. A new dialog will open,
as illustrated in the following screenshot:

Update types in a library

9 Select the library you want to update.

Update project library

e Update global library
Select the global library to be updated.

Mote: To update a global library, you must first open it with write permission.

| [~]

ﬂ New default version, compatible changes

v | Update options

Update instances in the project
[T Delete unused type versions without the "default” identifier from the library
[Force update (types including their dependent types are updated regardless of their version number}

| oK | | Cancel |

Figure 1.25 - Updating types in a library

From the dropdown, the open (and writable) global library can be selected. When OK is
clicked, the global library will be updated with all new versions.

Online testing environment 31

This also works the other way around, for updating project library types from the global
library.

The global library must be saved after updating by clicking the Save icon ("o) in the
Global library pane.

Note

Checkbox options should only be selected if there is an explicit requirement to
do so. It's good practice to keep previous versions available in the global library
to support older projects as time and versions progress.

Periodically, very old versions may be removed once no projects are making
use of them (the project library will still contain the relative version, though, if
one in use is removed from the global library).

Online testing environment

The Testing tab on the right-hand side of the TIA Portal application contains tools that
are used only when a device is connected via the Go online function.

If no device is connected to, the Testing tab will simply display No online connection in
the central processing unit (CPU) operator panel, and other functions are not available.

The Go online function can be found on the top menu bar—it looks like this:
ﬁ Gao online

Figure 1.26 — Go online function

32 Starting a New Project with TIA Portal

Once clicked, a connection dialog will open that allows CPUs and other devices to be
searched for and connected to, as illustrated in the following screenshot:

Interface type | Address Target device

PMNIIE Access address —

ﬂ Scan completed. 1 compatible devices of 1 accessible devices
%7 Retrieving device information...
Scan and information retrieval completed.

Figure 1.27 — Go online dialog that allows connection to devices

In the Go online dialog (Figure 1.27), devices can be searched for and connected to.
Different interfaces can be selected from drop-down lists, and different subnets can be
specified if required. Once the desired device is found, highlight it and click GoOnline.
This will then connect the development environment to the device.

Online testing environment 33

CPU operator panel

Once online, the Testing tab—specifically, the CPU operator panel—now contains data (if
connected to a CPU in the project), as illustrated in the following screenshot:

b | CPU operator panel

FLC_1 [CPU 1511-1 PN]

. RUM i STOP RLUN
MAINT MRES

Mode selector: RUM

Figure 1.28 — CPU operator panel once online and connected to a CPU

These controls allow the CPU (PLC) to be stopped via the STOP button, memory reset via
the MRES button, and placed back in to run via the RUN button.

The status of the CPU can also be read in this panel via the RUN/STOP, ERROR, and
MAINT status LEDs. This is useful if the CPU is not local to the programming device
running TIA Portal (connected via a virtual private network (VPN) connection, for
example).

Call environment

The call environment is an important part of viewing and monitoring online code. In TTIA
Portal, a program block may be called more than once and via a different call environment
(called by a different parent or instance). The Call environment panel in the Testing tab
allows the call path to be defined, as illustrated in the following screenshot:

w | Call environment

| call path: Main [0B1] |

| Change ... |

Figure 1.29 - Call environment panel

Figure 1.29 demonstrates a call path to a program block. When the Change ... button
is pressed, a list of available call paths is displayed. A call path can be selected, and TIA
Portal will then monitor the selected call path.

34 Starting a New Project with TIA Portal

Note - SIMATIC Manager

Programmers who have worked with Siemens SIMATIC Manager may
remember that multiple calls to the same function block on the same call
path mean that only the first instance is available to be monitored. TIA Portal
rectifies this behavior by also allowing instances to be selected.

Breakpoints

Breakpoints are used to pause the execution of the CPU in order to help debug
programming logic. They are only available in Structured Control Language (SCL) and
Statement List (STL) languages and are not available on all CPUs.

Warning - Outputs

If a breakpoint halts the execution of the CPU, outputs may remain in their
current state until the breakpoint is released! This could cause damage to assets
or personnel. It is important to understand the risks associated with using
breakpoints in a live equipment environment.

Breakpoints and their usage are advanced topics that relate only to textual languages.
Using breakpoints effectively is covered in more detail in Chapter 5, Working with
Languages in TIA Portal.

Call hierarchy

When in offline mode (not online with a CPU), the Call hierarchy pane always displays
No call path available.

When in online mode with a CPU and actively monitoring a program block via the

Monitor function , the Call hierarchy pane displays the relative call path to the block
being monitored, as illustrated in the following screenshot:

« | Call hierarchy

Main [OB1] - MW 1

Figure 1.30 - Example of an object called by OB1

Summary 35

Figure 1.30 shows an example of a function block that is called by Main [OB1].
Should the block being monitored have multiple parents, the entire call hierarchy will
be displayed.

Summary

This chapter has covered the required areas to start a project with a good understanding of
TIA Portal's tools and layout, environment setup, and library management systems.

Understanding where and how to use the tools that TIA Portal offers is important. As a
further learning exercise, it is recommended that users familiarize themselves with these
tools. It is important to remember that TIA works best when all of the tools are utilized
together.

The next chapter expands on the inner workings of TIA Portal , on how objects are
created, and how these fit together to create a software structure of a program in a
hierarchical manner.

2

Creating Objects
and How They
Fit Together

This chapter explains how, when creating objects, programmers should be mindful of
how the hierarchy in TIA Portal operates. It helps programmers understand how to create
a project's structure, how programming objects work with each other, how different
instances of data in different spaces affect the project, and how interfaces that contain
objects work.

We will cover the following topics in this chapter:
« Creating a project's structure
 Hierarchy in TIA Portal
« Instance and global data

o Interfaces and the effects of running PLCs

38 Creating Objects and How They Fit Together

Creating a project's structure

When a new project is started, there's usually a good idea of the direction the project will
take, such as whether control elements for equipment such as pumps will be added, what
parameters will be created, and how data will be sent to and from a SCADA system. This
information makes up most of the project, with logic and control only possible once the
required assets and parameters have been established.

It is generally a good idea to enforce a workflow or project structure when developing
with TIA Portal (or any PLC vendor). Being able to map out exactly where actions such
as data exchange take place and where control logic takes place helps visualize a project,
especially if the project that's being developed is large.

Data management

Data management is important in TIA Portal and Siemens has taken a very strong
approach to ensure that the data and program cannot be compromised in an online
environment (due to modifications) while it's running. This means that data blocks and
instance data regularly need to be reinitialized to their default values if the structure of
the program block changes. This ensures that while the data blocks are being modified, no
incorrect values can be used in the program. With this in mind, it is important to protect
data from being unnecessarily grouped with data that it has no relationship with. The
following diagram shows project structure and data management:

]

N !

In_stm?w_ntlg Ly Instrument A i

— i Instrument Process E

o | Area |

In_STIEI'Ie_HTI< > Instrument B E

U : i

Input Mapping . |
‘ Pump "|< > Pump A

i A |

~—| = Datablock o Pump Process |

- ;:.l Area !

= Asset ‘ PUEI?'ID |: I Pump B]

Qutput Mapping

Figure 2.1 - Example of project structure and data management

Creating a project's structure 39

The preceding diagram shows an example of managing data across four different assets, as
well as how the data block that holds the data for that asset is interacted with:

o Input mapping: A logic area that maps input memory data into its relative data
blocks for use in the project.

o Data blocks: The data blocks hold all the data that's required for the asset. This
includes items such as parameters, SCADA interface variables, and control data.

 Asset manager: The asset manager is simply a function block that manages an asset
completely, including items such as alarms, control logic, SCADA indication, and
output commands.

o Output mapping: A logic area that maps data from the relative data blocks to their
final output memory data.

This approach means that the project has naturally segregated development into the
preceding key areas, with the fifth development area being to develop any interlocks and
controls that are required to have assets interact/interface with each other. This serves as
the workflow for the project.

Note

This approach purposely discourages the use of the $I, $0, and $M memory
registers in code logic (outside of an asset manager). This is because the only
places $I and %O should be used are in input mapping and output mapping,
respectively.

Memory registers ($M) should never be used in this design as programmers
cannot guarantee that they are not already in use in a different project that the
asset manager blocks may get used in. You're encouraged to use data blocks
and instance data to store data and work with logic.

Example of use

In the Structured project example 1 project, an example of this type of management is
provided.

This example is for a simple use case where there's a red light on top of a windmill - the
sort that warns low aircraft of its presence at night. This is a theoretical use case.

40 Creating Objects and How They Fit Together

Project tree objects

Using the method laid out in Figure 2.1, the project tree in this example contains
everything that's needed to create the Pole_Light Manager (the asset manager), its
respective data, and the mapping from its inputs and to its outputs:

|- Program blocks
ﬁ"" Add new block
& Main [OB1]
& Input_Mapping [FC1]
3 Cutput_Mapping [FC2]
35 Pole_Light_Manager [FB1]
& Pole_Lights [FB2]
@ Pole_Light_1 [DB2]
@ Pole_Lights_DB [DB1]

Figure 2.2 - Program blocks

TheMain [0B1] block is used to call all of the required objects, in the desired sequence
order. The Pole Lights block is a function block that is used to hold different instances
of the Pole Light Manager function block.

Main [OB1]

Main [OB1] calls the required program blocks in order from top to bottom, left to right:

Network 1: Call Input Mapping === Manage Pole Lights === Call Output Mappir

%DB1
"Pole_Lights_DB"
%FC1 B2 %FC2
“Input_Mapping® “Pole_Lights™ "Cutput_Mapping™
— EN ENQ=—————EN ENO — EN ENQ —
%DBZ pole_Light 1_
"Pole_Light_1° Data

Figure 2.3 - Project structure — Main [OB1]

Because all the blocks are on the same network line in the preceding screenshot, they are
executed from left to right. This calls Input Mapping to process raw inputs from the I/O,
then the Pole Lights function block, which manages all of the Pole Light Manager
instances, and finally Output Mapping, which handles outputs at the I/O level.

Creating a project's structure 41

Input mapping

The Input Mapping block maps data from physical I/O to areas that are designated in

the program (data blocks, for example):

* Network 1: Fole Light 1

%W100.0
Pole Light 1 Light
Sensor
*52_ICHD®

¥ Block title: Input Mapping

(From Input
Mapping)
"Pole_Light_17.
Input_Data.Light_
Sensor
I 1

1001
Pole Light 1
Healthy Signal

"52_ICHT®
11

| I

(From Input
Mapping)
"Pole_Light_17.
Input_Data.Healthy
I L

| I

Figure 2.4 - Input mapping

This is the first step toward data management. By declaring an explicit place where all
of the inputs for the project are mapped to the appropriate datasets (data blocks with a
defined structure of data), the project naturally sets itself up to be asset oriented and all
the signals can be deemed safe and correct for future use from the dataset.

By adopting this approach, raw signals can be modified before they are committed
to the dataset, which is designed to be utilized by a management function block

(Pole Light Manager, in this example).

For example, if the pole light hardware was a different model that had a low signal (false)
when active and a high signal (true) when inactive, S2_ICHO could be inverted in the
mapping layer without it affecting the normal use of the pole light later in the project.

42 Creating Objects and How They Fit Together

Similarly, if the pole light was a newer version that produced an analog input for a light
intensity measurement, the S2_ICHO input referenced in the preceding screenshot could
be replaced with the following:

: (From Input
HWW102 Mapping)
Pole Light ‘I_ Light “Pole_Light 1°.
Intensity Ian.t_Euam.Li_g ht_

"33_CHO Sensor
|3=‘ I I 1
|Int | LI
12000

Figure 2.5 - Analog alternative — when above 12mA, consider the light sensor as active and write it to

the appropriate variable in the dataset

Note that S2_ICHO has been replaced with S3_CHO, the right-hand side coil has not
changed, and the variable that's in use has not changed. This means that the function

block that manages Pole Light does not need to change, despite the environment

changing around it.

Process area

The process area is everything that sits between the input mapping and the output
mapping - essentially, it's the main bulk of the project. At this point, all the datasets
should contain the input I/O data from the input mapping layer and can be deemed safe
to work with.

In the Pole Lights function block, there is a single instance of Pole Light Manager:

#Pole_Light_1
B
“Pole_Light_Manager™
EN ENC
#Pole_Light_1_
Data Data -

Figure 2.6 — The Pole_Light_Manager parent function block

It is this function block that manages all of the calls to the different instances of
Pole Light. This would make Pole Light Manager the child of Pole Lights
and Pole Lights the parent of Pole Light Manager. This is called a call structure.

Creating a project's structure 43

When Pole Light Manager is called, it is safe to assume the following:

o Input Mapping hasbeen called:

» All the required input data is present and correct.

o All the required variables that exist in the dataset have been passed into (and out of)
the function block via the data interface pin.

The preceding conditions are all satisfied via the project structure that has been created
through the workflow and data management that's been designed for the project.

Dataset

A dataset is simply a data block that contains a known and explicit data structure.

If the data structure is known and the variables within it are placed in structures with
valid symbolic meaning, it becomes very easy to use the data inside and outside the
function blocks that manage the data.

Pole Light 1 isan example of a dataset:

B R S

EARAAERARLERAARLE

5
10
11
12
13
14

15

Pole_Light_1

MNarme

-

Static

-

-

-

Input_Data
Light_Sensor
Healthy

Control_Data
Light_Sensor_Active

Status_Data
Light_Flashes
Healthy
Maintenance_Req...

SCADA _Data

P From_5CADA

r To_SCADA

Output_Data
Output

Data type

Struct
Bool
Bool
Struct
Bool
Struct
Lint
Bool
Bool
Struct
Struct
Struct
Struct

Bool

Figure 2.7 - Dataset structure using the Struct data type

Notice that a design that's similar to the project workflow in Figure 2.1 exists in the dataset:

Input Data —> Process Data —> Output Data

44 Creating Objects and How They Fit Together

The process data is made up of different types of signals, such as SCADA- and status-
related ones. This means that this Pole Light 1 data block could be referenced directly
from a SCADA system by referencing the SCADA Data internal structure.

Note

Sometimes, it's better to have duplicated data in different structure areas within
the dataset, which enables the dataset's structured areas to be used completely
compartmentalized from any other area in the dataset.

Take note of this when you're designing a dataset to try and reduce its overall
size.

Output mapping
Once the management function blocks have processed the assets by reading inputs,

executing logic, and setting outputs, the associated dataset will contain the current output
values, ready to be sent to the I/O layer.

This is performed by the Output Mapping function, which acts as a mapping layer:

* Block title: Output Mapping

* Network 1: Fole Light 1

Output To Light
"Pole_Light 17. %1000
Output Data. Pole Light 1 Output
Output "52_QCHD"
11 [3
1 \F

Figure 2.8 — Output mapping

The Output Mapping function does the same thing as the Input Mapping layer,
only vice versa. It takes data from the dataset and sends it to the I/O so that assets can be
controlled correctly.

As with the Input mapping layer, this provides us with the opportunity to modify
signals to suit the output requirements, without changing the function block that provides
the control (the asset manager).

Hierarchy in TIA Portal 45

Hierarchy in TIA Portal

TIA Portal works by using a parent/child hierarchy, where parent objects call child
objects that they depend on to function correctly. The following is an example of a parent/
child hierarchy:

Main OB1

Abstraction & Conditioning — Process & Control —» Qutput Processing

T -~ F

Input Mapping Pole_Lights Quiput Mapping

i

Pole_Light_Manager

Figure 2.9 — Example of a parent/child hierarchy within the example project

The preceding diagram shows how the Pole Lights function block is dependent on
Pole Light Manager.If Pole Light Manager is modified, then the Pole
Lights function block would also need to be modified to utilize the new version. This is
because the interface of the Pole Lights function block would need to change its size
to accommodate any new data that's added to Pole Light Manager.

This example also shows that input mapping and output mapping do not have any
dependents, so they do not rely on any other function blocks or functions to process
their logic.

Call structure

In TIA Portal, a view window can be opened that displays the call structure. This is a
special view that helps map out the logical hierarchy of the project and the order in which
blocks will be processed when the parent is called.

Note

To open the call structure view, from the project tree, right-click on an object
in the Program blocks folder and choose Call structure. It doesn't matter
which object you choose; the same call structure windows will open.

46 Creating Objects and How They Fit Together

The following is the call structure view:

Call structure of PLC_1

Call structure I |Address Call freq.. Details
* B Main OE1
» B Input_Mapping FC1 @Main » NW1 (Call Input Mapping === Manage P...
» 4 Output_Mapping FC2 @EMain » NW1 (Call Input Mapping === Manage P...
@ Pole_Light_1 (Data block derived from UDT_Pole_Light) DBZ2 @EMain » NW1 (Call Input Mapping === Manage P...

~ 4@ Pole_Lights, Pole_Lights_DB
34 Pole_Light_Manager, #Pole_Light_1
4 Pole_Light_Manager, #Pole_Light_1

FB2, DB1
FE1
FB1

@Main » NW1 (Call Input Mapping === Manage P...
@Pole_Lights » NW1

1
1
1
1
1
1 Block interface

Figure 2.10 - Call structure view

The call structure view shows which blocks are calling other objects. Here, Pole Lights
calls Pole Light Manager with the data from #Pole Light 1 (instance data). Itis
displayed twice due to being used once in the interface and then again in the ladder logic.

This view is useful for mapping out and verifying which objects call other objects quickly.

Dependency structure

The dependency structure view is similar to the call structure view but shows objects that
have other objects that depend on them.

The dependency structure view can be accessed by visiting the call structure view and
then selecting Dependency structure from the tabs at the top of the screen:

* 3B Pole_Light_Manager FE1
* 3 Pole_Lights FB2 1 @Pole_Lights &= NWI
* |g Pole_Lights_DB (instance DB of P... DB
4 Main OB1 1 @Main » NW1 (Call Input Mapping === Manage P_..
& Main OB1 1 @Main » NW1 {Call Input Mapping === Manage P...
* 3 Pole_Lights, #Pole_Light_1 1 EBlockinterface
~ g Pole_Lights_DB (instance DB of P... DB
4 Main OB1 1 @Main » NW1 (Call Input Mapping === Manage P...
3 Main OB1 1 @Main » NW1 (Call Input Mapping === Manage P...

Figure 2.11 - Dependency structure view

The preceding screenshot shows Pole Light Manager as the object with no
dependencies. All of the objects listed below it depend on the Pole Light Manager
object. As the hierarchy is expanded, more blocks that depend on child objects are displayed.

For example, Main depends on Pole Lights DB, which depends on Pole Lights,
which depends on Pole Light Manager.If Pole Light Manager were to be
removed, the entire hierarchy would fail back to Main.

Hierarchy in TIA Portal

47

Note

As the structure of the project develops, it may become more and more
important to understand what objects will be affected if changes are

could be affected too and also need to be modified or recompiled.

This becomes even more important when libraries are being used across
multiple projects.

introduced. Remember that if a child object's data structure changes, the parent

Parent/child relationships

It is important to understand the call and dependency structure in TIA Portal, especially

when it comes to modifying items that have other items that depend on them:

FBE1 FB2 UDT1 upDT2 FC1
|))))
: :_' Interface Change | | |
| Static Declaration | | | |
L.,; Change .
| | ! Definition Change ! !
| i i (UDT]. Is Used In UDT?} ! i
: | | Interface Change | o
l I I I)
FBE1 FB2 UDT1 upDT2 FC1

Figure 2.12 — Example of dependency changes

Program objects in TIA work at a hierarchical level, where parent objects are affected

when child objects and their dependencies are changed.

In the preceding example, all the objects are typed in the project library. UDT1 is being

modified (in test). Once UDT1 has been selected for modification, the objects that

depend on it also switch to in test mode and are issued a minor revision increment
automatically. This is because of the hierarchy and call structure. The preceding diagram

explains that because UDT1 is a child or indirect dependent of other objects, it must also

be updated to preserve the library's integrity.

48 Creating Objects and How They Fit Together

FB1, FB2, UDT2, and FC1 all need to be modified because UDT1 has been modified:

« FCI: Changes to the interface need to be made since UDT1 is used in the interface
of FC1.

« UDT?2: Changes to the internal data of UDT2 need to be made since UDT1 is a
dependency that is used in UDT2.

 FB2: Changes to the interface need to be made since UDT1 is used in the interface
of FB2.

« FBI: Because the interface of FB2 has changed and FB2 is a child of FB1, the
interface of FB1 needs to be updated to accommodate the new data.

Instance and global data

As with most PLCs, TIA Portal has two types of data — global and instance. What defines
the data as a particular type is where and how it is used. What is classed as global or
instance data depends on what information is being held and how it interacts or interfaces
with logic:

o Global data:

= Data that can be accessed anywhere in the project, at any hierarchy level.

= Data can be freely defined by the programmer, including the creation of
sub-structures that contain data or UDT definitions.

= It cannot hold instance data for a function block, even in a sub-structure.
« Instance data:

= Data that exists explicitly to be used with a function block or UDT.

» Data is automatically defined by the requirements of the function block/UDT it is
associated with.

= It will contain any sub-instances of function blocks that have been called within
the parent function block.

Note

There is an additional global data block type called Array DB. This allows a
data block to be explicitly configured as an array and allows no elements other
than those that fit the defined array element type.

This is useful for systems that use queue patterns or recipe management.

Instance and global data 49

Using instance and global data

Instance and global data are fundamental to any PLC application. Without them, it's not
possible to store, move, read, or write data in different areas of the program. Being able to
use instance and global data depends on where it's used initially.

Typically, a project will exist in an organization block (OB), which calls a series of
function blocks that require instance data. Usually, a few global data blocks are required
to interface with other project environments such as SCADA, as shown in the following
diagram:

Project
FB1
Parent 1
Da1 paz

Parent_1_DB || Datablock 1 Fg2 FB2

Child_1 Child 1
Global Instance Global

Instance

Figure 2.13 — Example of global and instance data
The preceding diagram shows how a project may lay data out. In this example, there are
three data objects:

« Parent 1 DB: A global instance data block. This is a data block that holds
instance data for FB1, accessible globally in the project.

o Data block_1: A global data block. This is a standard data block that simply
holds any data for use globally in the project.

e Child 1 instance: An instance of FB2's data, which is stored in Parent_1_DB.

50 Creating Objects and How They Fit Together

The pole light example shows what this layout looks like in the project tree:

[Program blocks
E ~dd new block
& Main [OB1]
& Input_Mapping [FC1]
3 Output_Mapping [FC2]
& Pole_Light_Manager [FE1]
48 Pole_Lights [FB2]
@ Pole_Light_1 [DB2]
@ Pole_Lights_DB [DB1]

Figure 2.14 - The project tree's layout

Remember that Pole Lights is the parent of all instances of Pole Light Manager
and that Pole Light 1 contains data that can be used with many different aspects of
the project (control, SCADA, and so on).

Pole Lights DB is the global instance data for Pole Light Manager. Upon
opening Pole Lights DB, the instance data for the Pole Light 1 instance of
Pole Light Manager will be visible in the Static area, as shown in the following
screenshot:

Pole_Lights_DB
Marme Data type

1 |« Input i
2 Output
3 <0 ¥ InOut
4 4 = Pale_Light_1_Data "UDT_Pole_Light®
5 <@ v Static
6 <@ = v Pole_Light 1 "Pole_Light_Manager”
74l s Input
8 -« B ¥ Qutput
=T | = Ref_Light_Active Bool
10 <20] Ref_Light_Healthy Bool
11 <20 B ¥ nQut
12 &g] Data "UDT_Pole_Light"
12 |« B ¥ Static
14 40 = » Light_Sensor_Delay TOM_TIME
15 <] = p On_Duration TOF_TIME
16 <31 8 p Off Duration TOM_TIME
17 |0 L] On_Rising_Edge Bool

Figure 2.15 - Pole_Lights_DB

Instance and global data 51

While this may be confusing at first, the principle behind this becomes simple when it's
laid out in a graphical format, as follows:

DB1
Pole_Lights_DB

Global Instance

!

FB2
Pole Lights

FB1
Pole_Light_1

Instance

!

FB1
Po!efﬁém_‘! €~ UDT_Fole_Light— Interface ——— Pole_Light Manager

Global

Figure 2.16 — Graphical example of global, global instance, and instance data

Remember that every function block needs an accompanying dataset. Whether it's global,
global instance, or instance data, it must exist somewhere.

Accessing data

It is perfectly acceptable to use the same names in different locations. In the preceding
diagram, the name Pole Light 1 is given both to the global data that houses the data
for use with a Pole Light Manager asset function block, and the actual instance of
Pole Light Manager (Pole Light 1) inside Pole Lights.

Because Pole Light 1 isa function block instance, inside the Pole Lights function
block, its full path is Pole Lights DB.Pole Light 1, which is different from the
data block for Pole Light 1, whichis simply Pole Light 1 and is nota function
block instance.

Remember that these two data objects that are named the same hold very different
information but are both common to Pole Light Manager.

52 Creating Objects and How They Fit Together

If the global data of Pole Light 1 (DB2) isaccessed, the following will be available:

Pole_Light_1
Mame Data type
1 |« = Static
2 40 = P Input_Data Struct
3 40 = p Control_Data Struct
4 |4 = p Status_Data Struct
5 -« = Pp SCADA Data Struct
6 <0 = P Output_Data Struct

Figure 2.17 — The Pole_Light_1 global data block

This is simply information that can be used with or concerning Pole Light 1 asan
asset. It is not instance data and can be used freely anywhere in the logic of the project.

If the instance data of Pole Lights DB.Pole Light 1 isaccessed, the following
will be available:

Pole_Lights_DB
Mame Data type
Input
Output
* |nQut
] Pole_Light_1_Data “"UDT _Pole_Light"

Static

B N N

8 ¥ Pole_Light_1 "Pole_Light_Manager”
= Input

B} Qutput

2 p |nQut

B} Static

SN
1

(=]

Figure 2.18 — The Pole_Lights_DB global instance data block

This is instance data and it's structured with the relative interface requirements, where
Pole Light 1 isa staticinstance of Pole Light Manager within this data.
Accessing this path allows you to access the interface of Pole Light 1 and any static
data within that instance.

Configuration options

Depending on whether a data block contains instance or global data, different options
exist in different places so that you can configure the desired behavior.

Instance and global data 53

Start value
The start value is the value that a variable will contain before the PLC is scanned for the
first time. Start values behave differently, depending on where they are located:
+ Global data: The start value is set via the global data block and is used when the
PLC is started to set the required value.
« Function block/instance data: The start value can be set in two places for instance
data:
» Function block interface: The interface variable is set to the required start value

when the function block is scanned for the first time.

» Instance data block: The interface variable is set to the required start value when
the PLC is started.

Note

If the start value is declared in the instance data block, it will override the
setting of the function block. This happens when the PLC is downloaded and
often causes issues if it's set incorrectly as the data's value will be overwritten
with the start value. This only occurs if the download causes reinitialization.

Retain

The Retain option is used to store data in the non-volatile section of memory in the PLC.
This means that if the PLC were to suddenly suffer from a power loss, the data would be
retained.

The options for whether a value should be retained or not are a little more complex as it
also depends on if optimized data is in use (by default, all new blocks are optimized). The
following options are available:

o Global data - optimized/non-optimized:

» Simply checking the Retain option will add the variable to the Retain
memory set.

» If one variable is set to Retain, all the variables must be set to Retain and TIA
Portal will automatically set the other variables to be retained.

« Instance data - optimized:

= Retain mode cannot be set in the instance data block, but it can be set in the
function block interface.

54 Creating Objects and How They Fit Together

= A dropdown list is displayed that allows the programmer to define whether
Retain is Non-Retain, Retain, or Set in IDB. The latter allows the behavior of
a non-optimized function block to be issued.

 Instance data - non-optimized:

= Retain mode cannot be set in the function block and must be set in the instance
data block.

Note — Non-Optimized Child in an Optimized Parent

While having a non-optimized function block instantiated inside an optimized
function block should be discouraged, sometimes, it cannot be helped. In these
situations, the child function block will state Set in IDB as the Retain option
and it will not be possible to change it. Here, the programmer can set the
Retain option in the instance data block of the parent function block.

Interfaces and the effects on running PLCs

The different configurations, types, and combinations of interfaces affect not only the
behavior of the PLC but its performance. It is important to understand that a poorly
configured data management system will result in poor PLC performance.

One of the biggest factors of this in TIA Portal is whether data is optimized or not.

Optimized data/non-optimized data

The concept of a PLC optimizing its data is not a new one. There are many PLCs that do
this all the time, but Siemens has allowed programmers to choose if they want an object to
be optimized or not.

Note
By default, all objects that are created in TTA Portal have optimization enabled.

Differences between optimized and non-optimized data

The main difference between optimized and non-optimized is the amount of memory
that's used to store information. The following diagram shows the difference between how
data is defined in a data block and how it is represented in the PLC:

Interfaces and the effects on running PLCs 55

KEY Definition Non-Optimized Optimized
WORD
BYTE
BOOL
Unavailable Memory NAINA NA NAINA NA
| Bit faia
N/A

N/ASNIALNIANIASNIA S NIA SN NUA

X2 X3 1 X4 § X5 5 X6 INIANIAINIA

Figure 2.19 - Differences between non-optimized and optimized data

When the preceding data is laid out in a data block, the non-optimized version of the
block results in memory gaps, where data cannot be stored but must be reserved by the
PLC to retain data consistency.

This can be seen in TIA Portal by viewing the Offset column (when non-optimized).

Note that the Offset column displays the byte at which the variable address starts:

MName Data type |Offset

<4 * Static =

<00 = W1 Word 0.0
<] = B1 Byte 2.0
<] = X1 |Bool 3.0
<] = X2 |Bool 31
<] = B2 Byte 4.0
a0 = W2 Word 6.0
<] = X3 |Bool 8.0
<] = ¥4 |Bool 8.1
<] = X5 |Bool 8.2
<] = X6 EBool 8.3
-l = X7 Bool 34

Figure 2.20 - Non-optimized data block with unavailable reserved data

56 Creating Objects and How They Fit Together

The preceding screenshot shows that between offset addresses 3.1 and 4.0, there are no
addressed variables. The same happens between 4.0 and 6.0. This is because a Byte is 1
byte long (4.0 to 5.0) but a Word (2 bytes long) cannot start on an odd offset, so a Byte
(5.0 to 6.0) must be reserved to preserve the consistency.

Figure 2.19 shows that optimized data does not have as many reserved or not available
areas in the data. Here, the order of the data has been reorganized to optimize the amount
of space it takes up in the PLC.

There are benefits to using both optimized and non-optimized data:
o Optimized data benefits:

= A smaller footprint in the PLC's memory.
» Enhanced logic instructions.

» Advanced functions are only available to optimized blocks.
o Non-optimized data benefits:

» A known data structure at design time.
= Different Variant data types are available.

» Easy to use with open network protocols such as Modbus.

Mixing optimized and non-optimized data

Note that mixing optimized and non-optimized data is not reccommended. When data is
moved from one memory layout to the other, the CPU needs to work extra hard to ensure
the data is processed from the location specified in the program.

The scan time will likely increase while this data is copied and moved to the correct location.

Passing data through interfaces

To use function blocks, interfaces must be created that pass data in and out of the function
block (unless you're using global data within the function block). Interfaces are how data
that's external to the function block is interconnected to the data within the instance data.
There are four interface types:

 Input: Data that's copied into the function block's instance data.

o Output: Data that's copied out of the function block's instance data.

Interfaces and the effects on running PLCs 57

o InOut: Data that's referenced within the function block.

o Static: Data that's stored within the function block's instance data.

The following screenshot shows what each interface type looks like:

a3
“Interface Example Block™

EN ENOQ —
co == |put Qutput =
InQut

Figure 2.21 - Example of a function block interface

Notice that Static is not present in the interface. This is because it is stored in the instance
data and not interconnected to any outside data.

The Input type is displayed with a straight line and accepts the value of the stated interface
data type. This also accepts ladder logic beforehand if the result on the wire is the accepted
data type (Boolean, for example). This interface also can't be connected, and the start
value will be used from the instance data instead.

The Output type is displayed with a straight line and termination point, which only allows
a variable to be placed. This interface also can't be connected, and the start value will be
used from the instance data instead.

The InOut type must be connected; otherwise, the project won't compile or memory
access violations will occur when the PLC tries to run. Only the data type that's been
defined is accepted.

Note

The interface pins may be different colors, depending on the data type that is
being passed to them.

58 Creating Objects and How They Fit Together

Copying data to instance data

Depending on the type of interface that's being used, the PLC will behave differently when
it comes to memory management and the impact this has on memory reserves. If Input or
Output interfaces are used in a function block, the data is copied. If InOut interfaces are
used, the data is simply pointed to in the outside data. The following diagram shows an
example of how data is interconnected from the interface to the instance data block:

Function Block
FB_1

Baoal
Copy To Instance Data Copy From Instance Data I—mbﬁut "Data” Resufi_1

'Data”.Signal_1

DBz "Data".Signal_2
Data
Global

------------------ Pointer To Dataj----

"Data".Status_Array

D81
FB_1_0DB
Global Instance

Figure 2.22 — Example of how data is interconnected from the interface to the instance data block

When an interface is processed by the PLC's runtime, the data at an

Input interface is copied into the global instance at <InstanceData
blockName>.<InputVariableName>. This means that all the data is essentially
global since, eventually, the hierarchy will dictate that a global object will be at the top of
all the data. Here, the interface interconnects data from outside the instance data with data
inside the instance data.

This means that the instance data holds a containerized copy of the data that was passed

to it when the interface was processed. For example, if some input is passed to a function
block and the internal logic of the function block changes the value of the input that was
passed to it, the variable that's outside of the function block does not change.

Referencing data

The preceding diagram contains an InOut interface that behaves differently from that of
the Input and Output interfaces. An InOut interface creates a local pointer to the data, a
method by which the PLC can look up where the data to be used is stored. This becomes
increasingly important in large applications with large datasets that are used within
function blocks.

Interfaces and the effects on running PLCs 59

The following diagram shows the different data and its sizes in the Data data block shown
in the preceding diagram:

DB2
Data
Global

Signal_1
= 1 Byte
Signal_2
Result_1

Status_Array

= 4000 Bytes

Figure 2.23 - Example of the data's size in bytes

The size of the data that's being copied into a function block costs processing time.
The Status_Array value is 4000 bytes long (1 real = 4 bytes, 1,000 elements in the array).

If InOut copied the data to the instance dataset, this would mean that the PLC would
require 4000 bytes in the Data data block to store the data, 4000 bytes in the instance
data of the function block, and that 8000 bytes would be copied in total - 4000 into the
instance data and 4000 out of the instance data. This would be considered a memory-
heavy function block.

60 Creating Objects and How They Fit Together

InOut creates a pointer that's made up of a reference to where the data to be used exists.
Although the variables connected to the Input, Output, and InOut interfaces can all be
defined in the same way (symbolically by name, as shown in the following screenshot), the
way the PLC uses this information is different:

WrB3
“Interface_Example_Block™
EM ENC

WHE3 DBX0.0 WOE3 DBEXD 2
“Daw”.5ignal_1 — |nput_1 Output —"Data".Result]

WE3 DEX0.1
"Da@”.5ignal_2 = |nput_2

PADB3I DBX2.0

"Data” Status_Array — |nOut

Figure 2.24 - Pointer addressing on the InOut interface

Notice that the Input 1 and Input 2 addresses above the variable (¥BD3 .DBXO0. 0,
for example) start with a %, whereas InOut begins with a P#. These symbols identify
where and how the data is being used:

 %: Direct access — the PLC will directly access this data.
« Pi#: Pointer:
= The PLC will create a 6-byte structure that contains the following:

+ 'The length of the data
+ The pointer to the data

= This data is not accessible and is not represented in the configuration environment
other than by P#.

The P#DB3 .DBX2. 0 address that "Data" .Status_ Array represents is a pointer
address and points explicitly to Data block 3, offset 2.0.

Note

If InOut were to be hardcoded with a pointer, "Data" .Status Array
would need to be replaced with P#DB3 .DBX2.0 BYTE 1000. However,
pointers do not carry a data type and the compiler would fail, stating that the
InOut interface has an invalid data type, despite pointing to the same place it
does symbolically.

Interfaces and the effects on running PLCs 61

Memory advantages

This approach of using InOut interfaces for large data significantly reduces memory impact
and reduces the time it takes to process the code. This is because the copy that's required to
copy data from outside the function block and into the instance data does not occur, nor
does the instance data need to store or reserve any memory for the pointer values.

This can be seen if large data is placed on the interface of a function block in both the
Input or Output interfaces and also the InOut interface:

4 4l * Output

5 4l = » Output Array[0..999] of Real 2.0

6 < = » Outputs_1 Array[0..999] of Real 4002.0
7 0= » Outputs_2 Array[0..999] of Real B002.0
8 = Add new

S 4 ¥ InOut

10 |<z] = » InOut Array][0..999] of Real 12002
11 |0 = » InOut_1 Array]0..999] of Real 12008.(
12 |20 = » InOut 2 Arrayl0..999] of Real 12014

Figure 2.25 — Example of memory requirements between interfaces

Note how 4 000 bytes have been reserved for each instance of an Output variable but
that for InOut, only 6 bytes have been reserved for the pointer structure.

Drawbacks

Using InOut data can have some drawbacks. Remember that any changes that are made
to the variables that are passed via a pointer will be immediately applied to the source of
the pointer. This can become problematic if asynchronous calls for the data are made by
an outside source such as SCADA, or if interrupt OBs access data that is only partially
completed.

62 Creating Objects and How They Fit Together

Using InOut interface variables

InOut variables are de-referenced from their pointer automatically in TIA Portal, which
means that they can be used in the same manner as normal variables when they're
declared in an interface:

InCut

* |nQut Array[0..999] of Real 120020
u InDut[0] Real 0.0

u InDut[1] Real 4.0

u InDut[2] Real 8.0

u InDut[3] Real 12.0

u InDut[4] Real 16.0

u InDut[5] Real 20.0

Figure 2.26 — InOut data with internal pointer offsets displayed in an InOut interface

This simply means that the offset to where the data is located in the source data is applied
from the start position and the function/function block addresses the data via the pointer
and offset.

Ssummary

This chapter covered the fundamental requirements for structuring and managing

the data that's used throughout a project. We have highlighted that TIA Portal is a
hierarchical development environment and that changes to dependency objects will
affect objects that depend on them. This can ripple through a project and affect any object.

We also learned about global/instance data and demonstrated that these data types are at
the heart of data management and that we should consider how they are used throughout
a project. After that, we learned about optimized and non-optimized data and highlighted
how it affects a project and how it may or may not be suited for the application you're
designing. Remember that how data is passed through the interfaces of program blocks
can make a big difference to the efficiency of the PLC's runtime.

The next chapter builds upon the lessons we've learned regarding structure and hierarchy.
We will introduce the concept of user-defined types (UDTs) to create custom data types
that enforce project structures further. This approach, combined with libraries, creates a
solid platform where custom software standards can be built.

3

Structures and
User-Defined Types

This chapter explores how to create, utilize, and deploy structures as structs and User-
Defined Types (UDTs) effectively in a TIA Portal project. UDTs are the most underutilized
tool in PLC programming and are extremely efficient and provide the rigid data structure
required for asset-based programming. This chapter also expands on previously learned
information about interfaces and how they affect data usage in logic objects.

After reading this chapter, a programmer should feel comfortable with both structs and
UDTs in TIA Portal and have enough knowledge to do the following:

o Add structs and UDTs to a project.

o Know where UDTs are stored in a project.

« Know the differences between structs and UDTs.

« Know how to simplify interfaces to program blocks.

« Know of potential drawbacks of using structs/UDTs and how to mitigate or
overcome the issues that arise.

64 Structures and User-Defined Types

The following topics will be covered in this chapter:

« What are structs and UDTs?

« Creating structs/UDTs - best practices

« Simplifying interfaces with structs/UDTs
» Drawbacks of structs and UDTs

What are structs and UDTs?

Essentially, structs and UDTs can be described as performing the same function: to
hold data that has different types under a parent variable. While they perform the same
fundamental function, a UDT is much more powerful than a struct. This is because a
struct is a singular instance of a group of variables and a UDT is an actual data type.

Both of these datatypes can be described as a structure.

Structs

Structs are groups of variables defined under a parent variable with the datatype of struct.
Siemens regards the use of structs as use only when necessary as they can add considerable
overhead to a PLC's performance if used too often. Figure 3.1 shows two sample pumps'
global data blocks for storing information associated with the asset:

Sample_Pump_2 Sample_Pump_1
Mame Data type Mame Data type
<4l ¥ Static 1 < * Static
2 <4l = ¥ Raw_|O Struct 2 Q= * Raw 10D Struct
3 |2 B ¥ |nputs Struct 3+ B ¥ |nputs Struct
4 g] Contactor_Fee... | Bool 4 0 a Contactor_Fee... | Bool
5 |1 = Isolator_Closed |Bool 5 |« - Isolator_Closed |Bool
T | B ¥ Qutputs Struct & |« B ¥ Qutpufs Struct
7 u Run Bool 7|« a3 Run Bool

Figure 3.1 - Example of structure definition in global data blocks

Both of these pumps use exactly the same struct, Raw_I0; however, they are not tied
together in any way. Each instance of the Raw_ IO struct exists in its own instance;
modifying one will not modify the other.

What are structs and UDTs? 65

Siemens Terminology

Siemens refers to the struct data type as an anonymous structure. This is
because it has no hard definition (like a UDT does). A hard definition means
that the project contains an object that defines how the structure is constructed.
These are found in the PLC Datatypes folder in the Project tree.

Composure
Due to its composition of different types, a struct tag behaves very differently in
optimized and non-optimized blocks:
o Optimized:
» The first word starts on a non-optimized memory address (byte with an
even address).
» Subsequent variables are then ordered by size and do not reflect the structure
in the editor.
o Non-optimized:
» The first word starts on a non-optimized memory address (byte with an
even address).
» Variables are ordered as they appear in the editor.

» Packing bytes (unavailable memory addresses) are used to ensure memory does
not start on uneven byte values.

Accessing variables

A struct's internal variables can be accessed by using the entire call path with dots (.) as
separators. An example is shown here:

“Sample_Pump_1°.
Raw_|0 . Inputs.
Contador_
Feedback

Figure 3.2 - Accessing inner variables in a structure

66 Structures and User-Defined Types

Each dot represents a layer in the structure. Each layer can be passed around the project
through interfaces or (if globally accessible) accessed directly.

In structs, the structure composure must be known if it is to be copied (moved) to another
structure that is the same. If the two structures do not match up in size and composure,
the compiler will throw a warning.

Note

Two structures with different internal variables can be assigned to each other as
long as the internal variable datatypes match. The names of the variables do not
need to be the same.

Nesting

Note that in Figure 3.1, the Raw_IO struct contains another two struct definitions with
the names of Inputs and Outputs. Both of these are also structs that contain variables
for use within the project logic.

Structs can contain other structs or even UDTs; however, not all data types are available
in structures and a maximum of eight nested depths is possible (unless using Inout
interfaces, where nine is then possible).

UDTs

UDTs are essentially a structure, however, they are defined outside of a program block.
This means that they are accessible anywhere in child objects of the CPU, including tags.
Figure 3.3 demonstrates the declaration of a UDT (on the right) and the usage of the UDT
as a data type on the left:

Sample_Pump_2 UDT_Sample_Pump_Raw_IO
Mame Data type MName Data type

1 40 - Static I 40 ¥ Inputs Struct

2 4l e ¥ Raw_ |0 "UDT_Sample_Pump_Raw_IO" 2 40w Contactor_Feedback Bool

3 |1 = ¥ Inputs struct 3 |4 mw Isolator_Closed Bool

4 |1 s Contactor_Fee... Bool 4 4 v Outputs Struct

5 < = Isolator_Closed Bool 5 4= Run Bool

& = ¥ Outputs Struct 6 Add ne

7 < L] Run Bool 7 Add ne

Figure 3.3 - Example of UDT definition and usage in a Global Data block

What are structs and UDTs? 67

Note that the UDT Sample Pump Raw IO instance in Sample Pump 2 has been
defined with a Raw_ IO name. This means that the two data blocks shown in Figure 3.3
result in exactly the same data structure, but by two different means.

The advantage of the UDT method is that if 10 instances were defined and the UDT is
updated to a newer version, all 10 instances receive the update, as opposed to structures,
where each instance would have to be updated manually.

Creating a UDT

Unlike structures, UDTs are not defined in the declaration space of program blocks, they
are defined in the Project tree, in the PLC data types folder:

J Devices " Plant objects

a! L —
[= | 5

~ [lig PLC data types
ﬁ"" Add new data type
u UDT_Sample_Purnp_Raw_|O

¥ [z Watch and force tables

v & Online backups

Figure 3.4 - PLC data types folder where new UDTs can be created

By double-clicking on Add new data type, a new UDT is automatically created and
opened. No dialog is displayed as UDTs have very limited options available and are mostly
to do with commenting.

Composure

Just like a struct, a UDT behaves differently when in optimized or non-optimized
memory. However, UDTs cannot be set to optimized/non-optimized themselves; it's the
location in which they are instantiated that is selected as optimized or non-optimized.

This means that it's possible to have two instances of the same UDT in two different

data blocks or function blocks, one of which is optimized and the other is not. This isn't
immediately apparent, and passing data between the two instances can cause an undesired
overhead if they are not of the same memory layout.

68 Structures and User-Defined Types

Optimized/non-optimized

Remember that a block can be set to optimized or non-optimized by right-clicking
the object in the Project tree and selecting Properties, then in the Attributes section,
checking or unchecking the Optimized block access checkbox:

JGeneraI || Texts |

General .
Attributes

Information

Time stamps
Compilation [onlystore in load memory
Protection

[] Data block write-protected in the device

Attributes

} L Optimized block access
Download without reinitializati... E P

E Data block accessible from OPC UA

[+ Data block accessible via Web server

e ENErS |

< M |

r [o]'4 1 | Cancel

Figure 3.5 - Dialogue for setting Optimized block access

Naming conventions - good practice

When a new UDT is created, it will by default be assigned a User data_type 1 name.
It is strongly recommended that this be changed to something that represents the usage. It
is a good idea to prefix the data type with UDT _as all UDTs are easy to find when declaring
data types by typing UDT. The IntelliSence prompt will then display a list of possible UDTs:

1 |« = Static 1 Add new

2 g m Raw_IO uo] QI

3 L] Add new *UDT_Sample_Pump_Raw_|O" ~
- = Add ne

Figure 3.6 - IntelliSense displaying available UDTs

Creating struct/UDTs - best practices 69

By implementing a proper naming convention, as Figure 3.6 demonstrates, programming
using UDTs is made simpler for programmers, especially those that may not have used the
UDTs before and do not know them by specific names.

Nesting
As with structs, UDTs can also contain other UDTs (as well as structs) as shown here:
Sample_Pump_2 UDT_Sample_Pump_Raw_IO
Name Data type Name Data type
0 > Static 1 |41 ~ Inputs "UDT_Basic_Pump_Raw_lnputs”
2 gl = ~ Raw_lO "UDT_Sample_Pump_Raw_|O" 2 4nm= Contactor_Feedback Bool
3 = ¥ Inputs "UDT_Basic_Pump_Raw_Inputs” 3 s Isolator_Closed Bool
4 <@ = Contactor_Feedback Bool 4 |41 m= Local Emergency Stop_Healthy Bool
5 <O = Isolator_Closed Bool 5 @@= External_Fault_Healthy Bool
6 @ L] Local_Emergency_Stop_Healthy Bool 6 |0 ¥ Outputs Struct
7 | = External_Fault_Healthy Bool 7 |@= * Pump "UDT_Basic_Pump_Raw_Qutputs®
8 |41 = ¥ Qutputs Struct 8 |41 - Run Bool
S |41 = > Pump "UDT_Basic_Pump_Raw_Outputs” 9 |40 = ~ Panel_ndicators “UDT_Basic_Asset_Panel_Indicators®
10 |<m = Run Bool 10 - Healthy Bool
11 < = ¥ Panel_Indicators "UDT_Basic_Asset_Panel Indicators' | 11 <@ = Fault Bool
12 <@ L] Healthy Bool 12 - Manual Bool
13 |3 L] Fault Bool 13 @ - Auto Eool
14 - L} Manual Bool 14 |1 = off Bool
15 |1 = Auto Bool 15 41 - RunningiOpen Bool
16 |41 = off Bool 16 41 - Stopped/Closed Bool
17 |<m = Running/Open Bool 17 - Starting/Stopping/Travelling Bool
18 | = Stopped/Closed Bool 18 Add ne
19 |40 = Starting/Stopping/Travelling Bool 19 Add ne

Figure 3.7 - Example of nested UDTs and structures

Figure 3.7 shows an example of nesting with UDTs. The UDT_Sample Pump Raw_ IO
data type now contains instances of UDT Basic Pump Raw_ Inputs and a struct that
contains a further two UDTs for output management.

This demonstrates how UDTs can be used within each other to build large data structures
that are defined as an explicit data type for use within the project.

Creating struct/UDTs - best practices

When creating a struct or UDT, it is always best to think of the structure of the data.
Remembering that other programmers need to easily pick up and use the data is the best
way to ensure it is structured efficiently.

Understanding what is required

Choosing which type of structure is best for the application that is being built is
fundamentally down to how it will be used.

Anonymous structures (structs) are best for grouping variables or other structures
together, but not for use in interfaces.

70 Structures and User-Defined Types

The reason for this is that structs are not linked to each other. If 10 FBs make use of the
same struct layout in interfaces and a new requirement is added to the struct, all 10 FBs
require editing. UDTs are instantiated as a data type, so if a UDT is updated, all instances
of the UDT update too. This is what makes UDTs more suited for creating standard code.

Defining structure variables

Before creating a structure, define exactly what needs to be stored or used within the
structure by looking at the asset or object the UDT is being designed to interact with,
as shown here:

Asset Data Storage

~
Y

L=
—}‘ Inputs }—b E [

CPU 15162 < - SCADA / HMI |
Exchange

Y

— ==
4—{ Outputs }4* < : > SCADA

Asset PLC

Figure 3.8 — Example of an asset-based structure design
The process of defining everything required can appear daunting at first; producing
something such as Figure 3.8 can help organize data into the required areas.

For example, an asset that is a pump may require the following areas:

« Inputs: An area for inputs from the pump to be written to from the I/O
abstraction layer.

o Outputs: An area for outputs to the pump to be written from the I/O output layer.

o Asset Data Storage: The data that needs to be stored between scans and between
power cycles of the CPU. In the case of a pump asset, this may include items such as
total running hours or number of starts.

« SCADA/HMI Exchange: An area designed to be exchanged between the PLC and
SCADA. This will typically consist of variables that are written from SCADA and
variables that are read by SCADA.

Creating struct/UDTs - best practices 71

By defining each of these areas as a UDT (or at least a structure that is part of a parent
UDT), all assets that make use of the UDT can be updated in one go by updating the UDT
used by them.

Once the defining of the variables has been decided in the relevant areas, it can be
constructed as a series of nested UDTs and structures in TIA Portal, as shown here:

UDT_Direct_Online_Pump

Mame Data type
I <l ™ 10_Layer Struct
2 <0 = » Pump_lnputs *UDT_Basic_Pump_Raw_lnputs”
3 <1 = » Pump_Outputs *UDT_Basic_Pump_Raw_Outputs”
4 &1 = » Panel_Outputs "UDT_Basic_Asset_Panel_Indicators®
5 40 * Asset Data Struct
6 |« = Hours_Run Real
7 |« = Mumber_Of_Starts Dint
8 |4 m Murmber_Of Failures Dint
9 |4 — SCADA _Data *UDT_Basic_Pump_SCADA Data”
10 |« = ~ Read Struct
11 - B p HOA Struct
12 |=11 B b Asset Status Struct
3 4l = p Control_Status Struct
14 |40 = p SCADA _Control Struct
15 [= ~ Write Struct
16 - B p HOA Struct
17 |-ad = p Control_Commands Struct

Figure 3.9 - Example of an asset UDT

This is then a UDT that relates only to a specific type of asset that the project uses; in the
case of Figure 3.9, this is a Direct Online Pump. As shown, this consists of many different
UDTs, structs, and base type variables (such as Real or Dint).

Remember the Dependencies

The reason why nested UDTs are used is so that if a dependent type is updated,
the main UDT will update too. In this example, if the requirements for SCADA
were to change and SCADA required an additional button for all Direct Online
Pumps to perform a rotation check on the pump, this could be added to the
write structin UDT Basic_ Pump SCADA Data. This would mean any
type of pump that uses UDT_Basic_ Pump SCADA Data would update
with the new functionality, including UDT Direct Online Pump.

72 Structures and User-Defined Types

Finding commonalities between assets

This is a step that is often overlooked during development phases, yet it is an extremely
useful exercise to go through. Finding commonalities between assets is the difference
between having to maintain 100 UDTs or 50 UDTs that are shared between different
assets, as shown in the following diagram:

Direct Online

Pump UDT
- Commeon Pump

v i Data

<—
Common Pump

Data Direct Online
Pump Specific

Direct Online Pump » | Hand/ Off / Auto Data

Controls

Pump Status Data

Variable Speed

F’I.Il‘l"lp Control
Data Pump UDT

Ve 5| | Commen Pump
[~ SCADA > Data

L) e Mimic/Alarm Data

A\ J

~ < ‘Variable Speed
. +— Pump Specific
Variable Speed Pump Data

Figure 3.10 - Example of finding commonalities between devices

The example shown in Figure 3.10 demonstrates the importance of creating common

UDTs between assets. If the four UDTs were to be declared as structs inside the relative
main UDTs and the requirements were changed, both assets would need updating. The
same can be said if each asset had its own UDT for any of the four common data areas.

By finding these commonalities and declaring them as their own UDTs, Direct Online
Pump and Variable Speed Pump can both depend upon them as nested UDTs in their
own UDTs. This means if any of the common UDTs are updated, both assets update.

Creating struct/UDTs - best practices 73

Considerations

It's easy to take this concept too far and find that later on (when a particular
asset requires a modification to the data) it's not possible to make the desired
changes without affecting many assets. Be sure to weigh up the factors of
modification before deciding to make something common to other assets.

If in doubt, make it specific to the asset being developed; it can always be made
common to other assets with relative ease later.

Naming conventions

By using UDTs/structs, long variable names can be created, which many programmers

are used to abbreviating. In TIA Portal, variable names are restricted to 128 characters,
which is far higher than the average development environment. In addition, nested UDTs/
structures have a 128-character limit at each nest level. This means that a three-layer deep
variable could end up having a name that is 384 characters long!

While this sounds like it should be discouraged, it should not. The length of a name is
insignificant against the time required to abbreviate and then comment on what the
abbreviation means, as shown here:

"Data_blod_1". E mergency Stop
Emergency _Stop_ Condition - Floor 1
Conditions Floor_ Conwveryor System

1.Conveyor_ A Light Curtain 3
Systems. "Data_blodk_1°
Conveyor_ALight. Ecr F1 fON A

Curain_3 T

Figure 3.11 - Example of two different naming conventions

Figure 3.11 is an example of a structured naming convention that uses structs and a
simple variable that still identifies the asset location, but without using structs. Both
of these approaches allow a programmer to identify that the variable sits in the
following environment:

Emergency Stop Condition > Floor 1 > Conveyor Systems > Conveyor A > Light Curtain 3

74 Structures and User-Defined Types

The use of the struct, however, gives the opportunity to pass all data at any of the given
layers. For example, a function block may accept the struct for Conveyor Systems so that all
conveyors can be checked. This is much harder to achieve and uses the second approach.

It is also worth noting that, without a comment, the structured approach is still easy to
read. The abbreviated variable requires a comment or an understanding of the application
to work out the abbreviations.

This example highlights the important understanding that a naming convention is more
than just the name of a variable when structs/UDTs are in use. They define the data path
to a variable.

Simplifying interfaces with structs/UDTs

Structures (structs/UDTs) can be declared in the following interface scopes:

o Input

o Output
e InOut
o Temp

« Static

Structures cannot be declared as either of the following:
« Constant
« Return

With this in mind, structures can be used to help simplify interfaces with program
blocks. They can also help multiple blocks come together to access different parts of
common data.

Passing inputs as a single struct

Passing data in and out of function blocks can help keep the complexity of the program
object to a minimum, as shown here:

Simplifying interfaces with structs/UDTs 75

“Strudure_Pass_
SM100.0 Example_FB_DB".
True “lnput_1_Da@" Input Structinputl
11 11 [
| I | | I | !)
"Strudure_Pass_
1001 Example_FB_DB".
“Input_2_Tag” Input_Structinput2
L L T S—
"Strucure_Pass_
FM100.2 Example_FB_DB".
“Input_3_Tag" Input_Structinput3
— S S e { }-—-—-
%D B4
"Strudure_Pass_
Example_FB_DB"
e
"Structure_Pass_Example FB"
EN ENG |
FALSE
—47zl5e
“Strudure_Pass_ Output
Example_FB_DB".
Input_3tud —|Input Strud

Instance data accessed directly

Interface data passed to instance data

Figure 3.12 - Example of grouping inputs into a struct data type

Figure 3.12 demonstrates how using a struct could minimize the size of the interface used
with the Structure Pass Example FB function block. By accessing the data block
that is holding the instance data for the function block, the Input interface data can be
accessed and written to before the block is processed.

76 Structures and User-Defined Types

By passing Input Struct from the instance data to the Input Struct interface pin,
the already populated instance data is used in the logic, as shown here:

¥ Network 1:
*Strudure_Pass_ -

%M100.0 Example _FB_DE". ~omment
True “Input_1_Dam” Input Structinputl
£input Struct #Input_StTuc #lnput Srud
Inputl Input2 Input3 EQutput
[1L R
*Structure_Pass_ v v *
%M100.1 Example _FB_DB".
“Input_2_Tag™ Input_Structinput2
1} { bm=—a
] Network 2: ...
“Strudure_Pass_
%M100.2 Example_FB_DE".
“Input_3_Tag” Input Struc.inputd
1 { b--—n
L

1

*DB4
“Structure_Pass_
Example_FB8_DB*

WFEZ

“Structure_Pass_Example_FB"
EN ENO

FALSE
Qutput~4 752

“Strucure_Pass_
Example_FB_DB”
Input Strud Input Strud

Figure 3.13 — Example of the passed struct variable being used inside the function block

This approach allows for many inputs into a function block to be rolled into a single input
without having to create additional structs in the parent program block.

Functions

The same approach cannot be used for functions, as functions have no instance data.
Because there is no instance data, the interface of the function cannot be accessed outside
of the function to pre-load data before the function is called.

To utilize a similar approach and allow structures to be passed as interface inputs, a struct
in the Temp interface of the parent object should be created that matches in the Input
struct that is used in the function, as shown here:

Simplifying interfaces with structs/UDTs

77

4 < « Temp
5 |[qd = |~ Temp_5Struct Struct
6 < L] Inputl Bool
7 |« = Input2 Bool
8 |« = Inputs Bool
] L <Add news E
10 <@l = Constant
11 L] <Add new=
—HF Al A4 —0— {7 — %
* Network3: ..
Comment
31000 ETemp_Struc
True “Input_1_Data” Inputl
11 11 [1
LI | L | 1 !
SaM100.1 ETemp_Struc
“Input 2_Tag™ Input2
e R S { F--—i
SaM100.2 ETemp_Struc
“Input 3_Tag™ Inputd
el RCTEEEEREEE R R EEEERE { Fe-—a
SC1
“Structure_Pass_Example_FC*
EN ENQ

Figure 3.14 - Solution for using functions with Temp struct data

#Temp_5tTud —|Input Strud

Interface data passed to temporary structure data

Tempaorary structure data

78 Structures and User-Defined Types

The solution shown in Figure 3.14 is the simplest way to pre-load interface data before a
function is called.

Note

All data required by the function must be processed before the function is
called if using temp data. Otherwise, the data is lost by the time the function is
next scanned!

Passing outputs as a single struct

Structs can also be used to pass multiple outputs from a single program block, as
shown here:

HDB4
“Structure_Pass
E;ample FB DB~ “Strudure_Pass_ “Strudure_Pass_ “Strudure_Pass_
—— Example_FB_DB". Example _FB_DB". Example_FB_DB".
W2 Output_Struc Output Struct Output_Struc #AIl_Outputs_
"Structure_Pass_Example FB™ Outputl Output2 Output3 Adive
EN ENO f - i -+ F--—
“Strudure_Pass_ “Strudure_Pass_
Example_FB_DB". Example _FB_DB=.
Input_Strud Input Struct Qutput Strud Output Strud

Figure 3.15 — Example of a struct being passed as an output and utilized in further logic

Figure 3.15 is an example of a function block passing output data to its own instance,
which is then referenced directly in further logic.

Note

The function block will still work correctly with nothing wired to
Input_ Struct or Output Struct, as thelogic accesses DB4 for the
instance data anyway.

In some cases, it is not possible to wire values to the interface pins when the
data originates from instance data. When this occurs, omitting the interface
connections is the only way to achieve the same result.

Simplifying interfaces with structs/UDTs 79

Functions

The same can also be achieved for functions but will require another structure in which to
move the output data, as shown here:

i #0utput Struct £0utput Struct £0utput Struct £AI_Outputs_
“Structure_Pass_Example FC" Outputl Output2 Outputd Adive
EN ENO i EEEEE e R P et e 4 bem—a
#Temp_Strud Input Struc Qutput Strud FOutput_Strua

Figure 3.16 — Example of a function passing multiple elements as a single Output Struct

In Figure 3.16, Output_Struct is a variable of the struct type (that matches the
function's Output_Struct interface) declared in the parent object’s interface.

Passing InOut data as a single struct

Just like both input and output data, structs can be passed through the InOut interface.
The data that is passed through the interface must be from an external source (such as a
global data block or instance data) even if the InOut interface is part of a function block.
While there are some exceptions to this rule, it is a good idea to use external data with
InOut interfaces to help with the containerization of data. Figure 3.17 shows an example of
an InOut interface with associated data being passed:

Wiyt GEuct WiACHuE_SEnagE 1 T AT
Wl Output_Struct Outpart_SEnict Outpt_STnuct Al _Ouapats_
Inliut_Pass_Examiple_FC Quiputi Qusputl Cuaputd ACtive
| 1 J | 1| i %
EN EMO 1 ¥ 11 11 1}

EinDui_Fruct InDuf_Stnuct

Figure 3.17 — Example of a function passing an InOut variable for both reading and writing access

This approach means that all data for reading and writing must be contained within the
variable associated with the InOut interface.

Structures in static and temporary memory

Structs and UDTs can be declared as part of static/temporary memory in a function/
function block. This has some useful use cases as it allows for structures to be created as
instance data inside a function block.

80 Structures and User-Defined Types

Note on UDTs

Structs and UDTs can be used in the same way, but remember that UDTs carry
an elevated status of being a datatype. This means that if the UDT is updated,
all interfaces of that datatype also update.

If a TIA Portal project makes heavy use of structures in interfaces, it can
quickly become overwhelming if structs are used instead of UDTs as each
interface that uses a struct needs to be updated manually.

Creating static declarations of UDTs or structs

Structures or UDTs defined in static data are created in the same manner as a
normal variable:

6 |44 ™ Static
7 <@l = ¥ Diagnostics "UDT_Block_Diagnostics”
8 . Last Called LDT LDT#1970-01-01- LDT#2021-08-05-17:56:27 167442490
9 <o = Call_Count Dint 0 330347
10 |-z . Runtime LReal 0.0 1.35910541332928E-05
o Runtime_Memaory LReal 0.0 164#0000_014A 8810_FB16

Figure 3.18 — Example of a UDT used in the static declaration of a function block

Figure 3.18 is an example of a common UDT that can be used in all program

blocks - UDT Block Diagnostics. Itis declared in the static declaration scope and
allows a function or function block to record information such as the last time the block
was called, how many times the block has been called, and the length of time the block
takes to execute.

This information is accessible via the instance data and is not used in the program itself
but is used to help the programmer debug their program and provide information to help
diagnose faults and issues.

Creating temporary instances of UDTs or structs

In the same manner as static declarations, UDTs or structs can be created in the
temporary declaration scope too:

Drawbacks of structs and UDTs 81

10 <@ = Temp

11 <4 = Status_Word Ward 0.0
12 a1 ¥ Statuses AT"Status_Word® Struct 0.0
13 <10 u Healthy Bool 0.0
14 0 = Ready_To_Run Bool 0.1
15 <10 - Request Bool 0.2
16 41 = Torque_OK Bool 0.3
17 <10 u Temp_0OK Bool 0.4
18 <10 . Voltage_OK Bool 0.5
19 <0 L] Break_Off Bool 0.6
20 41 L Forward_Direction Boaol 07
21 |-z = Reverse_Direction Bool 1.0

Figure 3.19 - Example of a struct declared in the temporary scope

Figure 3.19 is an example of a struct declared in the temporary scope. This example shows
a status word being overlayed by a structure so that the logic has access to individual
Boolean variables via a symbolic name.

Drawbacks of structs and UDTs

Despite Siemens' excellent approach toward UDTs and structs, there are some drawbacks
to using them.

Most of the issues are small and are easily managed, however, a potentially confusing issue
(especially to programmers that are new to using libraries and UDTs) occurs when a UDT
and a block dependent upon the UDT both appear in a Project library.

Libraries

UDTs that are stored in a library and are utilized in many places can cause a large number
of objects to upgrade to a newer version if modified.

Remember

A program block is dependent upon a UDT if its interface contains a
declaration of the UDT.

82 Structures and User-Defined Types

When a project library has no objects in test, it would look something like the following:

- [5] Types
' Add new type

y Direct_Online_Purmp_Manager B vooa
K I_W| UDT_Basic_Asset_Panel_Indicators . V0.0
¥ 15 UDT_Basic_Pump_Raw_Inputs B vooa
» [UDT_Basic_Pump_Raw_Outputs B vooa
» 1 UDT_Block_Diagnostics B vooa
k L“ UDT_Sample_Purnp_Raw_IO . V0.0

Figure 3.20 - Project library containing UDTs and function blocks

IfUDT Sample Pump Raw IO is modified and a new version is created, the project
library indicates that the UDT is in test:

o P_?T Types 0
E ~dd new type

- & Direct_Online_Purmmp_Manager B vooa

4 V0.0.1 [default] V0.0.1
k E UDT_Basic_Asset_Panel_Indicators . V0.01
» [UDT Basic_Pump_Raw_Inputs B vooa
» 14 UDT_Basic_Pump_Raw_Outputs B vooa
= ET UDT_Block_Diagnostics L Vooa

EY v 0.0.2 [in test] V0.02

g V 0.0.1 [default] vV 0.01
K E UDT_Sample_Pump_Raw_|O B vooa

Figure 3.21 - Project library displaying in test UDTs

However, Direct Online Pump Manager is dependent upon UDT Block
Diagnostics and this is not detailed anywhere in the project library at this moment
in time.

If UDT Block Diagnostics is modified (v0.0.2) and new items are added, the change
in the UDT ripples through the hierarchy and Direct Online Pump Manager
becomes inconsistent as the UDT no longer matches the interface of the function block.

Drawbacks of structs and UDTs 83

If the Direct Online Pump Manager function block was not tied to a library, it
would be a simple case of updating the interface:

The editor is write-protected because it is connected to a type in the library. =3
To make changes, you must edit the type .
irect_Online_Pump_Manager
Mame Data type Offset Default value Accessiblef... writa.. visiblein .. Setpoint Supervision
1 4 > Input
2 q@nw Auto_Request Bool 0.0 false
3 |40 > Output
4 4= Output_Request Bool 20 false
5 < InOut
6 < v Static
7 <@ = » Diagnostics "UDT_Block_Diagnostics® | 4.0
8 @1 T Temp &F Insert ro Ctrl+Ente
9 |41 = Status_Word Word Alts
10 < » Statuses AT"_ Struct .
11 |@ s Temp_INT Int Cirlec
12 @l = » Array Data Array[0..999] of LReal mrrl o
13 4@ = » Array Data2 Array[0..999] of LReal o i
14 |1 = Temp_Real LReal X N N
15 4@ Constant - -
A e e
| < " Go to definition Ctrl+Shift+D >
3¢ Cross-references F11
¥ Cross-reference information Shift+F11

Figure 3.22 - The Update interface option is not available because the function block is still

write protected

This can lead to some confusion because it is not possible to update the instance of the
UDT in the interface until the function block is edited. Compiling at this point also
throws errors:

Compiling finished (errors: 1; warnings: 0}

I Fath Description Go to
€ -~ rca F
Q ¥ PLCdata types P
Q UDT_Elock_Diagnostics (UDT) The data type was successfully updated. A
Q ~ Program blocks A
o * Direct_Online_Pump_Manager (FE1} A
Q Interface The interface ofthe block or data type contains incompatible changes A
Q Main (OB1) Block was successfully compiled. A
Q Direct_Online_Pump_Manager_DEB (DE3) Block was successfully compiled. A
Q‘ Compiling finished (errors: 1; warnings: 0}

Figure 3.23 — Compiling error as a result of incompatible interface types

From this point, there are two solutions available:

o Manually edit each instance of an object that is dependent upon the UDT.

o Release the UDT and select TIA Portal to place objects that are dependent on the
old version into test.

84 Structures and User-Defined Types

Manually updating dependent types

This method requires the programmers to keep opening all of the blocks that use the
modified UDT and editing them to use the new version of the UDT until they no longer

need to be edited.

This is a straightforward approach but can be time-consuming if there are many blocks to

be changed.

Release the UDT with dependent blocks placed into test

TIA Portal can place all dependents into edit on the release of the new version of a UDT

(or any other object) that it is dependent upon, as shown here:

- ‘ Options

Update instances in the project

E Delete unused type versions without the "default” identifier from the library

E Set dependent types to edit mode (the dependent type does not use the released "default® version

Figure 3.24 - Options when releasing a new version

Figure 3.24 shows the options available when releasing an object that has other objects
dependent upon it. The last option, Set dependent types to edit mode, will (on release)
set all objects that were dependent on the previous version to test with a new version:

¥ LI Project library
~ E Types
ﬁ Add new type
- 5 Direct_Online_Pump_Manager
4 V0.0.2 [in test]
20y V0.0 [default]
Eh UDT_Basic_Asset_Panel_Indicators

|

UDT_Basic_Purnp_Raw_Inputs

= |

UDT_Basic_Pump_Raw_Outputs
UDT_Block_Diagnostics

Iy V 0.0.2 [default]

lig V0.0

b I_" UDT_Sample_Pump_Raw_|O

|

{ v v -

V0.01
V002
V0.01
V0.01
V0.01
V0.01
V002
V002
V001
V0.01

Figure 3.25 - UDT released, dependent objects now in test

Drawbacks of structs and UDTs 85

If a compile is now performed on the entire project, TIA Portal will update the in test
versions with the new instance of the UDT and compile successfully without any further
input from the programmer.

The objects in test can then be released back to the project library with a new version.

Remember

The project library can release multiple objects at once by selecting a parent
object, right-clicking, and choosing Release all.

If the Delete unused type versions without the "default” identifier from

the library option is checked, any unused library elements will be deleted,
including the UDT version that is no longer in use.

Once these steps have been completed, the project library will have the healthy status again:

= L1 Project library

~ [31 ypes N
B Add new type

~ 4 Direct_Online_Pump_Manager B voo:

iy V 0.0.2 [default] V0.0.2
b E UDT _Basic_Asset_Panel_Indicators . Voo
» I UDT_Basic_Pump_Raw_Inputs B vooa
» 15 UDT_Basic_Pump_Raw_Outputs B vooa
+ [UDT_Elock_Diagnostics B voo:2

Ity v 0.0.2 [default] V002
b 5_" UDT_Sample_Purmp_Raw_|O . V0.0

Figure 3.26 — Project library with the healthy status

Note now that the UDT and the function block that is dependent upon it are both v0.0.2,
and v 0.0.1 no longer exists.

86 Structures and User-Defined Types

Considerations

This may seem like it's complicated at first, but there are very good reasons why the

project library behaves this way. When modifying a UDT that is used in many other
functions/function blocks, it can become messy and overwhelming with potentially
hundreds of objects all now in test.

By allowing the programmer to focus solely on the UDT without placing other items in
test, it allows the programmer to focus on data and then logic separately.

Once the UDT has been released, all objects that are dependent upon it then need to be
re-compiled to have access to the new data, and any logic changes need to be made.

Lack of open protocol support

Remember that structs and UDTs are ultimately data types that a programmer had
created. There is very little possibility that outside of the application it is being used in,
support can be given for the use case or the structure itself.

A real-world example would be the use of an §7-1500 PLC, with UDTs to be interfaced
with a third-party client system via Modbus TCP. While the PLC can make full use of the
UDTs and simplified interfaces, the Modbus exchange layer between the SCADA and the
PLC cannot, as Modbus does not support sending UDTs as a complete data type. It is not
possible for the Modbus client/server to know the structure of the datatype beforehand.

These kinds of caveats need to be thought of and engineered out or around before
building a project completely dependent on UDTs. While there are always workarounds
and methods to mitigate the issues, it's still additional work and time.

Cross-referencing

Cross-referencing effectively becomes broken by using UDTs/structs with interfaces and
libraries. This is because Siemens implements a best practice that project/global library
types should not contain references to globally accessible data, as shown here:

Drawbacks of structs and UDTs 87

Release type version (U6U4T00U7TH)

The block contains access to global data blocks.

The object ‘Direct_Online_Pump_Manager' contains access to global data
blocks. We do not recommend that you release the type.

Caution: If you release the type, it will no longer be possible to provide the
object with know-how protection.

Do you want to continue?

[] Do not show this message again.

Figure 3.27 - Notice in TIA Portal that discourages the use of globally accessible data in a typed block

In order to satisfy Siemens' approach, the data should be passed to the block via an
interface. This must then be true for all child instances of this data:

. FB1

5 FE2
UDT_Instance ‘_’EO

Global FB3

FB3.UDT_Instance.Value

Figure 3.28 — Example of all nested child objects also passing data via interfaces

While the example in Figure 3.28 does not present any logical issues (in fact there are
large memory savings to be made with the approach shown), attempting to perform a
cross-reference on DB1.UDT Instance.Value would result in zero results, as DB1
is not being directly referenced. Instead, the value is referenced via the interface of FB1,
FB2, and FB3, which all could have different symbolic names.

88 Structures and User-Defined Types

Solution

TIA Portal does have a very useful project-wide search that helps mitigate this issue. By
pressing Ctrl + F twice, or by searching in a location in the Project tree that is not a block
object, the project search window will open:

Search in project

H
Search
Search for: |.Last_CaIIed |v|
search in: |Chapter 3-UDTs |v |
["] Find exact match

Result: Matches found in 1 object

Limit search to: Search result Path

-] Properties ' = Direct_Online_Pump_Manager Chapter 3 - UDTsIFLC_1 [CPU 1511-1 PN]\Program blocks|Direct_Online_...
[Narne E| #Diagnostics Last_Called ACodelNetwork 3ILADIFED program
[Auther
[:I Comment

» [Program blocks

» [Failsafe blocks

» [] PLCtags

» [] PLC data types

» [[] Technology objects
» [screens [Screen ...
»] HMItags

» [] HM alarms

Figure 3.29 - Search in project

By searching for a variable that is inside a struct or UDT prefixed with ., TIA Portal will
return interfaces and logic networks that match. This is the best method to return all
instances of a variable used inside a UDT across different blocks and locations.

If the variable that is being searched has a common declaration name, such as . Fault, it
may be advisable to make the search term more explicit by moving a level up the structure
if possible. For example, a structure that contains Pumps . Fault and Valves.Fault
would both return results if . Fault was searched for, but searching for . Pumps .Fault
would only return instances of the structure where . Pumps . Fault is used.

Summary 89

Overusing UDTs/structs

Remember that the objective for using structures is to create standardized and reusable
data that can be used alongside standardized and reusable code. Lumping large datasets
together under huge structures can be very memory intensive and extremely wasteful if all
of the variables are not required.

Don't forget that UDTs common to more than one logic set may carry variables that are
not used in some function blocks. While this is okay, it should be carefully considered
while expanding UDTs that the UDT is not reaching a point where it contains too many
variables that may or may not be used. When a UDT or struct contains too many optional
variables, it becomes difficult to maintain and affects many different areas of the project.

UDTs should be precise and explicit in their use.

Summary

This chapter has introduced concepts behind using structured data in the form of structs

and UDTs. It has highlighted the benefits of using structures, and also some of the pitfalls
and issues that can be faced in large projects by using them. Remember that a structured

project is far easier to navigate through, standardize, and work with in the future.

After reading this chapter, the asset-oriented approach should make sense from a
structural perspective: containerizing data so that data that is only relative to a particular
asset lends itself to structures (structs or UDTs).

Identifying what is needed in structures is always the hardest part, as structures can be
difficult to keep updating in a system that is already operational, so it's best to try and plan
for common use cases first.

TIA Portal offers a robust and highly flexible solution to managing data using structures.
With two different types of structured data (struct and UDT), programmers can simplify
project structure greatly, without compromising logic.

The next chapter introduces programming languages where these structures can actually
be called and utilized in development languages. This chapter will give a basic overview of
all of the available languages in the standard TIA Portal V17 environment and also how to
choose the best programming language for the task.

Section 2 -

TIA Portal - Languages,
Structures, and
Configurations

Learn how to program in the different languages that TIA Portal offers, including utilizing
previous learning about structures and different configuration options.

This part of the book comprises the following chapters:

o Chapter 4, PLC Programming and Languages

o Chapter 5, Working with Languages in TIA Portal

o Chapter 6, Creating Standard Control Objects

o Chapter 7, Simulating Signals in the PLC

o Chapter 8, Options to Consider When Creating PLC Blocks

4

PLC Programming
and Languages

While the previous chapters have explained how structure helps build a strong foundation
where data can be managed effectively, the next few chapters will focus on PLC
programming and the various languages that Siemens offer in TIA Portal.

Without understanding at least one of the many available languages, a programmer

will find it difficult to create an executable program. This chapter explores the different
languages available in TIA Portal, including the new Cause and Effect language that was
introduced in TIA Portal version 17.

After reading this chapter, you should know the following about each available language
type:
« The language's basic composition (graphical, text-based, and so on)

« Common use cases
The following topics will be covered in this chapter:

+ Getting started with languages
o Selecting the best language for the task

« Differences between Siemens and other PLC vendors

94 PLC Programming and Languages

Getting started with languages

PLCs can be programmed in a variety of different languages and different PLCs from
different manufacturers may implement slightly different variations of those languages.

Not all PLCs support multiple languages, and the ones that do support more than one
language do not necessarily allow for that language to be fully implemented. The general
correlation between PLCs and language support comes down to cost — the more expensive
a PLC is, the more likely it is to support more than one language type.

Note

Siemens PLCs, when programmed with TIA Portal, support multiple
languages, even at the lower ranges.

Available languages

Before you select a language for the task at hand, it's important to know what is available
and what that may mean for the project that's being developed.

LAD - ladder logic
Ladder logic is a graphical language based on contacts, coils, and instruction blocks.

Network 5: SetBoolean Dutputs to be used outside of the block

Indication OF
Mode For SCADA
True FUDT.Mode_IND #UDT.Of_IND # Off #UDT.Off_PB
11 | == i } I 1 iR}
1T | Byte| L L] L
Indication Of
Mode For SCADA
#UDT.Mode IND & pT Hand_IND #Hand #UDT.Hand_P8
== PR oL iR}
| Byte] v L o
1
Indication OF
Mode For SCADA
#UDT.Mode_IND #UDT.Auto_IND FAum #UDT.Auto_PB
== [\ { } {R}
| Byte] L " o

Figure 4.1 - Example of ladder logic

Getting started with languages 95

There are multiple different types of contacts and different types of coils. Contacts read
data, while coils write data. These changes are based on how the data that's associated with
them behaves.

Ladder logic is still the most used programming language in PLCs; however, this may not
always be the case. Ladder logic is preferred because of its likeness in reading to electrical
drawings. The idea of contacts being open or closed to allow logic to flow through to coils
that energize outputs is very similar to relay panel wiring.

Ladder logic is one of the easier languages to learn and probably the most well
documented. It's best suited for Boolean logic, but it's not uncommon for entire systems to
be programmed in ladder logic simply because it's easier to maintain a single language.

Function block diagram (FBD)

FBDs are often overlooked in favor of ladder logic. It's similar to ladder logic as it is
managed in networks and has the same left-to-right flow. However, the entire language
consists of blocks, where the function that the block represents is indicated at the top of
the block.

* MNetwork 6: Lo Priority Alarm

E Simulation
Switth” =

£5 UV Data.
Lo_Priority_Fault_ ==1
AlErm e st _—

£R_UW_Data.
E Simulation N _System.Lo_
Switth” =0 Pricrity_Fault

£ 110 Lo Priority =

Fault =zt S - — _—

Figure 4.2 — Example of an FBD

While being a graphical language, the same as ladder logic, the logic's layout is quite
different. Each block represents a function and operates similarly to a program block,
with inputs on the left and outputs on the right. Assignments are used to set values and
AND and OR blocks are used to evaluate the status of signals.

96 PLC Programming and Languages

Structured control language (SCL, structured text)

SCL in Siemens is more commonly referred to as structured text. It is a textual language
that is considered the most complex of the programming languages. SCL is one of the
harder languages to learn due to it having a larger instruction set and syntaxes that need
to be learned.

{Condition := #T
#Llarm Masking
Index :
Alarm Data

_Index],
ter_Index + 225 + (#Master_Index * €4)) + #Node_Index) - (1 * #Master Index),
"H1 _Rlarms".5Y5,

LB Data:= "Hl_Alarms".AE,
.LEM,

ARM:= "Hl1_Syste
Rlarm RActive => #
Rlarm Status => #ila

| Active,
Status);

END_IF;

Figure 4.3 - Example of SCL

SCL makes extensive use of instructions that are not available in other languages, such
as IF and FOR. These additional instructions allow the language to perform repetitive or
complex logic with much more ease than that of graphical languages.

While SCL is best suited for small functions that deal with math or looping logic, it's not
uncommon to see it being used for just about everything. SCL is very popular as it is the
easiest language to port between different environments since it is just text.

GRAPH

Similar to a sequential function chart, GRAPH is a graphical language that is best suited
for managing sequences and parallel processes.

Getting started with languages 97

l— TB
j-— TG
j-4— TI0
5 =
Initialise
T 3 ™
| (L EECITTErE —— Starting [JJECTETE —— StEI"tiﬂg Hifrennaann —— Starting
Left Pos ... Right Po... Position ...
52 B 53 E 58 =
Left Limit Right Limit Activate Left
Reached Reached Position Start
T2 T4 T0
I.". —— Run_l\-‘rotor I.u. —— Run_MotUr Hb —— Trans10
_FWD _REW
s4 |E s6 E f s
Travelling_FWD Travelling_REV
L] 7
I.". __TI'EHSS I.". _Tral"IS?
55 = 57 =
Right_LS_~Appro Left_LS_Approa
aching ching
T T8
Hifeemeeenns __TI'EI"ISE [SLIECECETTT __TYEI"IS.S
f s f s

Figure 4.4 - Example of GRAPH

GRAPH comes with additional features such as interlock monitoring for each step (the
interlock must be healthy for the step to take place) and supervisions that fail a step and
stop the sequence from continuing. TIA Portal does a good job at creating an environment
that makes managing a sequence much easier, with all the relative building blocks in place
already.

Note

GRAPH is not strictly a programming language in its own right. It relies upon
ladder logic to set transitions, interlocks, and supervisions.

98 PLC Programming and Languages

Statement list (STL)

STL is another textual language that was very popular in the earlier Siemens days. STL is
becoming less and less utilized in favor of SCL, but STL has some instructions that are not
possible to use in SCL.

Network 1: ...

J/Amplify signal

LI S e

L #5ignal
L 20 20
4 *T
T "Emplified Signal™ EMH10

-1 &y n

/fCheck Enable Signals And Enable Qutput Signal

g s #Enable 1
g A
10 o] #Enable 2

OH #Enable_3

I
L R
no—

#Enable_Signal

Figure 4.5 - Example of STL

STL, while text-based, is written differently to SCL and is not comparable to any other
language set. It is a programming language that, unless you are very comfortable with it,
will most likely require documentation to write.

STL is best used for complex memory management operations as opposed to logic.
However, with TIA's optimized memory, there are fewer requirements to manage data in
memory directly.

Cause and effect matrix (CEM)

The CEM language is a newly introduced language since TIA Portal version 17. It allows
logic to be connected in a matrix of columns and rows, where rows make up causes and
columns make up effects.

Getting started with languages

99

(=]

c
d . E
=2z R
E=2 =0
) n 3 &
v * & ey
el | 1
1 107 s (S e
= 3 o B
Z n = o :n: 1 =
=) || 5 IO
= e = [T} L=
= il (=] L-_T-:‘.' E
n | 3 i 3
Causes || pmmns IS
Unavailable
5
High Time @
High Diff .
High_valv... .
Reset

O

Figure 4.6 - Example of CEM

CEM is a highly visual language that exists simply to map several inputs to their eventual
outputs. The system allows you to group the causes so that more than one cause may need
to be active for the effect to be actioned.

This language is particularly useful in complex interlock logic or safety logic.

Documentation may refer to risk matrixes or cause and effect matrixes that explain what
needs to happen in certain scenarios. This language helps translate those documents into

logic with ease.

Languages in program blocks

The type of object that's being used restricts the usage of certain languages. This is because

functions have no instance data, so languages such as GRAPH and CEM are unavailable
since these languages require static data to hold information relative to the way GRAPH

and CEM construct logic.

100 PLC Programming and Languages

Function blocks

In TIA Portal, function blocks can be written in one of six languages, as shown in the
following screenshot:

Add new block [X
Name:
|Block_1 |
langusge: (L0 v
B Mumber: FED
== CEM
Organization STL
block scL
GRAPH

PRODIAG (incl. IDB)

a)

FB Description:

Function blocks are code blocks that store their values permanentlyin instance data blocks,

Function block so that theyremain available after the block has been executed.

L

Function

Data block

more...

> | Additional information

[« Add new and open r oK 1 | Cancel

Figure 4.7 - Adding a function block and the available languages

A function block can be written in one of the following languages (as shown in the
preceding screenshot):

« LAD
« FBD
« CEM
o STL
« SCL

« GRAPH

Getting started with languages 101

Note
CEM is a new language that's been implemented in TIA Portal since version 17.

PRODIAG is not a programming language and has been excluded from the
preceding list.

Functions

A function can be written in one of four languages, as shown in the following screenshot:

Add new block X
Name:
|Block_2 |
Language: |L."-.D |v|
*_
Number:
B EBD
. . J-n_
Organization Sl
black -
ee @Automanc

a]

= Description:
FB P

. Functions are code blocks or subroutines without dedicated memory.
Function block

=in

Functicn

Data block

more...

> | Additional information

[+ Add new and open r oK 1 | Cancel

Figure 4.8 - Adding a function and the available languages

102 PLC Programming and Languages

A function can be written in one of the following languages (as shown in the preceding
screenshot):

« LAD
« FBD
o STL
« SCL

Note

STL has a rich history as a PLC language and appears frequently in Siemens'
examples of logic. While STL was an extremely common language years ago, it
is now diminishing in usage. The International Electrotechnical Commission
(IEC) standard (IEC 61131-3) deprecated STL in the third edition of the
standard.

While Siemens still supports STL, not all PLC hardware supports it. Most
S7-1500 PLCs support STL, whereas most (if not all, with recent firmware) S7-
1200 PLCs do not support STL.

Different language types

There are two types of languages:

+ Graphical

e Textual

As their names suggest, they reflect how the language is interacted with. Ladder logic is a
graphical language, whereas structured text is a textual language.

Getting started with languages 103

Figure 4.9 — Example of graphical versus textual language

There are strengths and weaknesses between graphical languages and textual languages
that vary depending on the programmer, but they can be summarized. Let's take a look.

For graphical languages, the strengths and weaknesses are as follows:
o Strengths:

» Generally easier to read.

» People with different skill sets, such as electricians, tend to find it easier to work
with and relate to other graphical tools such as wiring diagrams or schedules.

» Easy to use due to its drag-and-drop style programming.

» Easy to monitor with a graphical representation of t rue/false logic.
« Weaknesses:

» Generally less compact than textual languages.

« Its less structured approach allows for programmers to have variations in how
code is laid out.

» Comments are bound to very specific areas — at the top of a network, for example.

104 PLC Programming and Languages

For textual languages, the strengths and weaknesses are as follows:
+ Strengths:

= Portability is greatly increased with textual languages as nearly all development
platforms accept text from the OS clipboard.

» Can be programmed outside of the development environment and copied into
the development environment (in a function block in SCL, for example).

= Comments can appear anywhere, and in any format required (multiline, for
example).

» Areas of code can be commented out for quick testing/commissioning.
» Weaknesses:

» Generally harder to read for those of other skill sets as the structure is not
immediately obvious.

* Most development environments do not have a drag-and-drop style approach for
textual environments, making the language harder to use.

* Online monitoring is weak compared to graphical languages.

» More prone to errors as more user entry (via keyboard) is provided than graphical
languages.

Variations in languages

There are fundamental differences between all languages, but there are some particular
differences between textual languages and graphical languages that can catch
programmers out, especially if they are new to a language.

For example, in graphical languages, the condition to be set is on the right, whereas in
textual languages, the condition to be set is on the left, before the arguments that set it.

Another one that can catch programmers out is that generally, in textual languages, when
a boolean variable is set to a value (and is not a temp), it remains at that value until

it is set to a different value. In graphical languages, the instruction must be set to retain

a value if the condition is no longer True. This is because, in graphical languages, the
logic is scanned unless a JMP (jump) instruction is used, but in textual languages, IMP
instructions are used behind the scenes if statements such as IF statements are not true.
Code that is jumped over does not change value.

Selecting the best language 105

IF #0n_Rising_ Edge THEN

#¢Data.5tatus_Data.Light_Flashes := #Data.S5tatus_Data.lLight_Flashes + 1;
#Data.5tatus_Data.Maintenance Required := #Data.5tatus_Data.Light_Flashes > 100000;
END IF;

Figure 4.10 - Example of an IF statement

The preceding screenshot shows an example of this behavior. If On_Rising Edge is
True and Data.Status Data.Light Flashesisover 100000, then Data.
Status Data.Maintenance Required will be True. ButifOn Rising Edge

is False, then Data.Status Data.Maintenance Regquired will not be updated
and will remain in its last known state as it does not get processed due to jumping over the
false IF statement.

Selecting the best language

It is important to understand that there is no right or wrong language when it comes to
programming a PLC. However, there are strengths and weaknesses between different
languages. There are times when choosing a particular language over another has its
advantages.

The best approach is to look at what is trying to be achieved, both now and in the future,
and create a block in a language that fits those needs. A PLC project will generally fair
better with mixed languages that fit the needs of the project rather than sticking with a
sole language and struggling through areas that are difficult to program.

Understanding the use case

Every block in a project has a use case. This relates to the following:

o What the block has been developed to control/manage
« How the block fits in with other blocks

« Who is using/maintaining the block

These simple statements help us understand the best language to implement when
designing a block.

106 PLC Programming and Languages

Example 1

Control scenario: A block is required to summate an array of pressure instruments across a
manifold and output the average.

To satisfy this scenario, a programmer will need to consider the following factors:

 The input is an array of values
« Math is involved
Typically, when math is involved, graphical languages are at a disadvantage. This is

because either many blocks are required to achieve the desired result, or additional
interfacing/variables are required.

ADD DIV
Auto (Real) Auto (Real)
EN EN i
#Pressures[0] 1N QuT — #5um ELum— N1 QuUT — FAverage
EPressures[1] INZ 10.0 INZ

#Pressures[2] INZ
#Pressures[3] IN4
EPressures[4] IN5
#Pressures[5] ING&
EPressures[6] INT
#Pressures[7] INB
#Pressures[B] IND
#Pressures[9] — |N1O 3

Figure 4.11 - Adding values from an array in LAD

The preceding screenshot shows how the statement would be satisfied in LAD. The
following screenshot shows a simplified version in SCL:

FOR #i := 0 TO 9 BY 1 DO
#$5um += #Pressurea[#i]:

END FCE:

$Average := #5um / 10;

Figure 4.12 — Adding values from an array in structured text (SCL)

Selecting the best language 107

Note

The example shown in Figure 4.12 may seem small and simple enough that it
would not matter as to which language was in use. However, if the example was
changed slightly so that the summation happened to a 200-element array, the
required changes between the two languages would be extremely different.

The ladder logic would require an additional 190 inputs to the ADD block
(which would not be possible as 100 is the maximum, so two ADD blocks
would be required) and then have to be divided by 200.

The structured text would require the 9 in the FOR instruction to be changed
to 199 to loop through the array and then divide by 200 instead of 10.

Example 2

Control scenario: A chemical mixing tank requires basic tank-level control and mixing
control. The sequence of events starts with a filling valve being opened until the level in the
tank is at a "Stop Fill Level." At this point, the filling valve should be closed, and the mixer
should be started. The mixer should run for 20 seconds. For the first 10 seconds, the chemical
should be screw-fed into the tank via the screw feed motor. Once the mixer has stopped, the
transfer valve should open until the "Low Mixing Level Switch” becomes unhealthy.

If the Low Mixing Level Switch becomes unhealthy at any point while the mixer is running,
the system should fail and require the operator input to be reset.

The preceding scenario is simple but complex when it comes to picking a particular
language. The key in selecting a language for this use case is that the following details
are present:

« The control requirements are a sequence.

o An operator is required to interact with the control.

When sequences are involved, it's best to stick with a graphical-based language as these
have much better monitoring facilities, so diagnosing issues will usually be faster.

108 PLC Programming and Languages

Let's consider TIA Portal's GRAPH language, which is the best fit for sequences.

Fill Mix Tank
With Water

LE}
Fill

Complete

Run MMixer

=12s 53
-l
Add Chemical

T2

55 ==
Transfer

51

Mixing
Complete

Complete

Figure 4.13 - TIA Portal's GRAPH language

GRAPH is a language that is perfectly suited for sequences and displays a sequence
overview that gives immediate insight into which step the sequence is currently executing,
as well as the conditions/transitions that are required to move to the next step.

This type of graphical approach makes it very easy and simple to follow, without having to
look at the logic. GRAPH (or SFC in many other editors) is great for those who are trying
to find a fault in a sequence because of this compartmentalized approach.

Selecting the best language 109
. ot .
Compared to other graphical languages, such as FBD, it's easy to see how GRAPH is
simpler at first glance.
- Network 3: Run Mixer & Add Chemical
== T#205
Int ERun_Mixer
v TON
E5EQ_Step = IN1 Time
2 —IN2 IN ET[—T# PR
S - o :
H
TRUE ni FTTMOVE T
EMixing_Fault-esr________ ---lEN 15
: jﬁouﬂi—kSEG_Smp
=N N0 -
=== :
1
1
1
1
T H
: Time :
1
TE205 | .
.kRLn_h."ixer.E'—hm : : &
105 —{IN2_ i k3 ———i) #Chemical_Saew_
: Feed
1 =TT e 1
TRUE 1 1 = 1
#Mixing_Fault-ofst_ - -
I &
: #Mixer_Start
1 [it 1
TRUE 1 1 =: 1
#Mixing_Fault -0z LI -
&
»=1
FALSE
#low_Level_Float_
Healthy =
#Mixing_Fault
TRUE
#Chemial_Level_ =
Healthy -gf =& 3

Figure 4.14 - FBD with logic for mixing the chemical tank

The preceding diagram shows that FBD cannot package up code into nicely laid out steps.
Instead, the logic is also shown at the sequence step. While this is not a problem, it can
make things more tedious when you're trying to locate an issue or even find what step the

sequence is currently executing.

Both GRAPH and FBD are graphical languages, but they have opposing strengths and
weaknesses for this particular use case. Both logical outputs are the same; the scenario is
controlled as per the instructions, but the methods that are used to deal with the software
can be modified and maintained in different manners.

110 PLC Programming and Languages

Why is understanding a use case important?

Before any logic can be written in any language, understanding why a particular language
fits best is the key to mixing languages throughout a project. This means that a detailed
understanding of the end goal of the project is required. You should think and plan
around the following:

« Hardware: Not all hardware can run all languages, so check this before creating
standard blocks in one language. You don't want to find out that it cannot be used
later due to hardware restrictions (STL, for example).

« Maintenance/colleagues/customers: Who may interact with this object or update it
in the future? There's no advantage in writing a block in a language that nobody in a
team can maintain when it can be written in a language people can understand just
as easily.

« Fit for purpose: Sometimes, logic may appear to fit a particular language because
of one complex or large aspect, but the rest of the block fits a different language. It's
important to recognize this and check whether the logic can be reduced to a child
block. This will help segregate the languages while still taking advantage of a mixed
language project.

Mixing graphical and textual languages in LAD/FBD

Ladder logic and FBD are both languages that make use of networks. These networks can
be used to hold textual languages at the network level too. By right-clicking on a network,
the option to create an SCL or STL network is available. This allows graphical and textual
languages to be mixed, without the need to create child blocks to change languages.

Selecting the best language 111

¥ Network 4: Transfer
Comment

#5EQ_St=p —]INT &
PNz o
FALSE
#Llow_Level_Float_ ==1
Healthy —olsk ——
___________ TEOMS
| == #Transfer_Time_
: Int Out
11 TON
#5EQ_Step —INT Time
IN2__ ———IN
ET|— T#0ms &
E10m —tpT Q
FALSE I MOVE
#5top_Fill_Level =03t == '--:EN 1
! e — £5EQ_StE
! & oUTl SEQ_Step
C'—!I_N____;L____.--
¥ Network 5: Fill Fault
mment
1 #Clock Trigger(CLE:="Clock lHz"); "Clock_lHz" TRUE
3 EIF #5EQ Step = 1 AND #Clock Trigger.Q THEN 3 Result FRLSE
4 #$FillCount += 1; FillCoun 71 —+» 7
5 #Fill Fault := #FillCount > 1200; 3 FALSE
& | END_IF:

Figure 4.15 - Example of a mixed language block. Both FBD and SCL are in use between two
different networks

The approach of mixing languages inside LAD/FBD blocks helps reduce the complexity of

dealing with large mathematical equations or numerically heavy logic. SCL also offers an
extended instruction set that LAD/FBD can leverage by using an SCL network.

112 PLC Programming and Languages

Memory management

Depending on the language that is chosen for a block, this can affect the amount of
memory the logic consumes in the PLC to execute the logic.

For example, consider a sequence written in ladder logic compared to one written

in GRAPH. With ladder logic, a programmer would need to create the sequencing
mechanism themselves using equal instructions and a sequence step variable. This

is something that is provided automatically in GRAPH. However, GRAPH also
automatically provides many variables, per step, that may not be required, such as the
amount of time spent in an active step, the previous step number, and the next step
number. The list is large and is repeated for each sequence or step.

Similarly, a GRAPH block can only have an optimized memory layout. This means
passing structures via InOut interfaces would still require them to be copied, which may
introduce memory and scan issues to a project.

Differences between Siemens and other PLCs

Languages in Siemens closely relate to those of other major platforms. Ladder, FBD,
SCL (or ST in most other environments), and STL are all ultimately the same. The other
languages are either unique to Siemens or have noticeable variations compared to other
environments. Despite the most common languages being the same for the most part,
there are a few things to watch out for that are subtle and not immediately obvious.

Timers

In TIA Portal, when an IEC timer is used (TON, for example), everything appears normal
compared to other IEC environments.

#Fail_To_Star,_

Timer
TON
Time
IN Q
£Fail_To_S@r. ET — T20ms

Preset — pr

Figure 4.16 — TON timer in TIA Portal

However, if the PT value is changed while the IN input is True, Timer does not respond
to the change until the IN input has become False and then True again. This is not
immediately obvious and is not the expected behavior compared to other environments.

Differences between Siemens and other PLCs 113

TIA Portal has a solution to this, which is to place a PT Coil before Timer. This updates
the PT value while the timer is running:

#Fail_To_Start_

Timer
#Fail_To_Start_ TON
Timer Time
{FT} IN Q
EFail_To_Start_ #Fail_To_Start ET TEOMS

Preset Freset— pr

Figure 4.17 - TON timer with a PT Coil

Each language has a variation of how this is performed. For example, in SCL, the
PRESET TIMER instruction needs to be used.

Note
PT Coil can be used with the TON, TOF, TONR, and TP timers.

Valid networks in ladder logic

In the LAD language, TIA Portal has some uncommon rules regarding what is allowed
and not allowed when it comes to positioning logic. For example, it is not possible to
bypass a box instruction with a branch that originates from the same wire that the box is
situated on.

S%DB&
“Timer”
TON
True Time £Timer_Complete
{ | IN Q { }
Td — pT El — T�ms

#Foree_Complete

Figure 4.18 — Example of an invalid network

114 PLC Programming and Languages

However, removing the first open branch is acceptable, even if the logical outcome is the
same as it was previously.

%WDBE
“Timer”
TON
True Time E£Timer_Complete
{ | IN Q { }
T8 1d — pT ET — T¥0ms
True #Foree_Complets
L L
11 11

Figure 4.19 — Example of a valid network

This behavior may be unexpected to programmers who have come from other platforms,
where Figure 4.18 would be a valid logic network.

GRAPH is not SFC

Programmers moving from a platform that implements SFC may feel like GRAPH is
Siemen's answer to SFC. While they are very similar, SFC is not embedded with interlock
and supervision coils like GRAPH is.

¥ Interlock -(c)-: ...

#Chemial_Level_
Healthy Interlodk

X (<)

* Supervision (v} ..

#Chemial_Level_

Healthy Supervision
Iy (v}
w Actions:
ck Interlock Event Qualifier Action
v L -Set for limited time #Chemical Screw Feed,T#l0s
<Add new:

#Chemical_Screw_Feed

Figure 4.20 - Example of a GRAPH interface with interlock and supervision coils

Summary 115

This can confuse programmers coming from SFC. It is also worth noting that some
environments that implement SFC are capable of calling the step as a function, thus
implementing a new language of choice at each step. GRAPH offers a traditional qualified
action approach, with the other areas of logic being written in ladder only.

Bit access in the byte, Word, and Dword variables

Most modern PLCs are capable of accessing bits inside other variables without too much
effort on the programmer's part. Most environments opt for the following approach:

#$Filter Rlarm Active := $Alarm Word.l3;

Figure 4.21 - Accessing a bit in a Word in most environments

In TIA Portal, however, this does not compile as . denotes accessing a child object in a
Struct. To access bits in TIA Portal, the following should be used:

$Filter Rlarm Actiwve := #Llarm Word.3K13;

Figure 4.22 — Accessing a bit in a word in TIA Portal

. %X tells TIA Portal to return the bit that's been specified in the variable as a bool
data type. This method saves the programmer from having to convert words into
Boolean arrays.

Summary

You should consider different languages and use cases when you're developing logic
blocks. This chapter has introduced all of the available programming languages that TIA
Portal offers programmers and explained where they can be used. It also provided an
overview of what they look like and how they are used.

This chapter should have helped you appreciate the different languages and what they can
offer an overall project.

The next chapter will expand on this by providing more detail on the languages
mentioned here and how to program them. A basic sand filter cleaning sequence will be
programmed in each of the languages (where possible) to demonstrate how to construct a
block in the respective language and what issues will be encountered.

5

Working with
Languages in
TIA Portal

This chapter uses a common scenario to explore how different languages would approach
the logic and control of the scenario.

Working with different languages presents different challenges at different points of
programming. Understanding where languages have strengths and weaknesses with
a comparable scenario will help programmers learn quickly when to mix and match code.

In this chapter, we'll cover the following main topics:

o The control scenario

» Languages used in TIA Portal

After reading through the chapter, the following languages will have been used in
programming for the provided scenario:

o Ladder Logic (LAD)

« Function Block Diagram (FBD)
+ Structured Control Language (SCL)

118 Working with Languages in TIA Portal

« GRAPH
o Cause and Effect Matrix (CEM)

Each of the preceding topic areas will be examined against a control scenario. An overview
of the basics of the languages and instructions are provided before a walk-through of the
control scenario.

The control scenario

This chapter focuses on a control scenario for a basic sand filter. The scenario is simplified
enough that the control aspects are simple but enough of the languages is explored to
understand how to use them and demonstrate strengths and weaknesses.

The languages explored in this chapter will be used for the following control scenario:

This flow control diagram covers the basic filtration operation of a
small sand filter

Cperator Start Button Pressed

l

Inlet Valve Closed and
Outlet Valve Closed and —
Differential Pressure Less than 0.8

Yes

Open Inlet Valve

Filter Level above 2.0? J

The outlet valve should have a direct linear relationship to the fiter
level. When the filter level rises, the outlet valve should open

Open Cutlet Valve to Calculated further to try and reduce the level
Position
As the sand filter blocks with contaminants and the outlet valve
i Ho reaches a high level position of 75%, the filter should stop.

Filter Running for 20 Minutes or
Level Less than 1.5 or
Differential Pressure Greater than 1.5 or
Outlet Valve Position Greater than 75.0

Yes

v

—{ Close Inlet Valve and Outlet Valve

Figure 5.1 — Chapter control scenario

The control scenario 119

The flow control diagram in Figure 5.1 demonstrates a simple method to relay how the
controls are expected to operate for each of the languages used in this chapter.

A graphical representation of the process is available via a Comfort Panel Human
Machine Interface (HMI).

Figure 5.2 - Graphical representation of control system

The liquid to be filtered enters the tank from the left, through the Inlet Valve and exits the
tank after passing through the filtration media via the Outlet Valve. The instrumentation
consists of a Tank Level and Differential Pressure. These are used in the control scenario
to provide control of the inlet and outlet valves.

The operator will also use this HMI to begin and manually stop the process.

120 Working with Languages in TIA Portal

Control overview

In accordance with the control scenario (Figure 5.1), the system should go through the
following phases whereby the graphical representation should change to indicate the
control steps.

Opening the inlet valve

When the operator presses the Start button, the Inlet Valve will open, and the tank
begins to fill.

Figure 5.3 - Inlet Valve open and tank filling

At this point, the Outlet Valve is supposed to be closed to allow the tank level to rise
above 2.0.

The control scenario 121

Opening the outlet valve

Once the Tank Level has risen above 2.0, the Outlet Valve should open to a calculated
value. At this point, the liquid in the tank will drain through the filtration media. The
level will begin to drop, and the Outlet Valve responds accordingly. Similarly, if the level
should rise, the Outlet Valve will respond by increasing the position of the valve.

Figure 5.4 - Outlet Valve open to calculated value as Tank Level has reached 2.0

The system continues to operate in this mode, controlling the Outlet Valve against the
Tank Level until a stop condition is True.

122 Working with Languages in TIA Portal

Stop conditions

The control scenario lists different causes for the system stopping; however, all outcomes
are the same. The system should stop, and all valves should close.

Figure 5.5 - System stopped on high Differential Pressure (above 1.5)

Once the system stops, that is the end of the control scenario.

Note

If this were a real system, the filter would require cleaning or a form of manual
intervention from the operator of the system. In this case, the system can
simply be reset back to the starting values and run again.

Languages used in TIA Portal 123

Using the HMI

Clicking the Start button will begin the process as long as the control logic in use in the
PLC meets the control scenario conditions.

The Tank Level and Differential Pressure sensor values can be modified by clicking in
the white area that contains their respective values.

Languages used in TIA Portal

This section covers five of the languages available in TIA Portal and demonstrates their
usage against the control scenario.

Ladder logic

LAD is the most popular language in the PLC control space. It's likely that programmers
of PLCs have never seen or used LAD. Although it's still extremely popular, other
languages such as SCL are also becoming very popular.

Overview

Ladder gets its name from the way that the logic flows from the left of a network to the
right of a network. When multiple networks are placed in series, a ladder is formed.

Ladder, like other languages that are programmed in networks, is processed as follows:
o Networks
» Top to bottom
« Logic inside networks

» Left to right.
» Top to bottom.

» Conditions that come to a common point (the closing of a branch) will evaluate
all conditions left of the common point before proceeding.

» Outputs/instructions that are on open branches will be processed top to bottom
from the point where the branch opens.

124 Working with Languages in TIA Portal

It's important to understand the logic flow, especially when using branches, otherwise
logic may not execute in the expected way.

#Trigger_Timer
TON

£High_Mode -““""”"II”E“—““—E #Trigger_Timer #inhibit Time #Config_Fault #lath
=
11 {ren T} i/ IN Q F 1
#Trigger_Delay #Trigger_Delay T ET — T#0ms

#Trigger_Level ¢ Condit
Condition

—

£low_Mode #Monitored_Value

] | I‘=
1t | Real

#Trigger_Level

#Latcth #Release_Timer.Q

i | 4

Figure 5.6 — Example of closing and opening branches

Figure 5.6 is an example that demonstrates the flow of logic when branches are involved.
Before Trigger Timer, there are three branches of code that close at a common point
(indicated by a red circle). At the point of all three branches closing at a common point,
all logic to the left will have been evaluated, with the three branches executed from left to
right, top to bottom.

After Trigger Timer, the logic opens a branch (indicated by a blue circle) so that there
are two branches that contain coils. At this point, the logic is again executed in the order
top to bottom.

Instructions in LAD

Every language has roughly the same basic instruction set, but they are implemented
in different formats. They consist of groups of instructions that are categorized by their
function and the data types that the instructions act upon.

LAD's basic instruction set can be found in the Instructions panel on the
right-hand side of TIA Portal and in the Basic instructions subsection.

The basic instructions make up the base instruction set for the language; most of the other
options for instructions come in the form of a function or function block, which can
usually be called in any language.

Languages used in TIA Portal 125

+ | Basic instructions

Mame Descriptior Version
» [| General

» 5] Bit logic operations V1.0
» [@] Timer operations V1.0
] r-:_1| Counter operations V1.0
» [¢] Comparator operations

» [£] Math functions V1.0
b [Move operations V2.5
» B4 Conversion operations

» S Program control operati_. V1.1
» [word logic operations V1.4
» 5 Shiftand rotate

] r:j, Legacy V2.6

Figure 5.7 - Basic instructions palette for the LAD language

The Basic instructions palette may look different in different languages or may not even
be available. As TIA Portal versions change, the available instructions inside the folders
may also change.

Ladder bit logic operations

Ladder is a perfect choice of language for sections of code that require bit logic to be
managed as it is configured for the easy reading of bit logic. Ladder was developed to
operate in the same way that relay panels operate, so the terminology for the naming of
instructions is similar, such as Normally Open Contact.

Mormally Open Mormally Closed
Contact Contact Caoil
| 4, { }
Set Coil
{5}
Reset Coil
{R}

Figure 5.8 - Example of LAD and bit logic operations

Most LAD that programmers will read, write, and work with will look similar to the
preceding, with normally open contacts, normally closed contacts, and different variations
of coils.

126 Working with Languages in TIA Portal

It is these instructions that form the basics of bit logic. Each instruction works with True
or False logic:

« Normally Open Contact - When the preceding logic = 1 (True) and the assigned
variable = 1, the output = 1.

+ Normally Closed Contact - When the preceding logic = 1 (True) and the assigned
variable = 0 (False), the output = 1.

« Coil - When the preceding logic = 1, the assigned variable = 1. When the
preceding logic = 0, the assigned variable = 0.

+ Set Coil - When the preceding logic = 1, the assigned variable = 1. The variable is
retained at 1 even if the preceding logic becomes 0 on subsequent scans.

+ Reset coil - When the preceding logic = 1, the assigned variable = 0. The variable is
set to 0 even if it was not set to 1 by a set coil.

These are the most common instructions used in Ladder and are most likely to be used at
the lowest levels in the PLC program.

Note

Further help on instructions can be found by highlighting an instruction
and pressing F1. This will open TIA Portal's information system where more
detailed help is available.

Box instructions

A box instruction is an instruction that literally appears inside a box.

ADD
7 Auto (777)
- IN our EN
T —INT ouTt
INZ 3F

Figure 5.9 - An empty box instruction (left) and an un-parameterized ADD box instruction (right)

These are mainly used when an instruction needs to accept parameters (or arguments).
There are hundreds of different box instructions that can be called in LAD (and other
languages).

Note

Functions and function blocks can also be called from an empty instruction
box. Simply type in the name of the program block where the ? ? appear.

Languages used in TIA Portal 127

Comparators

Unlike most other PLC environments, TIA Portal does not display a comparator as a box
instruction in Ladder, nor does it use the notation of LE for less than or equal to, for
example. Instead, TIA Portal chooses to display it as a contact with the type of comparison
being performed in the center.

o0 16
F0utlet Valve_ #Differential_
Positon Pressure

[|
____________ 1Realtl

Figure 5.10 — Example of a "less than" comparator and a "less than or equal to" comparator

This does not change how the instruction operates in any way; however, it may be
unexpected for programmers who use more than one development environment.

Control scenario walk-through

The control scenario is relatively simple and LAD would be a good choice to implement for
this type of control requirement. Because the filter system is simply waiting for events to
occur, with only one element of active control (the Outlet Valve calculation), the control
is predominantly bit logic based, which suits Ladder perfectly.

Starting the system

As per the control scenario, the system can only start when the starting conditions are
True and the operator has requested a start via the Start button.

* Network 1: Operator Start Button

Operater Has
#0perator_Start. System ks Running Requested A Start
Button ESystem_Run EStart
I L s {P ey
E5tari_Memory
FALSE
".C)perator pressed.'] (Fulse the)
the START ‘ Mol s ‘ Start variable as
| button on HMI | | o TRUE for 1 scan

Figure 5.11 - Operator Start button logic

128 Working with Languages in TIA Portal

Network 1 of the Ladder solution manages the operator's Start button presses by ensuring
the system has not already started and then pulsing a local variable called Start.

Local Variables

Local variables are variables that exist in the current scope only. The Start
variable in Figure 5.11 is a local variable. This is denoted by the # that appears
before the variable.

Notice that all of the variables in Figure 5.11 are local to the function
block as they all appear in the interface or are temp variables used by the
function block.

When the operator presses the Start button on the HMI, Operator Start Button
will be set to True. As long as the System Run variable is False, the "P" coil will pulse
the Start variable with a True value for one scan of the PLC.

Note

The Start Memory variable is a static declared variable that holds the
previously read value of Start. This is how the PLC recognizes that the
preconditions have changed from False to True, and on the next scan
remain as True (which stops the coil from outputting that scan again).

Once the Start variable contains a True value, the next network checks the
requirements laid out in the control scope.

* Network 2: Requirements for Start

Lomment

Operater Has 0'0. M
Requested A Start #lnlet Valve_ & OLFu EF—.\' alve_ & [?:lfferrf ntial_ System Is Running
#5Mart Closed osition ressure #System_Run
1y 1= 1 S
1o I Real | LI
i i 0.5 0.8 l
Netuwork 1 “Start’| |nlet Valve Closed| | OUlSIValve | |Dfferenial ressure |1 | gt g gygiom
Coil True Signal 0silion Less Less than or Egqual as Running
than 0.5 to 0.5
| Operatoris | |automation System|
MNOT Pressing Is NOT Requesting
| HMI Start Button | aStop
Automated System
System Is Running #O0perator_Star, Stop
#System_Run Button #5ystem_Stop
1
* Hold On Contact

Figure 5.12 - Requirements for starting the system

Languages used in TIA Portal 129

At this point, the logic has received the input from the operator to start the system (via the
Start variable) and is now checking the other requirements in the control scenario.

The interesting part of this network is the use of a hold on contact. This is exactly the
same as an electrical panel whereby a relay will close a contact and power its own coil
until another condition breaks that hold. This type of logic may also be referred to as

a latching circuit.

Figure 5.12 shows that once the top branch of the network is True, System Run
becomes True. On the next scan, everything to the left of the coil is evaluated before

the coil is written. This means that System Run is still True on the bottom branch at
the point of the second scan. As long as the Operator Start Button is no longer
pressed and the automated system is not requesting System Stop, then System Run
feeds its own coil, keeping the coil in a high True state until one of the two conditions
breaks the hold on contact.

In this particular case, it is essential that the HMI Start button can only be active for one
scan. The following network ensures that the button is written back to False at the end
of the function block:

Network 8: Reset Operator Button Press

fOperator_Start_
Button

iR}

Figure 5.13 - Resetting the operator Start push button

Because the HMI is event-driven, the condition of a button press can only happen once
per press. If an operator keeps their finger on the button, the PLC wins and the value is
written back to False in the same scan cycle.

Opening the inlet valve

Now that the system is started and holding itself in an active state via the System Run
variable, assets can be controlled in accordance with the control scenario.

130 Working with Languages in TIA Portal

The next step is to open the Inlet Valve. This valve stays open the entire time the system
is running.

Metwork 3: System Running - Open Inlet Valve

System Is Running Flnlet Valve_
#5ystem_Run Open_Request
| o { r--—

Figure 5.14 - Simple LAD to open the inlet valve

Whenever the System Run variable is True, Inlet Valve Open Request
is also True.

Asset Control Requests

Requesting an asset to do something, as opposed to controlling the IO directly,
is a good habit to get into. Inlet Valve Open Request in Figure 5.14
is an output from the function block. Anything can be assigned to it outside

of the block. This leaves programmers free to focus on the logic and how it is
supposed to be controlled instead of what it is controlling.

It also allows for easy expansion should another block also need to control
the same asset. In this case, neither block needs to be changed. The decision
of which block is in control of the asset can be made elsewhere after they have
both been processed.

The filling operation

Once the Inlet Valve is open, the system will begin to fill. The control scenario states that
the filling operation should wait until the Tank Level reaches a particular level before
releasing control of the Outlet Valve.

Languages used in TIA Portal 131

Metwork 4: System Running - Manage Fill

Comment
System s Running) 2.1
£5ystem_Run #Filter_Level £Fill_Complete

[| = | [

11 | Real | L

ZFill_Complete

2.1
£Fill_Complets "F"ItE'—LEI"E' £evel Fault
=
: : iFtaaI;' ____________ .{ by

Figure 5.15 - Fill management

The fill management also contains a hold on contact configuration for the Fil1l
Complete signal. However, this time, there are no release variables. Once Fill
Complete is set at the coil, it will hold itself on until System Run becomes False.

An additional function is also managed in this network; the Level Fault variable is set
if Filter Level falls below 1.5, but only after Fill Complete has already been set
to True.

132 Working with Languages in TIA Portal

Calculating the outlet valve position

The control scenario states that the outlet valve's position should be calculated based on
the level in the tank after the tank has filled to a specified level.

Metwork 5: System Running - Calculate Required Output Valve Position

SUB
E5yEem_Run SFill_Complete Real
I} N EN — ENO|————————
O e BN 5.0
0.0 = IN2 #hMath_Calcs.
OUT}— Level_Range
T MOVE |
] HOT famaaa, 4EN e 4
0.0 =gl 336
H 20utier_Vahe_
e o _JF OUT] b Position_Request
SUB o
Real Auto (Real)
EN EN g
0.0 —IN1 800 80.0 160
0.0 =l IN2 2hiath_Cales. Ehath_Cales. OUT f— =hiath_Cales.C1
OUT j— Position_Range Posinen_Range — i1
50
mhath_Cales.
Leve|_Fange e 2
SUB MUL
| Auto (Real) Auto (Real)
{1EN — Ei EN — Eb 4
21 21 180 LY
EFilter_Level — N1 mhath_Cales. Fhath_Cakes €1 —{W1 QU — =hath_Cales.Cl
0.0 =] IN2 OUT e L] _Ofen 21
#Math_Calcs
Level_Offeet — N2 i
ADD
| Auto (Real) MOVE
EN k EN WO ——
336 336 336 336
=hiath_Cales C1 met INT =hiath_Calcs. =hath_Calcs =0uter_Vale_
00={INZ 3} OUT}— Rezult Result —{IN i QUT] |— Position_Request

Figure 5.16 - Calculating the outlet valve position based on tank level

This is where LAD shows a weakness against some other text-based languages.
The formula for the calculation shown in Figure 5.16 is as follows:

Outlet Valve Position Request =

(((Max Tank Level
/
(
*
(Current Tank Level - Min Tank

+

Min Valve Position

- Min Tank Level)

Max Valve Position - Min Valve Position))

Level))

While this isn't a particularly complex formula, LAD has a hard time laying it out nicely

and comprehensively.

Languages used in TIA Portal

133

Programmers will need to remember when doing calculations in Ladder this way how
logic flows to ensure calculated values are only used when ready. It's also a good idea to
create temporary variables to hold calculation results that are required later to continue

the calculation.

Note the NOT instruction, which sets the Outlet Valve position to 0.0 when the
System_ Run variable is False orthe Fill Complete variable is False.

Tip

There are better ways to do calculations when using Ladder. Check out the
Calculate instruction, or even better, insert an SCL network to perform
the calculation!

Managing stop conditions

At this point, the system is running completely, the Inlet Valve is open, and the Outlet
Valve is being controlled by the tank level. The next step is to recognize a requirement to

stop the system.

¥ Network 6: System Running -Calculate Time Running

TE17M_395_678...

System Is Running

#5ystem_Run #Fill_Complete

E20m = pr

#Max_Run_Timer

TON
Time

#5top_On_Time
g 1

Network 7: System Running - Automatic Stop

System Is Running

#5ystem_Run #Stop_On_Time

TE17M_395_679...

ET— &#Running_Time

LI

Automated System

Stop
#5ystem_Stop
g 1

#level_Fault

pemeees

0.5
#Differential_
Pressure
1 1
H =
1Real 1
1.5

336
#0utlet_ Valve_
Position

-
1Real 1

Figure 5.17 — System stop requirements

LI

134 Working with Languages in TIA Portal

Figure 5.17 shows how Network 6 and Network 7 are used to consolidate stop
requirements to a single System_Stop variable (which was also used in Network 2, in
Figure 5.12, to break the hold on contact for the system running).

The TON instruction stands for Timer "On" Delay, meaning that when the IN condition
is True, the timer will begin counting a delay time until Elapsed Time (ET) equals Preset
Time (PT). Once ET >= PT, the Done (Q) bitis set to True until the IN condition is
set back to False.

In this case, the timer only starts to count once the tank has filled and therefore the system
has released the control for the Outlet Valve.

If any of the stop conditions on Network 7 become True, System_Stop is set to
True and on the next scan, the system is stopped by breaking the hold on contact
on Network 2.

Remember

Static variables must be used if the variable value is required to be retained
between scans of the PLC. If System Stop were a Temp variable, the
system would never stop!

Control summary

In this example, all networks have been written in LAD. For most of the
control scenario, the language has provided everything that is required for easy and
simple control.

The calculations required for control of the Outlet Valve have highlighted how Ladder
could be weak with very complex calculations.

Some of the key aspects of using Ladder have been demonstrated as the following:
« Easy to read and follow, especially when monitoring online

« Network-managed sections of code, further enhancing the usability of the language

 Best used for Boolean (True/False) logic

Languages used in TIA Portal 135

Function Block Diagram

FBD is a graphical language that takes the form of grouped blocks that perform
specific functions.

These blocks make up the logic, much in the way LAD works, by connecting to each
other from left to right toward an endpoint such as an assignment or instruction. FBD is
programmed in networks, the same way as LAD is.

Overview

FBD is very graphical and is designed to help guide the user through the logic while
making it easy to perform more complicated functions hidden away in blocks. Essentially,
FBD calls instructions in the same way that any other language would call a function
block. Even simple instructions such as greater than are still called in the same format
and interface style as that of a user-created function block.

FBD is processed as follows:
o Networks
+ Top to bottom
« Logic inside networks

+ Left to right.
+ Top to bottom.
+ All inputs to a block must be evaluated before the block is executed.

+ Branches are evaluated top to bottom from the point at which the branch opens.

The logic flow for FBD is the simplest of the graphical languages as branches cannot
be closed. When a branch is open, it must complete with its own end instruction

or assignment, it may not rejoin the branch above (this would create an OR logic path;
FBD provides an OR block instead).

136 Working with Languages in TIA Portal

Instructions in FBD

FBD has almost exactly the same instruction set as Ladder, however, it is implemented
slightly differently due to the nature of the language.

~ | Basic instructions

Mame

1=/

Description Version
General
Bit logic cperations V1.0
Tirner cperations V1.0
Counter cperations V1.0

Cornparator operations

Math functions V1.0
Move operations
Conversion cperations
Program control operations V11
Word logic operations V1.4
Shift and rotate

Legacy V2.6

Figure 5.18 - Basic instructions palette for the FBD language

While all of the top folders in the Basic instructions palette are the same, the content of

the folders is different

to suit the FBD language.

FBD is also designed as a language for bit logic, focusing on AND and OR blocks in order

to build the logic.

-

Bit logic cperations

= & AND logic operation [F9]
=1 =1 OR logic operation [F10]
=1 x EXCLUSIVE OR logic operation

Figure 5.19 - Logic gate blocks

As with all instructions, these can be found from the Instructions tab on the right-hand
side of TIA Portal. The AND and OR blocks are the most basic blocks provided in FBD.

Languages used in TIA Portal 137

AND

TRUE = 1
TRUE = 3k —_— Assignment

FALSE mm 3t _— -

Figure 5.20 - AND and OR blocks, providing an Assignment with a true value

In Figure 5.20, the AND and OR instructions are connected to an Assignment instruction,
which behaves the same way that a coil behaves in LAD. When a logical 1 (True) is
passed to it, the variable associated with the Assignment is set to 1, otherwise, it is set to
0 (False).

Set and reset assignments are also possible in FBD. After placing an Assignment block,
a dropdown on the block itself can be used to select a variety of options. Choosing S will
create a Set Assignment and choosing R will create a Reset Assignment.

&
TRUE — =1 EAssignment_
Faloe molsk Variable
5
FALSE == 3k —

Figure 5.21 - Example of a Set Assignment

Box instructions

In FBD, all instructions are box instructions, however, calling instructions that have
an interface work in the same way as all instructions. The difference is that an interface is
also offered.

»=1 NORM_X
TrUe e Real 1o Real
Falsg m=l3k EM
0.0 —|MIN
QAR 0.0)
ESignal =y alLUE ouT = &MNorm_Signal =1 £Assignment
IITET O = hAK Wariable

False =<3k —

Figure 5.22 - Box instructions in FBD

138 Working with Languages in TIA Portal

Figure 5.22 shows how box instructions look and behave in FBD. The most noticeable
difference from a box instruction in Ladder is that the EN (enable input) and ENO
(enable output) output are not on the same level.

Comparators

FBD displays comparators in a more conventional box instruction but still uses symbolic
notations for the instruction type.

==
Real
0.1
#Differential_
Pressure — |m1
0.5 = N2

Figure 5.23 — Comparator for "less than or equal to" in FBD

This notation of <= keeps consistency between similar languages such as Ladder.

Note
IN1 is compared against IN2. For example, IN1 <= IN2.

Control scenario walk-through

FBD fits well for most of this control scenario as the filter system is mostly basic
Boolean logic.

The logic for the FBD solution results in the same operation of the filter system as all

other languages.

Starting the system

As per the control scenario, the system can only start when the starting conditions are
True, and the operator has requested a start via the Start button.

Languages used in TIA Portal 139

* Network 1: Operator Start Button

¥0perator_St@are_

PR Rising_Fdge
1
FALSE | i R_TRIG
#0perator_Start_ | i sE
Button =
: : Operater Has
FALSE ! |) Requested A Start
System Is Running | : rue EN Qf==E51art
ESystem_Run = LJ;_ ________ e Lk ENO

Figure 5.24 - Operator Start button logic

Network 1 of the FBD solution uses an AND instruction to check that Operator
Start_Button is True, and the system is not already running (an inverted input into
the AND instruction is used, indicated by the small circle between the AND instruction and
the System_Run variable). If the conditions are True, a logical 1 is output from the AND
instruction to CLK of the R_Trig instruction.

R Trigis a Rising Edge Trigger that outputs a True value on the Q output for one scan
and will not do so again until CLK has been scanned as a False value.

Note

A negated input is displayed with a small circle at the end of the input line.
Negating an input can be achieved by selecting Invert RLO from the General
folder in the Instructions panel.

140 Working with Languages in TIA Portal

Once R_Trig sets the Start variable to True, the system is required to check more
conditions prior to opening the Inlet Valve.

* MNetwork 2: Reguirements for Start

& AND
<— Output = 1 When All
FALSE , Inputs = 1
Operater Has S
< Requested A Start
Real E5tart=-
0.0 TRUE
#0utlet_Valve_ #inlet Valve_
Position — N Closed
0.5 —{IN2
==
Real
0.1
#Differential_ /
Pressure — N9 =1 OR
0.8 —IN2 3 == Output = 1 When 1 Or
___________ 'd More Inputs = 1
&
FALSE
System ks Running
#System_Run ==
FALSE
#Operator_S@r._
Button =
System Is Runnin
FALSE):S}mm Run 9 Set the System
Automated System mm———————— as Running
Stop I = 1
#System_Stop =olsk -l == -
~ Hold On Contact

Figure 5.25 — Requirements for starting the system

At this point, the logic has received the input from the operator to start the system (via the
Start variable) and is now checking the other requirements in the control scenario.

Figure 5.25 demonstrates how this logic is split into two areas. Before System Run

is written to by the Assignment instruction, an OR instruction is used (>=1). This
instruction segregates the requirements for a start and the hold on contact requirements
that keep the System Run variable held as True.

When all conditions are True on the first AND instruction, the OR instruction allows
the logic to set System_ Run to True. On the next scan, the second AND instruction
(providing the conditions are correct) will hold the System Run instruction high until
either the operator stops the system with the button or an automated system stop occurs.

Languages used in TIA Portal

141

Because Operator Start Button is used again to unlatch System Run,
it's important to make sure that the value is reset to False before the next scan.

* MNetwork 3: ResetOperator Button Fress

Comment

#O0perator_St@ar
Button

Figure 5.26 — Reset output

Using a Reset Output instruction ensures that Operator Start Button is always

False before Network 2 is next scanned.

Remember

The HMI is event-driven. Holding the button in does not send another True
value to the PLC.

Opening the inlet valve

Opening the Inlet Valve is as simple as assigning a TRUE value to it when the
System_Run variable is True.

* MNetwork 4: Systerm Running - Open Inlet Valve
Comment
finlet Valve_

Open_Request

FALSE
System ks Running
#5ystem_Run -

Figure 5.27 - Opening the inlet valve

This can be done with a single Assignment instruction.

142 Working with Languages in TIA Portal

The filling operation

Once the Inlet Valve is open, the system will begin to fill. The control scenario states that
the filling operation should wait until the Tank Level reaches a particular level before
releasing control of the Outlet Valve.

* Network 5: System Running - Manage Fill

Real
2.1
gFilter_Level — N1 &
20— |NZ
& ==1
— . TRUE EFill_Complete
System Is Running £Fill_Complete —
ESystem_Run — & 0%? e
&
p————
TRUE R
£Fill_Complete — 3k 1 i
i i
___________ 1 1
i = 1 1 I
i Real i i i
1 1 1 1
1 [
21 P o _Flewel Fault
#Filer_Level —l N1 | i i | =]
_ 1
e 11 e L Y whorl N -

Figure 5.28 - Filling management and level fault

Figure 5.28 shows an example of a branch in use in FBD (shown with a blue circle).
In order to branch the System Run variable, an AND instruction has been used that
only has a single input.

Most instructions (that aren't user-defined or system-defined function blocks) can
have additional inputs added to the interface by clicking the little yellow star icon.
Interface elements can also be deleted by selecting the input line and pressing Delete on
the keyboard.

When an AND instruction only has a single input, it is always the same state as the variable
assigned to the input. In the case of Figure 5.28, this has been done to allow a branch to be
added immediately after the output. It is not possible to add a branch to an input unless

it is already connected to the output of another block.

Languages used in TIA Portal 143

Note that this network also contains a hold on contact at the OR block before
Fill Complete. Thiswillkeep Fill Complete setto True until logic before
the OR block becomes False.

Calculating the outlet valve position

The control scenario states that the outlet valve's position should be calculated based on
the level in the tank after the tank has filled to a certain level. Just like the LAD solution,
FBD does a poor job at laying out this calculation.

Network 6:

mment

TRUE
&System_Run —|
TRUE

sFill_Complete —3

System Running - Calculate Required Output Valve Positien

SUB
Real
5.0
EN #Math_Calcs.
50—t 1N OUT b Leve|_Range
00— IN2 ENO —
AR
336
20utlet Vahe_
AEN —5 OUT — Position_Request
00 _{I_N____L_;;'_'.L'
SUB
Real
80.0
EN #Math_Calcs DV
B0.0 —]IN1 —|_ OUT — Position_Range Auto (Real)
000 e [N EH: EN
800
Ehath_Calcs.
Pesition_Rangs —IN1
50 160
#hdath_Calcs. OUT— #Math_Cales €1
Level_Range — INZ N0 f—
SUB
Auto (Real)
EN 21
2.1 #Math_Calcs. MUL
&Filter_Level — IN1 OUT— Level_Offzes Auto (Real)
00— IN2 EMNC EMN
160
shath_Calcs.C1 —JINT
2.1 33.6
Ehath_Cales. OUT— shath_Cales €1
Level Ofcet—iNz sl ENO|—
ADD
Auto (Real)
EN — 336
336 #Math_Calecs.
&Math_Calcs.C1 — IN1 OUT — Recule
0.0 =—INZ sk E}

EN
—J 336
336 g0uter_Valve_
2hiath_Calcs, 38 OUT — Position_Request
Recult—IN L En

Figure 5.29 - Calculation of the Outlet Valve position

144 Working with Languages in TIA Portal

The way FBD lays out the math instructions results in large areas of unused space, which
can make things difficult to read, especially on smaller screens. Note that the MOVE
instruction's position is right at the bottom, despite there being enough room to have

it much higher and visible. This is something to watch out for.

As with Ladder, programmers will be required to create holding variables to move results
from one instruction to the next.

Note

Remember to observe the flow of logic with branches. Each branch will execute
top to bottom, left to right. Also note that some inputs are inverted.

Managing stop conditions

When the system is filled, the outlet valve is open, and the system is running, the stop
conditions need to be evaluated.

hd MNetwork 7: System Running - Calculate Time Running

&
TRUE RN
System Is Running TV R e
ESystem_Run] TON 1
I]
TRUE |]
&Fill_Complete — 3k :m : #5twop_0On_Time
i ET}—T# . = i
220m—{p______ QF-———————-—- A r-

* Network 8: System Running - Automatic Stop

I N
I EEA FALSE | !
1 1 #5wop_0n_Time =< 1
o | = L
#Differential_ | i FALSE 1 i
Pressure |y i #level_Fault-4 i
S 1 S pommmmmmmmmmmnes 4 |
i i
----------- i i
e R
Real " Yy TR
: 1 : : : - : Automated System
336 i i i i TRUE i i Stop

#0utiet Valve_ | P : System Is Running | | #5ystem_Stop

Position |1 P! | #5ystem_Run — I il i

IN2_______] e I e A e N -

Figure 5.30 - Stop conditions

Languages used in TIA Portal 145

Just like the Ladder solution, Network 7 and Network 8 are being used to consolidate the
required variables into a single System_ Stop variable that stops the system.

The FBD layout does a better job at keeping things neat with the OR logic required for the
conditions than that of the Ladder solution (Figure 5.30).

Control summary

In this example, all networks have been written in FBD. For most of the control scenario,
the language has provided everything that is required for easy and simple control.

The calculations required for control of the outlet valve have highlighted how FBD could
be weak with very complex calculations.

Some of the key aspects of using FBD have been demonstrated as the following:

« Easy to read and follow, especially when monitoring online
o Network-managed sections of code, further enhancing the usability of the language

« Best used for Boolean (True/False) logic

The similarities between FBD and Ladder are very strong, despite them looking different
on the surface.

Structured Control Language

SCL is a textual language, meaning it is written in a text-based language. Because of this,
it can actually be written outside of TIA Portal and then copied in, however, access to
variables and tags would not be possible if written elsewhere.

Text-based languages operate differently from graphical languages, and if programmers
are new to a language, it can seem busy and hard to read at first. SCL is a very popular
language due to its extended instruction set and flexibility to perform well in almost

all areas.

Overview

SCL is more commonly referred to as structured text as nearly every other PLC
environment refers to it as ST and not SCL as Siemens does. The structured part of the
name simply means that the language is based on instruction sets. SCL is still governed by
the same basic instructions that other languages use, however, they are used differently.

Unlike Ladder and FBD, SCL does not have networks to group code together. Instead,
SCL uses line numbers, and instructions may be spread over many lines to complete block
interfaces and other statements.

146 Working with Languages in TIA Portal

The scan of the language is far more simple:
« SCL code
+ Line by line
« Statements

+ Statements such as the IF statement may cause lines to be skipped over if
conditions are not True. This is handled automatically.

There are no branches in SCL either. Pathways are created by using statements that change
which area of code is executed at any one time.

EHIF #Condition = TEUE THEN
SfCondition = True Code

#ConditionResult := True;
ELSE

SfCondition = False Code

#$ConditionResult := False;

|END_IF;

Figure 5.31 - Example of flow-changing IF statement

Figure 5.31 shows an IF statement that executes different areas of code depending on the
state of the Condition variable. When the Condit ion variable is True, the section
above the ELSE condition executes. When the Condition variable is False, the section
of code below the ELSE condition executes.

Note

If ELSE is not included, no code would be executed if the condition was not
True. SCL would continue from the END IF part of the statement.

Instructions in SCL

The SCL instruction set is handled differently from other languages and is more closely
related to that of Statement List (STL). The Basic instructions panel has a greatly
reduced offering of Bit logic operations and the General palette doesn't exist at all.

Languages used in TIA Portal 147

w | Basic instructions

Manme Description Wersion

= [] Bit logic operations V1.0
=l R_TRIG Detect positive signal edge V1.0
£l F_TRIG Detect negative signal edge V1.0

Figure 5.32 - Basic instructions panel of SCL

This is because all of the general instructions and most of the bit logic operation
instructions can simply be written out as text or are completed through
different statements.

SCL bit logic operations

Bit logic can still be achieved easily in SCL; however, it can become difficult to read when
the logic starts to become complex and brackets are introduced. Because branches do not
exist in SCL either, writing to multiple outputs can be difficult to read.

1 #Condition 1 := TRUE; Condition 1 TRUE
2 #Condition_2 := True; #Condition_2 TRUE
4 #Result 1 := $Result 2:= #Condition 1 AND #Condition 27 (W #Reault 1 TRUE
#Result_2 TRUE
#Condition 1 TRUE
Condition 2 TRUE

Figure 5.33 — Example of writing to two variables with online monitoring displayed to the right

Figure 5.33 shows that both Condition 1 and Condition 2 are setto True values
(notice that capitalization of the True value does not matter).

Result 1 is set to the value of Result 2, which is set to True when both
Condition 1 AND Condition 2 are True.

SCL is flexible as a textual language and can be written in many different styles. The same
logic in Figure 5.33 can be written in a different way, with the same outcome.

1 #Condition_l := TRUE; Condition_l1 TRUE
2 #Condition_2 := True; Condition_2 TRUE
4 $#Result_2 := #Condition_l AND #Condition_2; [2 #Result_2 TRUE
5 $#Result_l := #Result_2; [3 #Result_1 TERUE

Figure 5.34 - Another example of writing to two variables with online monitoring displayed to the right

This approach is probably the preferred approach as it's easier to read.

148 Working with Languages in TIA Portal

Unlike Ladder and FBD, all variable assignments are done with the same assignment
instruction, : =. There are no Set or Reset assignments in SCL; all assignments are
permanent. For example, if a variable is set to True, it will remain True until set to

another value (as long as the variable is not a Temp variable).

Box instructions

As expected, there are no box instructions in SCL as box instructions are a graphical
concept. When calling an instruction that requires inputs or has outputs, a particular style
of layout is used to allow interfacing to the instruction.

$Result := NORM X(MIN:= int in , VALUE:= int in , MAX:= 1nt 1n)}

Figure 5.35 — Example of placing an instruction with an interface

When typing Norm_X, the SCL editor will offer solutions as to what you may wish to
insert. Selecting Norm_X from the list will cause TIA Portal to populate the instruction
with the interface ready to be entered with variables.

#Resulc := NORM X (MIN := 0, VALUE := #Variable 1, MAX := 100);
Figure 5.36 - Instruction with interface populated

After filling in the highlighted areas (and adding the termination character, ;, to the end
of the instruction), the instruction's interface is populated.

Note

When calling a function block or function that also contains output variables,
the syntax used is =>, as opposed to : = by the Input and InOut variables.

Comparators

In SCL, comparators are simply written in line with variables. This approach is what
makes SCL so quick and easy to work with and it also keeps the SCL language in line with
most other languages in TIA Portal.

#Result := #Variakle 1 >= 20;

Figure 5.37 - Comparator example for "greater than or equal to"

By using symbolic syntaxes, SCL ensures that the code is easy to write and read when
using comparators.

Languages used in TIA Portal 149

Control scenario walk-through

The control scenario in SCL is constructed differently from that of Ladder and FBD. This is
because networks do not exist, so logic has to be structured in a different manner.

It is a good practice to comment in SCL. Having well-laid-out and -commented logic is
the difference between being able to revisit SCL and understand it easily and having to
spend time understanding how it has been written.

1l // //===================================),
2 /7 |l 5CL - 5Structured Contrcl Language ||
3 /|][|
4 Jf || (Structured Text) |1
5. fr \ I_===================================__-"__"

Figure 5.38 — Example of an important comment
Comments are free to be structured in whatever manner desired. Writing comments that
head up sections or areas of code is a good habit to get into.
Starting the system

The control system is started when the Start button is pressed and some additional
conditions are in the correct state.

a froll Detect Start
1 7 |]===s-ss-s====sss====sss=========
11 /7 || k3 long as conditions are within limits, and the operator reguests ||
12 7/ start the svstem 11
13 77 £
14
15
14 CJREGICON Detect Start
17 //Get Start Conditions From Rssets
1z g5tart_Conditions OK :=
13 #¢Inlet_Walve_Closed BEND
20 g0utlet_WValve_ Position < 0.5 END
21 g¢Differential_Pressure <= 0.8;
23 //5et Start Condition On Operator Press
24 #3ystem Run :=
25 (#5tart Conditions OK AND #0perator Start Button AND NOT #5ystem Run) OR
28 (#5ystem Run AND NOT #0perator Start Button AND NOT #5ystem Stop)r
28 //Reset Operator Button Press
2% #0perator Start Button := False;
30 | END_REGICH

Figure 5.39 - Starting the system in SCL

150 Working with Languages in TIA Portal

The comments help understand which areas of logic are fulfilling different requirements.
The entire section of logic is encapsulated in a region. Regions help to structure logic
and allow the TIA Portal programmer to collapse areas of logic. Effectively these act as
networks, however, the programmer must implement it themselves.

In SCL, the variable that is being updated (written to) is declared first, before the logic
that will update it. Figure 5.39 shows that when the start conditions are all in the correct
state, the Start Conditions OK variable is updated to True. Notice that Start
Conditions_OKis the first variable declared, then the logical components are used to
create the True or False value based on the outcome.

The System_Run variable is set to True by one of two situations; either the first set of
brackets (parentheses) resolve to a True result, OR the second set of brackets resolve to
a True result.

Notice that the second set of brackets also contains a hold on contact. Also note the NOT
instruction that comes before variables; this inverts the variable's value requiring a False
value to allow a logical value of 1 to be output.

The Operator Start Button variable is written as False on every scan by the logic
on line 29.

Opening the inlet valve
Opening the inlet valve is just as simple in SCL as in Ladder or FBD.

33 /5001 Open Inlet Valwve |
._,_1 ._-l'._-l- |]==[|
35 S/ || When the system i3 running, open the Inlet Valwe ||

2 KOREGION Open Inlet Valwe
35 S/0pen the Inlet Valve
40 #Inlet Valve Open Request := #3ystem Bun;
41 | END_REGICOH

Figure 5.40 - SCL Open Inlet Valve

Languages used in TIA Portal 151

The logic on line 40 is effectively copying the data in System Run into the
Inlet Valve Open Request variable.

The filling operation

Managing the filling sequence requires another hold on contact.
T T T Y
4 i7 0 Manage System Fill I
13 /¢ | | ===========sSsSSsSsSsSSSsSSSSSSSSSSSSsSSSSSSSSSSSSSSSSSSSSsSSSSsssssssssss=s| |
46 // || On first system start, filling is required. If the level is below 2.0 ||
47 // || the Outlet Valve contrcl may NOT start Il
4% // % ===_ |
43
50 EREGICH Manage System Fill
51 f/5et Fill Complete
52 #Fill Complete :=
53 (#5ystem Bun AND #Filter Level > 2.0) OR
54 #Fill Complete ALND #35yatem Run;
55
13 S/Monitor Lewvel Fault (Low Lewvel When In System Bun)
57 glevel_Fault := #Filter_ Lewvel < 1.5 IZND #Fill Complete;
58 | END_REGION

Figure 5.41 — Managing the filling of the system in SCL

Note that only one set of brackets is being used for the Fi11l Complete variable logic.
It's important to be careful with AND/OR logic in SCL when brackets are being used to
ensure that the logic is grouped and evaluated correctly, otherwise incorrect values could
be returned.

There are two ways that the Fi11 Complete logic could be interpreted by
a programmer:

e ((System Run AND Filter Level > 2.0) OR Fill Complete) AND
System_ Run

e (System Run AND Filter Level > 2.0) OR (Fill Complete AND
System Run)

152 Working with Languages in TIA Portal

In the case of SCL, the second option is what is processed. It would be better to write the
brackets in though, to improve readability.
Calculating the outlet valve position

Calculation of the outlet valve position is much easier in SCL thanks to the
text-based language.

Manage Cutlet Valve Position [l
[
/ || The system is now filled and in System Run Mode, Calculate the ||
| Cutlet Valve Position I

7T CIREGION Calculate Outlet Valve Position

g Calculate Outlet Valve Position
1] Max Outlet Valwe Position - Min Oulet Valwe Position))
71 ¥ (Filter Level - Min Filter Level)) + Min Valve Position
72 A {Max Filter Level - Min Filter Level))
73 #lutlet Valve Position Request := (((30.0 - 0.0) / (5.0 - 0.0)) * (#Filter Level - 0.0)) + 0.07
74
715 H IF NOT #Fill Complete THEN
7 #0utlet Valwve Position Request := 0.0;7
77 | END_IF;
78 | END_REGICN

Figure 5.42 - Calculation of the outlet valve position in SCL

The comment explains the calculation that is taking place. Line 73 performs the
calculation and sets the Outlet Valve Position Request variable to the result.

While this is far more compact than the graphical language solutions, the only
information given in the monitoring pane is the end result.

- #0utlet Valwve Position... 33.6

Figure 5.43 — Monitoring pane result

This means that calculations that have many parts to them, where seeing interim results
may be beneficial, will still need to be broken down into different elements.

Languages used in TIA Portal 153

Managing stop conditions

The system now needs to manage the stop conditions while the system is actively running.

gl i

83 /|| Conditions that will stop the ayatem ||
24/ 4\ =========================c========o==s
25

26 EREGION Manage Stop Conditions

a7 SfCall Max Bun Timer

g3 = #Max Bun Timer (IN:=#Fill Complete,

g4 FT:=T#20m,

a0 | Q=>#3top On Time):

91

g2 //Manage Stop Conditions

93 $#3ystem Stop =

94 (#5top _On_Time CR

93 $level Fault CR

(Tl

$¢Differential Pressure > 1.5 OR
#$0utlet _WValwve Position > T75.0) AND
#5yatem Run;

._,_.._,_.
e S =

[Ts]

100 | END REGION
Figure 5.44 - SCL stop conditions

In Figure 5.44 a TON timer is called on line 88. One of the drawbacks of SCL is that it is not
immediately obvious what is actually being called. Function blocks with large interfaces
may not be as easily recognizable as a TON timer. To check what is actually being called,
click on the instance name (before the interface variables - Max Run Timer in this case)
and press Alt + Enter. This will display the properties for the instance. In the general area,
the data type value will contain the type of function being called.

154 Working with Languages in TIA Portal

Control summary

The SCL solution demonstrates how textual languages are still capable of basic Boolean
logic as well as showcasing the strengths that come with being able to simply write out
comparators and math calculations.

Some of the key considerations around using SCL include the following:

o The online monitoring of code is poor.

« Finding the instance type of a called function is more involved than
graphical languages.

« Comments are free-text style, which allows for nicer and better-structured
comments than in graphical languages.

« Using regions can help segment the logic into manageable areas.

« Bit/Boolean logic using brackets needs to be carefully written to ensure the
grouping of the variables is correct.

GRAPH

GRAPH is another graphical language that is designed to handle sequences. It's often
linked to sequential function chart, however, they are not the same language. Siemens
has a similar concept but has introduced interlocks and supervisory elements that offer
additional controls around when and how transitions and actions take place.

Overview

GRAPH is a special language that is centered around the management of sequences and
transitions between sequence steps. It is simplistic in nature but capable of controlling
complex and parallel sequences.

Languages used in TIA Portal 155
s10 & —l Step
Sequence P Contains Actions that
Start -J Write to Variables
T4
By ooeeeeeee 510 -L Transition
T,mimn_j »| Contains Actions that
Write to Variables
511 =
Sequence
Step 1
-
Ti5 Ti6
Figeseenesens - Higeseeneens —_—i
Transition Alternative
£ -
Alternative Branch
512 ES 513 =
= _ 5| OR Branch
Sequence Alternative » First Transition True
HEE 2 HEr 2 | Activates Branch |
7 Ti8
Figeseenesens -1 Figeseeeeeees -
Transition Transition
-
-
s14 E 515 5 s16 =3
Stream AStep 3 Stream B Step 3 Stream C 5tep 3
[T 121% (" Simultaneous Branch |
= > AND Branch
Transition All Steps Start and Finish
\ Together
517 =3
C Stream Extra
5tep
-

Figure 5.45 - Example of GRAPH sequence view

156 Working with Languages in TIA Portal

Figure 5.45 shows an example of a GRAPH sequence diagram. There are four basic
components in this example:

« Steps - This is the part where the sequence writes outputs.

+ Transitions — Allows the movement to other steps.

o Alternate branches - GRAPH's OR branch; only one of the pathways can be taken.

 Simultaneous branches - GRAPH's AND branch; all the pathways are taken and
executed together, and the sequence continues when the transition after the branch

is True.

Logic flow in GRAPH is top to bottom, in the order that the transition gates allow.

Instructions in GRAPH
There are two different types of instructions in GRAPH:

o Step instructions

+ Instructions are action instructions.

o Transition instructions

+ Instructions are LAD instructions.

Depending on where in the GRAPH program is being edited dictates what instructions

are available.

~ | Basic instructions

Mame

O
»
»
[

O
»

»
b
4
¢
4
4
4
r

GRAPH LAD instructions
[7] General

[1] Bit logic operations
[€] Comparator operation:
GRAPH actions

[@] Timer operations

[33] Counter operations
[£] Math functions

[=] Move operations

B4 Conversion operations
B Program control oper...
5 wiord logic operations
5 shiftand rotate

E Legacy

Description

Version

V1.0
V1.0
V1.0
V2.5

V1.1
W14

V2.6

Figure 5.46 - GRAPH's Basic instructions view

Languages used in TIA Portal 157

When modifying transitions, the GRAPH LAD instructions set is used. When modifying
step actions, GRAPH actions is used.

Step actions

These are actions that appear as part of a step. Steps are capable of writing outputs to
a variable that appears in the interface, or globally. Each action has a set of parameters:

o Interlock - If the interlock is True, the action is enabled for execution.

« Event — The event that must occur for the action to be executed.

o Qualifier - The conditions in which the action is executed.

o Action - The logic that action will execute.

These parameters come together to form an action within a step.

Sequence Step 1

S11:

| True Interlock
| {1 {C}
¥ Supervision -(v}-:
¥ Actions: ...
=ck Interlock Event Qualifier Action
M -Setas long as step is active | //Limit the Ouputl Value
CALL LIMIT EEAL
(MH := 0.0
IN := #0utputl
MX := 100.0
OUT => #0utputl
)
-{Ck 51 R -Setto 0 //Beset Output2 At the end of this step
#0utput2
<Add new:
w H0utput]
#0utput2

Figure 5.47 - Step actions in GRAPH

By double-clicking on a step in the Sequence view, the Step view is opened where
Interlock, Supervision, Actions, and Transition can be viewed and modified.

158 Working with Languages in TIA Portal

Figure 5.47 shows an example of two actions within a single step. The Interlock value for
Action 1 is not set so, therefore, is True by default (enabling) but for Action 2 it is defined
as - (c) -. The interlock can be modified in the Interlock rung at the top of the Step view.
In this example, it is simply set to True, however, the interlock variable can be written

as True to enable actions with the required logic for the application being developed.

Note

If no logic is provided to drive Interlock to True, then Interlock is assigned
True by default due to the permanent connection to the power rail on the left.
The Interlock coil cannot be deleted.

The Event column can be set to a variety of different events that trigger the execution

of the action. Action I has no Event assigned, so only Qualifier is used to trigger the
execution of the action. Action 2, however, has the S1 event assigned. S1 is the ID for
Incoming Step and calls for the action to be executed when the step is entered for the first
time. This means it only executes once during the event.

The Qualifier column contains additional conditions for the action. Action 1 has the ID
of N, which keeps the action executing every cycle of the step until the step is no longer
active. Action 2 has the ID of R, which is Reset, and sets the assigned variable in the
Action column to 0 when executed.

The Action column contains the logic to be executed. The language that the action is
written in appears to be SCL, however, there are some subtle differences, such as the
termination character, ;, is not required.

Note
Right-clicking the Action table allows for two additional options to be checked
that are not checked by default.

The Show event descriptions option displays the description of the ID for
events, making it easier to identify how an event is configured.

Allow multi-line mode allows for the Return key to drop the action code

down a line. It also enables comments in the Action column (by using // as
in SCL).

Languages used in TIA Portal 159

Transitions

Transitions are simply a single LAD network that results in a transition gate either being
True or False.

* T14: Trans14

I T4
| ! ' Trans14

Figure 5.48 - Transition Ladder network

If the network ends with a logical 1 (True) then the transition gate allows the sequence to
advance to the next step. If it is a logical 0 (False), then the step does not advance.

Note

Variables cannot be written to in transition networks. Calls to functions cannot
be made in transition networks either.

Supervision coils

These are used to raise alarms and indicate an issue in the sequence. In the interface of the
GRAPH block, the supervision coils can be acknowledged and reset to either continue the
sequence or reset it to the initial step.

160 Working with Languages in TIA Portal

Control scenario walk-through

GRAPH is by far the easiest language to read at a high level and see exactly what point the
control scenario is at and what steps are executing.

[.— T4

l— T12

T3
Start B Operator
Buttan Pr...
Reset
s2 = s9 = Operatar...
Open Inlet Operator 5top T P I
Valve Button Operator
Buttan R...
T3
He|ssmriaen — Inlet He|rneeneaes Dperatur 51
Cpen Stop
54 =5
Fill step
T
He|ssmriaen Filter
Level...
55
Calculate
Outlet Valve
T
He|ssmriaen StDp
Required
58
Stop All

Figure 5.49 — Control scenario overview in GRAPH's Sequence view

Languages used in TIA Portal 161

This view allows for quick and easy monitoring of the system, without having to read
the code directly to figure out what the current step is doing and how the next step
is activated.

It's also possible to quickly jump into on-the-fly views of Actions and Transitions to
monitor values and check logic. This can be done by clicking on the table and ladder icons
within Steps and next to Transitions.

Starting the system

To start the system, the step S1 is monitored for the required conditions set out in the
control scenario and also the operator Start button.

i
2 Uninterrupted step activation time (U): T#3M_95_642Ms
) © Step activation time (T) TH3M_95_642MS
51 - Start Conditions:
Interlock Event Qualifier Action

Start
Conditions |

R #Inlet Valve Open Request #Inlet Valve Open Request FALSE
51 N #0utlet_Valve_Position_Request := 0.0 #Cutlet_WValve Position Request 0.0
51 R #System Run #System Run FALSE
s1 R #0perator_Start_Button #0perator_Start_Button FALSE

<Add new=

Figure 5.50 - Start conditions step, with the action table expanded

This step has four actions, three of which only occur on entry into the step (due to the S1
event). The Inlet Valve Open Regquest variable is set to False while in this step
because, in later steps, it is set to a permanent True.

This step and associated actions are simply to condition the system ready for starting.

It's the transition T1 that starts the system.

T1 - Start: Start Conditions OK & Operator Starts Request e =T ctart

0.0 0.0
#lnlet Valve #0utet Valve_ # Differential_ £0perator_Start
) Closed Position Pressure) Buton =
e 1

=]
o]

Figure 5.51 - Transition logic for the start signal

In Figure 5.51, the LAD demonstrates that the system is currently waiting for Operator
Start_Button, and when this becomes True, the T1 transition gate will allow the
sequence to continue.

162 Working with Languages in TIA Portal

There is also an alternative branch that follows step S1. Transition T3 is True when
Operator Start Button is pressed and calls step $3, which resets the button so it
can be pressed again from the HMI system. T4 is a simple fall-through transition gate.

LE]
T3 - Operator But & . =T operator
Button Pr...
#0perator_Start_ uren Fr
Buton
fhemeeee 1
Uninterrupted step activation time (U} T#OMS
Step activation time (T TEOMS
53 # S$3-Reset Operator Button: .. .
Reset Interlock Ewvent Qualifier Action
Operator... R #0perator_Start_Button #0per. .. FALSE
<Add new:=
™
T4 - Operator But = — Operator
Button R...
True
= 1
v s

Figure 5.52 - Alternative branch that resets the Operator_Start_Button variable

Note that this alternative branch can only execute in the T1 transition gate that did not

allow the sequence to advance. The arrow at the end of the sequence is a Jump command
back to step S1.

Opening the inlet valve

Opening the inlet valve is a straightforward Set command on an S1 event (on entry
to the step).

Uninterrupted step activation time (U}: TR 1MS
Step activation time (T): TEIMS
sz #' §2-OpenlInlet Valve: ..
Open Inlet Interlock Event Qualifier Action
Valve 51 5 #Inlet_Valve Open Bequest #Inle... TRUE
51 5 #System Fun #5yst. .. TRUE
51 R #0perator_Start_Button #0per... FALSE
<Add news=

Figure 5.53 - Step S2 - opening the inlet valve

Note that some additional actions are also required, resetting the Operator Start
Button variable back to False and setting the System Run variable to True.

Languages used in TIA Portal 163

Note that the complete execution time of step S2 was 1 ms. This is because of the
configuration of the transition below the step.

T2
T2 - Inlet Open: ... X o T Inlet
#lnlet Valve_ Open
Open

Figure 5.54 - Inlet open transition T2

Assoon as the Inlet Valve Open signal is received, the sequence continues.

The filling operation

The filling of the system is much simpler in GRAPH. There is no hold on contact required
as in other languages.

T2
L Inlet . L

| open Unm:erryp:e_-d step activation time () Tlfzr\-i_-‘lFS 879N

Step activation time (T): T&2M_475_B79NMS

54 =5 S4-Fill Step:

Fill Step Interlock Event Qualifier Action
<Add news=
: L]
T5 - Filter Level | 3w = = Filter
Level...
00
&Filter_Level
1 1

Figure 5.55 - Fill step S4

The fill step (S4) does not contain any actions, which is identified by the small gray band
on the table icon on the step. There are no actions because the system does not actually
need to do anything other than wait for the Filter_ Level variable to be above 2.0.

The transition T5 waits for Filter Level to be greater than 2.0 and then allows the
sequence to continue.

164 Working with Languages in TIA Portal

Note

In GRAPH, it would be very easy to add a timeout here by using the CMP >
T instruction from the Comparator operations folder in the Instructions
panel. This would compare the execution time of the current step

against a value. This could be used to continue the sequence or raise

a supervision issue.

Calculating the outlet valve position

GRAPH shows a weakness when calculations are required. Like LAD and FBD,
attempting to do calculations in GRAPH is cumbersome.

(o

ilter
Level...

Uninterrupted step activation time (U}: T#105_35305

Step activation time (T): T#105_353M5
o E §5 - Calculate Outlet Valve: ..

Calculate Interlock Event Qualifier Action

e N #Valve_Range := 0.0 - 0.0
M #Filter Range : .0 - 0.0
N #Current Range := $Filter Level - 0.0 #Filt... 2.1
N #Calcl := #Valve Range / #Filter Range
M #Calcl := #Calcl * #Current_Range
N #0utlet_Valve_Position_Regquest := #Calcl + 0.0 #0utl... 33.6

<Add new

Figure 5.56 — Calculating the outlet valve position in GRAPH

Figure 5.56 demonstrates how the outlet valve position is calculated in GRAPH. A series
of actions are called, with the N qualifier (when Step is active), to calculate the position
in stages.

Note

Function blocks and functions can be dragged into the Action column. With
calculation requirements like this, it's far easier to create a function in SCL and
perform the calculation in the function. The function can then be called on

a single action to complete the calculation easily.

Managing stop conditions

The system will continue to run step S5 until one of the conditions set out in the control
scenario is True.

Languages used in TIA Portal 165

T
T6 - Stop Require & m =T 55

Required

TEEM_T5_209M5
Total step
activation time
£”Calculate Qutlet
Valwe T
[
time £

TE20m

0.0
EDifferential_
Pressure

I I
R S

1 Real 1

336
#O0utlet Valve_
Position

21
#Filter_Lewvel

o —————] ——] -

Figure 5.57 - Stop conditions

Note that step S5 - Calculate Outlet Valve - isdirectly referenced as instance
data and the T variable is compared to T#20m. GRAPH does an excellent job of allowing
all steps to report their activation time without the programmer having to set anything
up, making these sorts of conditions very easy to configure or add in at a later date.

166 Working with Languages in TIA Portal

Once transition T6 is True, the final step, S8, is called.

|
“Stop . S . -
RequirEdUmnterr_upte_d step activation time (U} T#OMS
i Step activation time (T): T#OMS
58 = S8 - Stop All: ..
Stop All Interlock Event Qualifier Action
R #Inlet_Valve_Open_Request #Inle... TRUE
R #5ystem Run #3yst... TRUE
N #0utlet_Valve Position Request := 0.0 #0utl. .. 33.6
Add news=
T2
Pigfeeeeenens Stopped

Figure 5.58 - Stop step

This step conditions the variables so that the system stops correctly and is ready for the

next start event.

The final transition gate, T12, contains no logic, noted by the small gray band on the icon
to the left of the transition gate. This means that step S8 will simply execute once and fall

through the gate.

After T12, a jump is executed back to step S1, completing the sequence.

Parallel stop step

Between steps S1 and S2, there is a simultaneous branch that calls for step S9 to become

as active as the rest of the sequence.

Uninterrupted step activation time (U}: T#22M_155_223MS
Step activation time (T): T#22M_155_223M5

" S9 - Operator Stop Button: . -
Interlock Event Qualifier Action
S0 R #5ystem Run #5yst... TRUE
<Add new=

T3
I~ Operator
Stop

T13 - Operator Stop: | -

T#22M 155_223...
Total step
activation time
& Operator Stop
Bumon™T
|
| Time

#0perator_Start_
Butmon
1y |
1T

Figure 5.59 - Additional stop step

Languages used in TIA Portal 167

This step is configured so that if Operator Start Button is pressed again, 500 ms
after the step becomes active, then a Sequence End command is given and the whole
sequence immediately stops (represented by the circle after T13).

When a sequence is stopped in this way, inputs to the call of the GRAPH function block
must be used to re-initialize the sequence.

%DB6
"GRAPH Solution_
i
TFES
True "GRAPH Solution®
| | EN ENO—
TRUE TRUE
SM100.1 :H.ﬂﬂﬂ.ﬂ .
“Inlet Valve_ |inlet Valve_ System_Run —">ysEm_Run
Open” — Open THOMS
1001 Running_Time = & .m:
“Inlet_Valve_ TRUE
Open Inlet Valve_ HM100.1
— e Closed Inlet Valve_| “Inlet Valve_
Open_Request—Open’
0.0
SMD 200 336
“Differential_ | Differential_ Outlet Valve *MD204
Pressure” — Pressure Position_| ~Outlet Valve_
Request = Position”
336
%MD204 o
“Outet Valve_ |Qutet Valve S_NOI—*
Position” — Position TRUE
—ifalse
- 5_MORE
MDD 208 TRUE
“Filter_Level” —Filter_Level S_ACTVE[—false
FALSE
falie =< OFF_5Q
%WM3I00.0
"System_Run®
| N e INIT_SQ
SM3I00.2
FALSE
Falling Edge false =<
System Run ACK_EF
FE_System_Run EALSE
TRUE *WM1000 |FalSE
"Operator_Start_ Operator_Start_
Button® —- Button

Figure 5.60 - GRAPH solution function block call in main (OB1)

168 Working with Languages in TIA Portal

Figure 5.60 shows that the INIT SQ (initialize sequence) input is pulsed to True when
the System Run variable becomes False. Because the System_ Run variable becomes
False when the system is stopped, this re-initializes the sequence back to step S1
whenever transition gate T13 stops the system.

Control summary

GRAPH is a good choice for the types of controls where sequences help manage the
control, and the graphical overview allows the maintenance and observation of the logic
to be simple.

The downside to GRAPH is that it can become complicated with supervisions and
interlocks, but TIA Portal gives enough flexibility to allow the programmer to make these
as simple or as complex as the application requires.

Overall, GRAPH should be used where a sequence is required and avoided for
event-driven or reactive logic where steps are not executed in a linear order most
of the time.

Cause and effect matrix

CEM is the newest of the languages available in TIA Portal. Its design is specifically
targeted at making the management of interlocks and system signals easier to manage
via a matrix-style grid.

CEM is not new and has been around for many years. It is a great way to quickly and
easily identify how a signal condition goes on to affect different equipment in a process
or factory.

Overview

CEM may not make sense to a programmer who has never seen a cause-and-effect matrix
before, however, it's an extremely simple concept. On the left-hand side are rows of
Causes and across the top are columns of Effects. Where Causes and Effects intersect,

an action can be placed that links the cause to the effect.

Languages used in TIA Portal 169

Effects
Effect
A e WOUtpUE T

)
hil
<A newnes

Causes

Causel .
1 = <Add new=
L

#5ignal_1 =—

Figure 5.61 - CEM example

Figure 5.61 shows an example of a cause and effect and the intersection point. At this
point, actions can be created, similar to Qualifiers in GRAPH.

Select action: | M Setas long as the 47'

Setas long as the cause is active (non-permanentlhy)
Reset permanently to 0
Set permanently to 1

Select action group:

(e =]

Configure action group:®

v
Figure 5.62 — Action selection menu

Only three options are available in CEM as actions. The action selected changes the logical
value passed to the effect.

170 Working with Languages in TIA Portal

Instructions in CEM

The CEM instruction set is simplified and grouped into areas in which the instructions

can be used.

w | Basic instructions

Mame

~ [] General
Empty box
=§

—.Gl

Description

Empty box [F8]
Add inputioutput [Ctri+Shift+3]
Invert pin [Ctrl+5 hift+4]

Version

~ [] Cause instructions
Bit logic operations

=1 =] Assignment [Shifi+F7]
=l & AND logic operation [F9]
=T =1 OR logic operation [F10]
=1« EXCLUSIVE OR logic operation
Comparator operations
=l CP = Equal
1=l CMP = Mot equal
£l CMP == Greater or equal
=l CMP <= Less or equal
=l CMP = Greater than
=l CP = Less than
Timer operations
1=l OnDelay Delay activation
=l ofiDelay Delay deactivation
1=l Pulze Activate for a limited time
= [7] Effect instructions
=1 =] Assignment [Shift+F7]
=1 5] Set output
=1 R Reset output
= [7] Intersection actions
H N Setas long as the cause is active
s Set permanently to 1
QR Set permanentlyto O

Figure 5.63 - CEM instruction set

Causes and effects have different instructions available. Causes can compare variables
or call timers, as well as performing basic Boolean logic. Effects simply write outputs to
variables and are capable of using Set or Reset assignments.

Languages used in TIA Portal 171

Actions
An action is indicated by a circle at the intersection of a cause and effect. Inside the circle,
the ID of the type of action is displayed.

1
w
=5
=
n =
T =
o
= |
.
(1]
— 3)
Bl
= =
L Al =
s =
[T
Causes =
Causel
1 | O
TRUE —
#Signal_1 —
<Add new=

Figure 5.64 - CEM with active action

When the Cause is True, the action N passes a logical 1 (True) to the Effect. If the
Cause is False, the Effect will receive a logical 0 (False).

The Set and Reset actions perform in the same manner as other languages,
permanently passing a logical 1 or 0 to the Effect. A Set and Reset action should
always be used together on the same intersection column.

1

E "
2| b
o
Couses ||
Causel @
Cornrnent
CauzeZ @
Caomment

Figure 5.65 - Set and reset actions in use (Causes and Effects minimized view)

172 Working with Languages in TIA Portal

When a Set action has previously been active and its associated cause is now False,
a light blue background is displayed inside the Set action. This indicates that Set is
still outputting a True value and the Effect is indicated with a green indication in
monitoring mode.

When a Set and Reset are both available as actions to an Effect, the Set is dominant. This
means if both causes are True for the Set and Reset, the Effect will receive a True signal,
despite the Reset action being active.

Note

In the top left of the CEM window, two buttons are provided for quickly
minimizing the cause and effect areas. This is useful if the CEM matrix is large,
however, understanding what the causes and effects represent can be

more difficult.

Groups

Actions can be grouped so that all actions in the group need to be in a True state before
the effect receives a True value.

Effects
Effectl

Cornrmeant

Causes

Causzel

Cause? I

Figure 5.66 — Example of a CEM action group

el

Figure 5.67 shows an example of a two-group configuration. Both Causel and Cause2
belong to the same group. Because only Causel is in a True state, the effect does not
receive a True value.

Languages used in TIA Portal 173

Note

R actions (Resets) cannot be grouped with N or S actions as this would be
contradictory. R actions can, however, be grouped together, meaning all would
need to be active to result in a False value being passed to the effect.

Intersection columns

Effects can have additional intersection columns added by right-clicking on the effect and
choosing Add intersection column.

—ry

E o
g i |z
b T £
= NI
Causel ®
Comment
Causel @
Comment

Cauzed .
Comment

Figure 5.67 — Effect with multiple intersection columns

When another intersection column is added, this enhances the effect's action set, allowing
more than one action result to interact with the effect. Figure 5.68 demonstrates this as
the group 2N in intersection column 1 results in a False value, however, intersection
column 2 results in True. The end result for the effect is that True is passed.

Note

If an R action is passed in a separate intersection column and another
intersection column is passing True to the effect, it does not result in the effect
being False. The R action only affects the Set action in the same column.

174 Working with Languages in TIA Portal

Causes

Causes can also contain additional comparisons and instructions. These include basic
Boolean logic and numerical comparisons. Time delays can also be added to causes,
delaying the output of the cause for a defined period.

"
E -
g N
b7 i
Causes I
Causel
o=
I 1
1 FALSE : }-- @
E5ignal_1 == 1
| P 1
Cormrnent
Cause?
2 FALSE — ®
¥Signal_2 —o
Comrnent
TEA5_487MS Causze3
SRS]
P!
TRUE :]
#5Signal_3 L
ey [NO)
I’ Z.DS 10nDelay |
7205 —i \ r
Cormrnent
L3
Caused
=1
TRUE
4 #5ignal_3 — — .
FALSE
£Signal_1 == 1k
Comrnent

Figure 5.68 — Example of causes with delays and OR instructions

Languages used in TIA Portal 175

Figure 5.68 shows an example of an OnDelay timer being used on Cause3 and an OR
block being used on Cause4. It also shows that intersection column 1 can cause True to
be passed to the effect if either group 2N becomes True or Cause3 becomes True.

Control scenario walk-through

CEM is not a language that is designed for this type of control scenario. This does not
mean it is not possible, but it is not the easiest to read, write, or maintain. The main
difference for this control scenario is that CEM is not capable of performing mathematical
calculations. This has to be done outside of the function block and passed back in on the
next scan.

Network 3: CEM Sclutien

e
“CEM Solution_
oe"
ey =0utet Vale CALCULATE
True “CEM Solution”™ Contrgl_Regquess Real ii
|} N NG| |} EN - - E}
FALSE TRUE
w00 3000 OUT:= (N2 -INSRINT -IN2..,
"Operatar_Start_, |Operator_ System_Run f—i"Syztem_Run® - N1 3356
Bution® == Start_Bution TRUE —_— P2 "CEM_Support,
TRUE BA100.1 — DE*.Calculated_
W00 Inlet_Vahee_| “inlet_vVale_ 10 e 1P OUT e Crutlet_Fatitsan
“Imlet Vakee_ |inbet_Valve_ Open_Request |— Open” 1
Open’ —{Open TRUE YWADZ0A
BA0D.1 Outhet Valve_| #0utlet_ Vahe_ "Filter_Lewel” m IMS
“Inlet_ Waboe_ Request — Contrel_Request 0.0 e M 23
Open® Inber_iahe_
| Phm i m e oz Cwow |
o EN — EMN 4
WADZ00 336 336
"Differential | Differental_ “CEM_Suppart_ WAD204
PEEELUNE" e PTEEE LN DB Caleulpted_ "Qutlet_Valve_
336 Qe PO rion e IM 35 LT e Position”
WADZ04
"Outlet Vakee_ | Outlet_Vahe_ T
Fositan” = Position J mOT |-------:EN — (O -
21 X - 7] 1 336
WADZOE i ¥ EMD204
“Filter_Level” = Filter_Level | i H “Outler Vabse
lom e i QUTL P Pezitian”
WAI00.0
"Operator_Start
Butten®
1R} 4

Figure 5.69 — Calculation of outlet valve position outside of the CEM block

Figure 5.69 is an example of how mixing two languages (CEM and LAD) can meet
requirements where one language is not capable of doing so.

176 Working with Languages in TIA Portal

Starting the system

The starting of the system is managed by Effect 1, which consists of two intersection
columns. The first column manages the starting of the system from a stopped position
and the second column maintains a hold on contact.

J— -
Causel i Seveell u
=77
= » 5 |
t = 2 " FALSE == @
I
p FALSE | @ 2 g £ #5ystem_Run =1]
s0perator_ = b g L !
Start_Bution - ES Systern Running
Operator Start Button Fressed =\ I
- etz
Causel =
1 @ o~ 12 FALSE -
Operator. #Fil_Complete -4 !
, Ceuse2 Fill Complete
Inlet Valv.. Couse13
Cause3
Cause? ER— ® 13 FALSE @
= Inlet Valv.. #S5ystem_Stop =¢
TRUE | Systern NOT Requested Ta Sto|
2 inier vane @ 4 Coust ® ! ! g
Closed —| Outlet Val .
Inlet Valve Closed
. (Couses ®
Cause4 | Differenti..
= - .
Real | :
00 ;
4 iOutler_Valve_ — ®
Position —{IN1 1 Cousel @ Effect 1
05 System R.
05 —{IN2 1
Cause12
Qutlet Valve Closed 12
Fill Compl..

Causes
Causel3
: . ©
Real System N..
05
#Differential_ — @
Pressure ——i|N1

08
0.8 —{INZ

5
-
H
g
i
&
*
]
H

w

Systern Run

Differential Pressure Below St.

Figure 5.70 - Starting the system in CEM

Groups are used to start and maintain the hold on contact. The first column checks the
required start conditions and Operator Start Button. Once the System Run
variable has been set to True, Causell and Causel3 maintain System Run as True
until a stop condition is raised.

Languages used in TIA Portal

177

Opening the inlet valve

Opening the inlet valve is a simple N action (True when the cause is True).

Open Inlet Valve

Causeli

1
1
1 FALSE :
H#5ystem_Run --{

System Running

Figure 5.71 - Opening the inlet valve when the system is running

Effect 2 is only called when the system is running. This is easily achieved with a simple N

action (True when Cause is True).

178 Working with Languages in TIA Portal

The filling operation

The filling operation is split across the different causes that are all part of the same group.

3
w o=
I
= N
w =
=
e
1
T e
of, HiE
:E 1 : E—
“ N s
L__.I.__- =
1 [
Cause2
TRUE [
Einler_Valve_
Open —
Inlet Valve Open
Cause?
Cm—————_
1 =]
: Real 4
1
0z I 1
7 - ==
EFilter_Level —:IN‘I 1 R
20 | i
2.0 —IINZ]
L -
Filter Level abowve Fill Point
Causell y
" TRUE — ®
#5ystemn_Run —
Systern Running

Figure 5.72 - Filling the system

Languages used in TIA Portal 179

All three causes are part of the 3N group, meaning all three must be active in order to set
the Fi1ll Complete variable to True. Figure 5.73 shows the system in a filling state.
When Cause7 becomes True, all three actions in the group become True and Fi11l
Complete is set to True.

Calculating the outlet valve position

Calculations cannot be made in CEM, so a different approach is required. In the CEM
logic, the system sets an output that calls for the calculation to take place.

4
£ |z
w = g
23] %
=5 o
3F =
=& ©
=
=
[
= | ¢
ti i
o |0 £
= =
s 2
=
=
L]
Causel2
12 TRUE @
#Fill_Complee
Fill Cemnplete
Causel3

13 FALSE @
Foystem_Stop —

Systern MOT Requested to Stop

Figure 5.73 — Call for outlet valve control request

This calculation then takes place outside of the CEM function block. In the example
provided, this takes place in the Main (OBI) organization block.

180 Working with Languages in TIA Portal

Managing stop conditions

Managing stop conditions with CEM is simple. Each of the stop requirements is listed as
a cause, and some of them are grouped where required. For the operator stop button, the
signal is grouped with the System Run signal in a secondary interception column.

5
A
we
=z
iy
23
A
=
1
1
9 s ES
2 @
£ £
il
_____ i____ &
Causel
’ FALSE 1 _
#0perator_
Start_Button -
Operator Start Button Fressed
Causeb
B
Real
05
6 #Differential_ - ®
Pressure —dIN1
15
15 IN2Z
Differential Pressure High
4
CauseB
===
Resl
8 21 L
£Filter_Level —dIN1
15
1.5 IN2
Filter Level below Stop Point
Caused i
>
Resl i
336
9 fOutlet_Valve_ - ®
Position —dIN1
750
750 IN2
Outlet Valve sbove Stop Point
TEIBM 475 .. Causel0
TRUE
10 System_Run L ®
A lonpelay
System Stop on Time
Causel1 N
n TRUE @
£System_Run
System Running
Causel2
12 TRUE @
EFill_Complete
Fill Complete

Figure 5.74 - System stop conditions

Summary 181

Because the System_Stop signal is used in Causel3 as a hold on contact, the system
no longer runs due to the System_ Run signal being set to False.

Control summary

While CEM is the least function-rich language, it is still capable of being used for this type
of control with support from other languages. Control with CEM is not recommended
as CEM is weighted toward creating interlock matrixes quickly and easily.

With CEM's highly visual interface, finding the reason why an effect is active or inactive
is extremely simple and easy to do. With all inputs on the right and all outputs at the top,
fault finding is simplified to finding the offending action, which can easily be done

by simply tracing the action lines to the appropriate action.

Summary

This chapter has explored a wide variety of different programming languages and
techniques. Programmers who are capable of leveraging all of the available languages
will find that they are more flexible with the approaches that they have at their disposal.

It is important to understand the differences between the languages and what the
strengths and weaknesses of each language are. Writing a project in a language that
doesn't best suit the control requirements can significantly increase the time required
to develop, test, and maintain the project.

While different languages exist, in most cases, it is still possible to achieve what is required
in any language (CEM excluded).

This chapter, along with the provided project, should have helped you gain insight into
each of the available languages, how to write basic logic, what each language looks like
when monitored, and what the strengths of each language are.

The next chapter introduces standard control objects into projects, tying structured data,
standard function blocks, and library management together. Standard control objects help
shift the focus from individual data and logic into object-based data and management,
which can significantly reduce the amount of time required to develop when utilized to
its fullest.

6

Creating Standard
Control Objects

This chapter explores using function blocks and functions to create standardized control
objects.

This approach takes the structured aspect of programmable logic controller (PLC)
programming to an additional level, where data and control are brought together to act
as a standard method. By utilizing this approach, confidence in the reusability of code is
greatly increased, while management and maintenance of code are greatly reduced.

In this chapter, the following topics will be covered:

Planning standard interfaces
Creating control data
Creating HMI data
Structuring logic

Considerations that have an impact on usability

Note

This chapter builds on information contained in Chapter 3, Structures and
User-Defined Types.

184 Creating Standard Control Objects

Planning standard interfaces

An interface to a function block or function is the first point at which a programmer can
start to control how an object is interacted with. The interface serves as a ruleset of what is
allowed to be passed in and out of this object.

You can see an example of an interface in the following screenshot:

WFC17
“Scaling_Manager”
EN ENC
Raw_Input OOR_Error =777
Raw_Min
Raw_Max
Saled_Min
Saled_Max
Te = Limit_Break

Error_Mode
Compensation_
Fador

Offset
Soft Sim_
100 - Seleded

1.1 = Qutput_Hold
Soft S5im_Value
S@led_Output

Figure 6.1 - Basic interface example

By offering an interface, programmers (and other people who may have to maintain or
modify the project) have a better chance at reducing mistakes when using the object.

Defining variables in an interface

An interface is made up of three different key areas, as outlined here:

o Inputs
o Outputs

e InOut variables

Each behaves differently and performs different functions.

Planning standard interfaces 185

Inputs

Inputs are variables that are read-only. Once an input interface variable is passed into an
object, it is not recommended to modify it. TIA Portal does allow input variables to be
written to; however, changes made to the input will only exist inside the object, and the
outside variable data will not change.

You can see an example of an input interface in the following screenshot:

< * Input

<1 = Raw_lnput Int

4] = Raw_Min Int

4] = Raw_Max Int

< = Scaled_Min Real

<4 = Scaled_Max Real

<1 = Limit_Break Bool Allows the scaled value to breach min / max limits
<] = Error_Mode Int 0 =Last Known, 1 = Ferce High, 2 = Force Low
4] = Compensation_Factor Real

4] = Offset Real

< = Soft_Sim_Selected Bool

<4 = Output_Hold Bool

Figure 6.2 — Example of an input interface

Inputs should consist of variables that fit one of the following criteria:

o Variables that bring singular required data through the interface and into the
block object

« Variables that allow configuration of the block object including hardcoded options

All inputs in Figure 6.2 fit these two criteria; the variables defined in the input interface
are either singular inputs or inputs that require hardcoded elements for configuration
(Error Mode, for example).

Outputs

Outputs are opposite to inputs; they are variables that have permission to be written to the
outside variable assigned on the interface of the function or function block.

You can see an example of an output interface in the following screenshot:

- * Output
4] = OOR_Error Bool

Figure 6.3 - Example of an output interface

186 Creating Standard Control Objects

Outputs should consist of variables that have been updated by the block object. However,
this can depend on the size of the variable. As with inputs, outputs should ideally be kept
to singular variables. This means that structs and user-defined types (UDTs) should be
kept to a minimum when being passed as inputs or outputs.

Note

Both input and output variables copy the information from outside the object
to inside the instance data (or temporary data for a function). As projects grow
larger, this can have an impact on memory usage.

InOut variables

InOut variables are slightly different from inputs and outputs, both in functionality and
how data is managed. An InOut variable creates a pointer to a location of memory and
passes the pointer into the object. This pointer is then dereferenced by TIA Portal inside
of the function block/function to obtain the actual data represented by the variable. This
has a significant memory improvement for large data types as pointers are 6 bytes in
length, even if the actual data being pointed to is 200 bytes in length.

Note

If the data being passed via InOut is less than 6 bytes, the actual data length
required is the same length as the original data.

InOut interface variables also act upon the data immediately, meaning that when
interface data that is InOut is written to, the data that the pointer is pointing to is updated
immediately. The data is updated before the function block/function finishes execution.
Data is not copied at the interface.

You can see an example of an InOut interface in the following screenshot:

15 <@ * InOut
16] = Soft_Sim_Value Real
17 <1 = Scaled_Output Real

Figure 6.4 - Example of an InOut interface

Figure 6.4 shows two variables being passed via InOut. These variables are both read and
written in the block object. Because of this, it makes no sense to copy them in and then
write them out. It's easier (and better for memory) to have a single interface with both
read and write access.

Planning standard interfaces 187

Large variables in the interface

If a variable is large, passing it into the interface as input or writing it out as output can
consume additional memory and other resources. If many instances of function blocks
or functions are in use that behave this way, this can cause performance issues as the
project grows.

An example can be observed by creating a large interface with a function block, as follows:

Mame Data type Dffset
<l ~ Input

<0 = » Data_ln Array[0..3999] of LReal 0.0
<1 ™ Output
<
<

£ "R L%]

=} Data_Qut | Array[0.3999] of LReal 32000.0
* |nOut

o n

Figure 6.5 - Function block with large input and output variables

The example given in Figure 6.5 shows that a function block called Copy Example

has a very large input and output interface. An Array [0..3999] of LReal data type
would be 32000 bytes. This means that this particular function is copying 64000 bytes of
information on every scan.

The logic that this function block is performing is simply to iterate in a loop over every
element in the Data_In array, add 5 to the value, and output on the Data_Out array, as
illustrated in the following screenshot:

1 CJFOR #i := 0 TO 399% BY 1 DO
2 #Data[#i] := #Data[#i] + 5;
3 | END_FOR;

Figure 6.6 — Logic being performed

This isn't particularly taxing on the central processing unit (CPU); however, the memory
management of this function block is poor.

188 Creating Standard Control Objects

Comparing against a function block that has a better-constructed interface highlights the
performance issue, as illustrated in the following screenshot:

Pointer_Example

Marme

e

* Input

ra

L

AEA 8

* [nQOut

[=A T |

=

¥ Qutput

8 p Data

Data type

m

m

Dffset

Array]0.3999] of L. 0.0

= Example Bool

6.0

Figure 6.7 — Function block with large InOut variable

The immediate difference is the amount of memory the interface requires. Copy Example
is using 64000 bytes and Pointer Example is using only 6 bytes (excluding the
Example Boolean that is used to display the offset for the Data variable).

This is further reflected in the Program Info object found in Project tree. This object
allows programmers to view the resource requirements of the PLC and which program
blocks/objects are utilizing the resources, as illustrated in the following screenshot:

oW K

oo =l v un

10
11
12
13
14

15

Resources of PLC_1

Objects
Total:
Used:
Details
¥ 0B
4 Main [OB1]
FC
> FB

3 Copy_Example [FB1]

3 Pointer_Example [FB2]
> DB

@ Copy Example_DEB [DB1]

@ Datablock [DB2]

@ Pointer_Example_DB [DB...

Load memaory
6%

2 MB
118350 bytes

6967 bytes
6967 bytes
10322 bytes
5306 bytes
5016 bytes
99816 bytes
65350 bytes
33175 bytes
1282 bytes

Code work-rnernory
0%

512000 bytes
902 bytes

509 bytes
509 bytes
393 bytes
205 bytes
188 bytes

Figure 6.8 - Program Info displaying resource usage

Data work-mernony
3%

3145728 bytes
96212 bytes

96212 bytes
64068 bytes
32070 bytes

74 bytes

Planning standard interfaces 189

This view is split into program blocks. Figure 6.8 shows that the instance data for
Copy Example (Copy Example DB) uses 65359 bytes of data on the memory
card, and the instance requires 64 068 bytes of work-memory to process the instance
when running.

Compared to the instance data for Pointer Example (Pointer Example DB),
there is a significant difference. Pointer Example DB occupies 1282 bytes of data on
the memory card, and a tiny 74 bytes of data work-memory (memory required to store
information) to process.

This means that the amount of executable work-memory required when using an InOut
interface for this example is reduced by 99.88% of that required by using input and output
interfaces.

Note

The actual code work-memory (memory required to perform logical
functions) is a much less significant improvement of only 8.29%. This is
because the actual logical operation is still the same but only one variable is
involved.

Planning standard control interfaces

Creating standard control objects (function blocks or functions that are standardized and
stored in a library) will always require more thought than a project bespoke object. The
interface is the key to making a standard control object easy to use.

Have a look at the following diagram:

Function Block
External_System_Controf

Control Input Qutput Cutput used to update a control requirement
System_Enabie System_Required Always displayed
Inputs that provide data to control logic Control Input Qutput
Always displayed Running_Signal System_Running Passive Qutput, not connected
Control Input Output to anything but useful to have
Fault_Signal System_Faulf for monitoring purposes

| Hidden

Optional Control Input
Warning_Signal

the behaviour of the object
Displayed only when a
variable has been assigned

Configuration Options are { Configuration Option

Optional input that can change {

hard-coded Inputs to set options Not_Enabled_Fault_On
Hidden

L J L J
T T

Inputs Outputs

Figure 6.9 - Example layout of a standard control interface

190 Creating Standard Control Objects

Figure 6.9 shows an example of a standard control object with a well-defined interface.
Signal types are categorized by functions on the interface and grouped together. Options
are set on each interface element so that less important interface elements are hidden or
conditionally hidden.

Note

TIA Portal refers to interface variables as parameters, which is a common term
for data passed in through an interface.

The function block represented in Figure 6.9 has the following types of interface
parameters:

+ Control Input

» These are parameters that are directly affecting the control of the function block.

= These parameters will always be required, therefore are set to be always displayed.
« Optional Control Input

= These are parameters that may be omitted if not required.
» These parameters are hidden unless a variable is connected, then they are
displayed.
« Configuration Option

» These are parameters that are hardcoded with a value such as True or 1.

= They change the behavior of the function block by enabling or toggling internal
functionality.

» These parameters are always hidden to keep the function block interface clean.

In the function or function block interface, the Properties window can be used to set the
visibility of the parameter selected, as illustrated in the following screenshot:

Planning standard interfaces

191

6 |4O = Mot_Enabled_Fault_On Bool

false Mon-ret... B =) ~ 7]

|_d, Properties ||"1.'. Info i ||ﬂ Diagnostics |

JGeneraI || Texts || Supervisions |
General I Attrib
Attributes ttributes
Retain | Mon-retain |v|
[] setpaint
Usage

[¥) Accessible fram HMIOPC UANIED API
[W) wiritable from HMIIOPC UAWED API
[+ visible in HMI engineering

Visiblity in block calls in LAD/FBD

O Show
@ Hide

(") Hide ifno parameter is assigned

T =l T <

Figure 6.10 - Setting visibility in block calls for interface variables

By setting Visibility in block calls in LAD/FBD, the parameters can be hidden under
certain conditions.

If a function/function block contains hidden interface parameters, a small drop-down

arrow is displayed at the bottom of the block, as illustrated in the following screenshot:

B3
“Standard Interface Example®
— EN END =
.= System_Enab SysEm_
L .m_ m.a = Required —i ...
... == Running_Signal

- == Fault Signal -

Figure 6.11 - Function block with hidden interface parameters (collapsed view)

192 Creating Standard Control Objects

When the arrow has been pressed, the block's interface will expand, as illustrated here:

B3
“standard Interface Example®
— EN ENG —
.= System_Enabl SysEm_
_ Ryr .m_ :a EI Required — ...
unning_Signa |,
.= Fault_Signal

Figure 6.12 — Function block with an expanded interface, showing previously hidden parameters

Parameters that are set to Hide or Hide if no parameter is assigned will be displayed
as gray. If parameters are assigned, the view may change depending on the parameter's
properties, as illustrated in the following screenshot:

B3
“Standard Interface Example®
EM ENC
ESystem_Enable — gyug System_
. e Syfm.m_En.?hle Required — #5ystem_Required
ZRunning_Signal — Running_Signal -
#Fault_Signal — Fault Signal
= —_..

#Warning_5ignal — Warning_Signal

#Mot_Enabled_
Fault_On —

Figure 6.13 - Function block with populated interface

Figure 6.13 demonstrates that the Warning Signal parameter is no longer a hidden
parameter (no longer gray). This is because its properties are set to Hide if no parameter
is assigned, and it now has a parameter (variable) assigned to it.

Notice that the Not Enabled Fault On parameter is still gray in the interface. This is
because the properties for this parameter are set to Hide, so even if a variable is connected
to this interface at this point, it will still be hidden on the collapse of the block.

Note

A parameter with the Hide or Hide if no parameter is assigned property will
still be displayed if it must be connected to a variable. For example, functions
will ignore the properties assigned until a variable is connected, at which point
the parameter will be hidden if required.

Creating control data 193

Creating control data

By creating control data, programmers create a specific set of criteria or variables that
all standard controls should follow. This is a dataset that should follow a requirement or
process, such as the following:

« All asset controlling function blocks should return one of the following status types:

Healthy status
Running status
Not available status

Inhibit status

The preceding status types can be added to a Struct data type called Control Data, as
illustrated in the following screenshot:

SFC1
“Control_Data_Example®
— EN ENO —
— Auto_Enable Required —
= Inhibit Control_Data

Figure 6.14 - Example of a Control_Data output

Figure 6.14 demonstrates a function with an output for the Control Data elements.
The output is a struct containing elements that go on to be used in a program for control
and interlocks with other equipment.

The contents of this Control Data struct are shown here:

Control_Data_Example

Mame Data type Default value Comment
< * Output
<] = Required Bool
4] = v Control_Data Struct
< L] Healthy Bool Any Fault Active
L | L] MNot_svailable Bool Purnp Not Available For Any Reason
<0 = Auto_Enable Bool Furnp Is Enabled To Run In Auto
< L Inhibited Bool Purnp Inhibited From Running In Auto
< u Running Bool
<21 = Running_In_Auto Bool

Figure 6.15 - Control data output

194 Creating Standard Control Objects

The Control Data Example asset control function block is taking in inputs,
processing the control requirements, and then populating the Control Data struct
with data that can be stored and used elsewhere in the project.

This would allow larger systems to access information about an asset directly from
Control_ Data without having to create the desired status elsewhere.

Have a look at the following screenshot:

#Auto_Enable #Inhibit #Required
| 1 { }
Auto Request To
Run
& Control_Data.

Auto_Request

i 1
L I

Figure 6.16 — Example of populating control data

Figure 6.16 is an example of populating Control Data elements with a value.
Auto_Enable is an input into the Control Data Example function and has
multiple conditions that need to be True, as illustrated in the following screenshot:

HFCT
"Control_Data_Example®
EN ENQ —
#Condition_1 #Condition_2 #Conditon_3 #Conditon_4 Required — #Required
— | | | | | | | Auto_Enable Confrel_Data — #Contrel_Data

False — Inhibit

Figure 6.17 — Control_Data_Example Auto_Enable conditions

If a programmer wanted to create interlocks for other devices that ensured that Auto_
Enable was in a True state for the Control Data Example function, this could now
be checked via the Control Data structure, as illustrated here:

Creating control data 195

Auto Request To

Run
LT #Control_Data. £Auto_Enable_
“Control_Data_Example" Auto_Enable Lamp
EN ENO | | { }
ECondition_4 Reguired — #Required
| | Auto_Enable Control_Data — & Control_Data

False =— |nhibit

Figure 6.18 - Control_Data usage example

Figure 6.18 demonstrates how Control Data is consolidating all requirements of the
Auto_Enable input into a single-point Control Data.Auto Enable signal that
can then be used elsewhere in the logic without having to recreate (or understand) the
original requirements.

Note

Consolidating signals into single signals where possible helps keep the
repetition of code to a minimum. It also means that should conditions need to
change, logic downstream of the consolidation does not need to change.

Improving control data accessibility with UDTs

Instead of using a Struct as an output from the interface, a UDT can be used as an InOut
interface instead.

The benefits of this approach are listed here:
+ Less memory consumption

» The structure does not exist inside and outside the block as separate anonymous
structures.

» The data is not copied between the interface and the variable connected to the
interface (InOut is passed by reference).

« Consolidated control data

» The control data can exist within a wider dataset. This can then be accessed by the
standard control object and updated. Because the data is referenced, the correct
data will be updated without any copying.

» This allows for large datasets to be used, without impacting performance.

196 Creating Standard Control Objects

Using the InOut interface instead of output does not change anything about writing
control data, but it does mean that control data can also be read and interacted with.

This can allow the opportunity to share control data as a whole UDT structure with other
standard control objects, streamlining the logic.

Have a look at the following screenshot:

W1 "Data”.Control_ #Aute_Enable_
“Control_Data_Example 2" Data. Auto_Enable Lamp
EN ENO | | { }
#Condition_1 #Condition_2 #Condition_3 #Condition_4 Required — #Required
— | | | | | | | Autoc_Enable
False — Inhibit
“Data”.Control_

Data — Control_Data

Figure 6.19 — Example of using InOut with a UDT

Figure 6.19 shows that the same logic can still be implemented with InOut usage. The only
difference is that the data is part of a UDT and passed as InOut instead of being copied to
the output interface.

Example

The benefits of this approach are best demonstrated with an example. A system contains
two digital output cards that control various outputs to assets and equipment. The
specification states that in the event of an emergency stop (E-Stop) or other safety-critical
signals, all outputs must be switched off and made safe.

The control data approach, shared between multiple areas of the code, allows this to
happen easily, leaving room for easy expansion in the future.

The system contains a structure that contains various signals involved in the safety control of
the system. This is a single instance of a UDT called Safety Control Data, stored ina
DB called Data. The collective data can be accessed via Data.Safety Control Data,
as illustrated in the following screenshot:

Creating control data

Metwork 2: Virite To Safery Contrel Dot

Comment
2 WA
E_Stop_Manager® Fire_System”
EN EHQ EMN ERD
TRUE TRUE
500 W50.2
*EStep1” — EStap_1 *Fire_Zomel_ |Zone_1_
TRUE Healthy” — Heaklthy
A5 TRUE
*EStep2” —|E-Step 2 1503
*Fire_Zone2_ |Zane_2_
"Data”Sefety | Sefety Controd_ Healthy" —{Heakthy
Cantrol_Dats —{Data TRUE
TWA50 .4
"Fire_Zoned_ |Zane_3_
Healthy™ — Healthy
TRUE
S1S05 '5:.51;#!11_‘
*Fire_Frescune_ |Pressune_
Healthy” —{Heakthy
‘Do’ Safery | Salery Contral_
Contrel_Data — Data
eI
"Light_Curtain”
EHN ERD
TRUE
506
LE_L1_Healthy” —L1_Healthy
TRUE
WATS07
"LE_L3_Healthy' —L2 Healthy
TRUE
WBATS10
LC_LE_Healthy® — L3 Healthy
TRUE
%1511
LC_LS_Healthy' — L4 Healthy
“Oace” Safery | Sakery Contral_
Control_Data — Data

Figure 6.20 — Writing to the Safety_Control_Data structure

Figure 6.20 demonstrates how three separate areas of safety control all use the same
control data structure, passed as an InOut variable.

198 Creating Standard Control Objects

This data is then evaluated, and a common Safety System Active variable is
updated. This consolidates all safety requirements to a single signal for the rest of the
system to use, as illustrated in the following screenshot:

Metwork 3:
Comment
"Data” Safety_
“Data” Safety_ Control_Data.
Control_Data. Safety System_
Estop_1_Adivated Adive
B R e { po-—a
1
i
“Data”.Safety_ 1
Control_Data. |
Estop_2_Adivated :
| b

Contrel_Da@.Fire_

1
1

i

1
“Datz” Safety_ |
1
System_Unhealthy :
i

e
1
1
1
1
1
-

Control_Data.Light_

1
i

i
"Data”.Safety_ :
1
Barrier_Broken :
1

Figure 6.21 - Consolidation of control data to a single variable

All variables are still within the Safety Control Data structure. This means
that the common Safety System Active signal can still be accessed via the
Data.Safety Control Data variable.

Creating control data 199

The outputs are managed via a function that maps required outputs to physical output
addresses, as illustrated in the following screenshot:

Network 4:
Comment
b b
"DO_8x Card_Mapping® "DO_8x Card_Mapping®
EN ENC EN ENOQ—
TRUE TRUE TRUE TRUE
#V1_Open —|x0 %Q0.0 #5ystem_Adive — XD %Q1.0
TRUE QOf—Output1® TRUE Q0 Oumputs
#V2I_Open — #P1_S1art —
_Op X1 e - 8 TRUE
TRUE %Q0.1 TRUE *Q1.1
#V3_Open —{x2 Q1" Output2” #P2_smrt—x2 Q1= Output10”
TRUE TRUE TRUE TRUE
#V4_Open —|x3 %Q0.2 #P1_Heater —{x3 w012
FALSE Q2" Output 3’ TRUE Q2= Ouput”
#V1_COose = #P2_Heater —
_ x e - e TRUE
FAISE %003 False == x5 %013
£V2_Close —-%5 Q3" Output 4 False =-x6 Q3" Oumput1”
False =+
FALSE FALSE X TRUE
#V3_Close --%p %0Q0.4 False —-XB %Q1.4
ERISE Q44" Output 5 Q4 —"Output 137
EV4_Cose == %7 FALSE "Data”.5afety_ |Safety Control_ FALSE
Faloe —-x@ %005 Control_Data —| Data %15
Q5 |-+ Output6” Q5 =47 Output14”
“Datz” Safet_ |Safety_Control_ FALSE EAEE
Control_Dat@ —| Dat %006 16
Q6 4" Oumput7* Q6 =+ Output 157
FALSE FALSE
%007 %17
Q7 4" Output & Q7 -4 Output 16”

Figure 6.22 — Output mapping

200 Creating Standard Control Objects

Figure 6.22 shows how the DO_8x_Card Mapping function contains the Safety
Control Data InOut interface. This is being used to turn oft all outputs in the case of a
safety-related incident, as illustrated in the following screenshot:

#5afety_Control_
Data.Safety_

System_Adive #X0 #00
K SEEEES === b= e e 4 k-
i
: £X1 £Q1
e I 4 k===
i
! #x2 £Q2
e B 4 be——
1
1
! #%3 #Q3
S S { F--m—a
1
|
i £X4 £04
be——-- { b= e ——————— 4 k===
|
H £X5 205
E— ----- i e 4 k=
1
i X6 206
1
i i et L LE L PR 4 k=
i
: #X7 207
e { b= e ——————— 4 k===

Figure 6.23 — Control data being used to switch off all outputs

The DO_8x_Card Mapping function reads the control data and checks if the
Safety System Active variable is False; if so, outputs can be evaluated as normal.
If the Safety System Active variable is True, all outputs are set to False.

The control data in this example can be passed to every function or function block that
needs to respond to a safety-related incident. Should the requirements change over the
lifetime of the application, the UDT can be updated and new requirements added with
ease. When the UDT is changed, all interfaces that use the UDT will automatically be
updated too. This means that making changes to data that is utilized frequently does not
result in many hours needed to change interfaces.

Creating HMI data 201

Note

If Safety Control Data were a struct instead of a UDT, every
interface would need to manually be updated if the struct were to be modified.
Remember that struct instances are not connected to each other.

Creating HMI data

Just as with control data, it's usually a good idea to have a general concept of how human-
machine interface (HMI) data will come together.

This is the information that is used to display statuses, control graphics, and any other
specific HMI requirements. Segregating these variables from other variables helps keep
the vast amount of data that HMI/supervisory control and data acquisition (SCADA)
systems require clean and easy to use.

Creating a UDT to house this information makes it easy to add it into datasets for assets
later on, as illustrated in the following screenshot:

UDT_Pump_HMI_Data

Marme Data type Defaultvalue Setpoint Comrment
| Mirnic Usint 0 = 0= Off, 1 = Running In Manual, 2 = Running In Auto
2 |1 Hours_Run Usint 0 = Hours Of Active Service
3 |- Mode Usint 0 = 0=0ff, 1 = Manual, 2 = Auto

Figure 6.24 — Example of HMI data for a pump asset

Each instance of a pump asset would then have its own UDT Pump HMI Data instance
that the HMI would interact with.

This approach, much the same as for control data, allows for each standard control object
in the project to have a known and designated area for HMI interaction. This helps
unrelated blocks feel familiar, even when the programmer has not used them before.

Setpoints/parameters

Most data transferred between a PLC and an HMI/SCADA system will be setpoints/
parameters. These are the settings that change the application's behavior to suit the end
user's needs.

Most assets will have some form of common setpoint structure. Whether all of the
setpoints are used or not depends upon the application use case, but providing as many as
possible simplifies the design process, and the setpoints are already available in UDTs.

202 Creating Standard Control Objects

Have a look at the following screenshot:

UDT_Level_Controller_HMI_Data

MName Data type
<2 Mirnic usint
< Percentage Real
<20 Level_Status Usint
41 ~ Setpoints Struct
< = Normal_Lewvel Real
g = LowlLow_Level Real
g = Low_Level Real
g = High_Level Real
<] = HighHigh_Lewvel Real
< .- Hysteresis Real

Default value

50.0
10.0
15.0
80.0
95.0
5.0

Camment

0 = Healthy, 1 =Faulty (Unaccepted), 2 = Faulty (Acc...
Level As %

0 = Healthy, 1 =Low Low, 2 = Low, 3 = High, 4 = Hig...
Standard Setpoints

Figure 6.25 — Example of a level controller's UDT for HMI data

Figure 6.25 is an example of a level controller's UDT for HMI data. Inside the UDT is
a structure for setpoints. This means that every asset that makes use of UDT_ Level
Controller HMI Data will have these base setpoints to work with.

This also means that HMI/SCADA interfaces can guarantee that the data will be available
to work with if a type of asset that utilizes this structure is in use.

Note

Offering too much data will result in programmers finding it difficult to filter
out what is needed for the current application. Offering too little will result in
programmers having to modify HMI data too often.

Filling HMI structures with setpoints and variables that won't be used can also
overload tag requirements between the PLC and HMI.

Structuring logic

For standard control objects to feel familiar with each other, the logic should be laid out
in roughly the same approach. By following a generic ruleset for each standard control
object, code (written in any language) should be easy to pick up and read by anyone that

uses the standard controls.

Structuring logic 203

General layout
Control object logic can be easily planned for with a generic template, as illustrated here:

FLC Scan
. Standard Control Object

o Condition Inputs And
] Configurations

!

Core Asset Mamagement /
Function

!

Write HM| Data

!

Write Control Data

b4

@

Figure 6.26 — Example of a generic template for standard control block logic

Figure 6.26 is an example of a layout for generic standard control objects. If all objects
in the project follow this general paradigm, then programmers and maintainers of the
project will have a much easier time reading the logic within the standard control.

Supportive methods

In large standard control objects, each area of the template (Figure 6.26) could be created
as a function or function block. Each supportive object could then follow the same
template internally, keeping the same approach throughout the standard control object.

204 Creating Standard Control Objects

Have a look at the following diagram:

PLC Scan
. Standard Control Object
Condition Inputs
And Configurations |—| I:|
Core Aszet ¥
Management / | | ‘ ‘
Function N
¥ L ¥
Virite HMI Data
¥ ¥
Write: Control Dats | | | |

v
]

¥ 7 ‘ ¥

v ¥
| | | |
L

¥
N
| @ !

Figure 6.27 — Example of each standard control method following the template

Figure 6.27 demonstrates a standard control object's supportive method also following the
control object template.

This means that each step of the template follows all steps of the template again (where
possible). Following this approach then means that every standard control object has a
generic feel/layout to it, no matter the language or function.

Note

If standard control objects are placed together in a standard control library, this
template approach means that third parties, new starters, or infrequent users of
the library can get to grips with how the logic is written quickly. It also means
that different writing styles of different programmers are still easy to follow as
they are governed by an overall template.

Considerations that have an impact on usability 205

Considerations that have an impact on
usability

When creating standard control objects, there are many different aspects to consider. Key
items are listed here:

« How flexible does the control object need to be?
o How likely is it that the control object will need to be modified?

o What does the control object interact with?

These sorts of questions can alter the approach that is taken for the control object being
developed.

How flexible does the control object need to be?

A good example of a flexible control object would be an analog scaling standard control
object, as illustrated in the following screenshot:

Scaling_Manager

Mame Data type Offset Default value | Comment
4l ¥ Input
< = Raw_Input Int
gy = Raw_Min Int
<l = Raw_Max Int
4q = Scaled_Min Real
<] = Scaled_Max Real
qp = Lirnit_Break Bool Allows the scaled value to breach min / maxlimits
<0 = Error_Mode Int 0 = Last Known, 1 = Force High, 2 = Force Low
< = Compensation_Factor Real
<] = Offset Real
<1 = Soft_Sim_Selected Bool
<] = Output_Hold Bool
< ~ Cutput i
4q = QOR_Error Boaol
< * InOut
qp = soft_Sim_Vvalue Real
<0 = Scaled_Output Real

Figure 6.28 - Interface for a standard control object that controls analog scaling

206 Creating Standard Control Objects

The Scaling Manager interface pictured in Figure 6.28 has many different inputs that
exceed the basic requirements to scale a value. This particular control method is capable
of performing the following additional methods:

« Scaling beyond the minimum/maximum range of the scaled value (Limit_Break)

+ In the event of an error (raw out of range), driving the scaled value high, low, or
holding the last value that was not an error (Error Mode)

« Compensation and offset of the final scaled value (Compensation Factor/
Offset)

« Ability to hold the output, ignoring any raw value movement (Output Hold)
These additional methods all extend the basic functionality of simply scaling the raw

value. This allows for much more flexibility and reduces the likelihood of a new block
needing to be written for a project, without introducing high overhead if it is not used.

How likely is it that the control object will need to be
modified?
It's almost impossible to completely rule out the possibility that a standard control object

won't ever need to be modified; however, some things can be done to greatly reduce the
chances.

The easiest approach to adopt to reduce the likelihood of modification requirements
is to use UDTs for the vast majority of the control data, as illustrated in the following
screenshot:

Considerations that have an impact on usability 207

4

InCut

¥ Generic_Analog_Data

= Alarm_Trigger_Del...
L} Alarm_Releaze_Del..
L} Fail_Delay

L] OOR_Fault

L] HMI_Tag_Check

= p Alarm_Status

<

<

< = Raw_Walue

< = Scaled_Walue
< = Trend_WValue
< = Soft_Sim_Vvalue
< = Raw_Min

< L Raw_NMax

a1 = Instrument_Min
-0 = Instrument_Max
o | = Scale_Min

- = Scale_Max

-2 L Offset

] L Compenstation_Fa..
< = HiHi

a0 L] Hi

< = Lo

< = LoLo

AT . Hysteresis

a1 = HiHi_Release
&1 s Hi_Release

< s Lo_Release

e | [] LoLo_Release
<0 = Alarm_IND

<0 = Fault_IND

<

<

<

<

<

<

"UDT_Generic_Analog_HMI_Values® 32.0

Dint 0.0

Real 4.0

Real 8.0

Real 12.0
Int 16.0
Int 18.0
Real 200
Real 24.0
Real 28.0
Real 320
Real 360
Real 400
Real 440
Real 480
Real 520
Real 56.0
Real 60.0
Real 64.0
Real 68.0
Real 720
Real 76.0
Byte 80.0
Byte 81.0
Time 820
Time 86.0
Time 20.0
Bool 24.0
Bool 94.1
Struct 96.0

Generic Analog Data Structure

Analog /alue

Value

Analog

Manipulated Trend Value

Sim Value From S

Minimurn Raw Value

Maximum Raw

Dffset Applied To
Multiplication Fac
HiHi Alarm
Hi Alarm S

Lo Alarm S

HiHi Alarm

Hi Alarm Re

m

Instrument Alarm Indication For SCADA

Fault Indication For SCADA

Fail Delay (OOR)

RESERVED FOR HMISCADA

Figure 6.29 — Example of a Generic_Analog standard control object interface

Figure 6.29 shows a control object that is used to manage generic analog signals and
provide alarms and other functions. The vast majority of the information is stored within
the UDT Generic Analog HMI Values UDT. This means that if the UDT is ever
modified, the control objects associated with the UDT will update automatically.

If 10 objects used this UDT but an update was required to provide additional functionality
to 1 of the 10 control objects, the other 9 would not require an update. TIA Portal would
re-initialize the interfaces, and the corresponding memory would be assigned to the

new-sized UDT.

This approach is the easiest way to minimize the effects of data causing changes in a

standard control object.

208 Creating Standard Control Objects

What does the control object interact with?

If the control object being developed is to interact with hardware, considerations as to
how information is passed to the control object should be made.

Creating interface data using Any or Variant data types can help create flexible areas
that allow for more than one configuration.

Have a look at the following screenshot:

* InQut

= » V5D Data *UDT_V5D_Drive” 540 4.0
] Hardware_Data Variant

] Control_Data Variant

Figure 6.30 — Example of Variant usage

Figure 6.30 shows how an InOut interface can be used to pass a Variant data type to a
standard control object. This type of interface allows the control object to detect a UDT/
struct and check what the type is. The control object can then change its behavior based
on the type passed, as illustrated in the following screenshot:

BLEMOWV
£ Control_Data Variant £PID_Ctrl_Active
— R EN ENO { }
#(Crrl_Data.PID_Data #Control_Data — SRCELK RET VAL — #BLKMOV_RET
DSTRLE — #Cirl_Data.FID_Data
BLKMOV #External_
#Control_Data Variant Control_Adive
——]EQ_Type | EN ENO { }
Used When VSD #Control_Data — SRCELK RET VAL — F¥BLKMOV_RET
Is controlled - Used When V5D
outside of the Is cnmmf'l;d
V5D Manager outside of the
&Cirl_Data.External VSD Manager
DSTRLK — #Cirl_Data External

Figure 6.31 — Example of Variant being checked for data type

Considerations that have an impact on usability 209

The EQ Type instruction is used to check the data type of the Control Data variable
against a temporary instance of another type (Ctrl Data.PID Data in this case), as
illustrated in the following screenshot:

m ¥ (frl_Data Struct 54.0
B8} PID_Data "UDT_PID" 540
=} External "UDT_VWSD_External.. 96.0

Figure 6.32 — Temporary UDT instances

If the Control Data data type passed into the control block matches the UDT_PID data
type, then the BLKMOV command (Figure 6.31) moves the control data into the temporary
instance of the UDT PID data type.

If the Control Data data type passed into the control block matches the UDT VSD
External Control data type, then the BLKMOV command (Figure 6.31) moves the
control data into the temporary instance of the UDT VSD External Control data type.

The control logic of this block then goes on to handle the operation of the variable speed
drive differently, according to the UDT that has been passed to it.

This approach can help common use cases where a standard control object may interact
with more than one type of equipment and control different equipment in different ways.

210 Creating Standard Control Objects

Have a look at the following screenshot:

Network 26: Process Control Method
Comment
If the device
control is set to
FIXED instead of
auto, this holds
the PID
#Cirl_Data.PID_
w23 £Fixed_Speed_ Data.Fixed_
EPID_CtrI_Adive "V5D_PID_Control™ Mode Mode_Manual
— —:=n ENO { | {}
Request To Start
VsD
&V5D _Data.
Start_Request
To_VSD_
Hardware — Run_Request
#Hand_Run_ Hand_Run_
Request— Request
Starup_Timer_
E5t@ariup_Timer Instance
#V5D_Data — Y5D_Data
#Cirl_Data.PID_Data PID_Data
EExternal_ EV5D_Data.HOA.
Control_Adive Hand_IND MOVE
| | 11 EN EN
#Cirl_Data. #VSD_Data.
External. Requesied_
Reguired_Speed IN 3 OUT Speed
Request To Start
VsD
£V5D_Data.
Start_Request_
£V50_Data HOA. To_VW5D_
Hand_IND Hardware MOVE
i | i | EN EN
Hand / Fixed S peed £V5D_Data.
£VSD Data. . E‘Eq”edm”—
Hand_Fixed_ 30U pee
Speed — |y

Figure 6.33 — Example of different control methods based on the data provided

Figure 6.33 shows that when the UDT PID data is passed to the control object, the
VSD_PID Control function is used. When the UDT VSD External Control
data is passed to the control object, loose-ladder logic is used to control the variable
speed drive (VSD) in the required way.

Summary 211

At the end of the control object, the information is moved back to the Control Data
variable, as illustrated in the following screenshot:

Metwork 27: Write To Control Data

Camment

B LKMOWV
#PID_Cirl_Adive Variant
| | EN ENOQ —mm———————
#Ctrl_Data.PID_Data — SRCBLK RET_VAL — #BLEMOV_RET
DSTBLE — £ Control_Data
EExternal_ B LI(I_\.HOU
Control_Adive Variant
{ | EN ENG ——

Used When VSD RET_VAL — #BLEMOV_RET
nft:rﬂgt{:?':ﬁg DSTBLK — #Control_Data
V5D Manager

£Cirl_Data.External — SRCBLK

Figure 6.34 - Moving temporary data back to Control_Data

Figure 6.34 shows how the information is passed back to the Control Data variable,
ready to be passed back out of the control object (as InOut).

Note

This step is necessary. Without it, the information being acted upon in
the Ctrl Data structure would be left in temporary memory and the
Control Data variable would never be updated.

Summary

This chapter covered creating standard control objects, with a viewpoint of structuring
data and logic layouts, as well as the management of interface variables.

The knowledge gained from this chapter should help programmers to write standard
control objects that are easy to maintain, expand, and modify while retaining a standard
approach to the development.

The next chapter focuses on the simulation of code so that programmers can test the
inputs and outputs of the project without any hardware requirements. This includes using
standard control objects to manage the mapping of information through mapping layers.

7
Simulating Signals
in the PLC

In this chapter, we'll look at different methods we can use to simulate devices and logic.

Siemens TIA Portal has a built-in simulation package that lets you simulate a variety of
different CPUs and the logic within them.

In this chapter, we're going to cover the following topics:

« Running PLC/HMI in simulate mode
« Managing simulated inputs
+ Creating a simulation interface

o Safeguarding outputs when in simulation mode

Running PLC/HMI in simulate mode

In TIA Portal, both PLCs and HMIs can be run in soft simulate mode. When this occurs,
the hardware runtime is run from TIA Portal, instead of the hardware. This runtime then
behaves in the same way it would as if it were running in the hardware.

214 Simulating Signals in the PLC

Starting a PLC simulation

To start a PLC simulation, select the device that's required from the Project tree area and
click the Start Simulation button via the toolbar at the top of TIA Portal:

Gf Bl savepier & ¥ &5 =5 X D2 N HER

Project tree

J Devices || Plant objects

=
— 2. Click "Start simulation”

=] Chapter? 1. Select device I

ﬁ Add new device

. Devices & networks

| ~ [PLC_1[CPU 15152 PN]
AR

Figure 7.1 - Starting a simulation PLC

Clicking the Start Simulation button will automatically switch the network connection
interface to PLCSIM.

Note

When you're running the PLCSIM interface, it is not possible to connect to
another physical device, even with a different instance of TIA Portal (or even
SIMATIC Manager, if it is installed).

Enabling simulation support

TIA Portal automatically disables the ability to simulate new blocks in a new project. If
you've clicked the Start Simulation button, the following message may appear:

Running PLC/HMI in simulate mode

215

X

The blocks contained in this project cannot be simulated with
57-PLCSIM. Do you want to enable the "Support simulation
during block compilation' option in the project properties?

Click <0 if you want to enable simulation support in the protection
setting of the project properties with option ‘Support simulation during
block compilation’.

Click =<Cancel= if you want to cancel simulation.

MNote: Know-how-protected blocks which are not previously compiled with
simulation support need to be opened with a password and recompiled in
a project with simulation support enabled.

MNote that the know-how protection of blocks can be weakened bya
simulation.

r [8]'4 1 | Cancel

|
Figure 7.2 - The Enable Simulation Support message

By clicking OK, the project and program blocks will have the S7-PLCSIM simulation
option of Can be simulated with SIMATIC S7-PLCSIM enabled. This option can be
found in the Compilation section of the program block's properties.

Note

Project library blocks that are types and have not had the Can be simulation
with SIMATIC S7-PLCSIM option enabled will not have that option enabled.
The block must be edited (In Test) to change that option. Once the option has
been changed, the block can be released under a new version with that option
enabled.

216 Simulating Signals in the PLC

The S7-PLCSIM interface

TIA Portal will open an instance of the S7-PLCSIM interface once the Start Simulation
button has been pressed (and the Enable Simulation Support message has been
accepted). While S7-PLCSIM is loading, TIA Portal may display the Extended download
to device window:

Extended download to device

Configured access nodes of "PLC_1"

Device Device type Slot Interface type Address Subnet
PG CPU 15152 PN 1X1 PMIIE 192.168.0.1
CPU 15152 PN 1X2 PMIIE 192.168.1.1

Type ofthe PGIPC interface PMIIE - e
z L8 -] PG Siemens X
PGIPC interface ﬁ FLCSIM |'| @ ~
. . = Uncenfigured PLC [SIM-1500] g
Connection to interfacelsubnet: | Direct at slot'1 X1' |'| @
Istgateway. | [+] © SIEMENS
Select target device: | Show devices with the same addresses "| B RUNSTOP
Device Device type Interface type Address Target device M ERROR
I - - PMIIE Access addres: — H MAINT
x1 _—
e
Startsearch
Online status information: [pisplay only error messages

Figure 7.3 — The S7-PLCSIM window (right) and the Extended download to device window (left)

Notice that the PG/PC interface that's in use is PLCSIM and cannot be changed. By
clicking Start search, the simulation PLC should be identified:

Running PLC/HMI in simulate mode 217

Select target device

Device Device type

CPUcommon CPU-1500 Simulation

D Flash LED

|Ehc.'. devices with the same addresses |V|

Interface type | Address
PIIIE 192.168.01
PHIIE Access address —

Target device
CPUcommon

Startsearch

Figure 7.4 - Successfully discovered CPU-1500 simulation PLC

The simulated PLC will be displayed at CPUcommon for the device's name and the IP
address willbe 192.168.0. 1. By selecting this device and clicking Load, the TIA Portal
project will be prepared to be downloaded to the simulated PLC.

Trustworthy devices

Even though TIA Portal started creating and connecting to the simulation PLC, it will still
warn you that the simulated PLC may not be a trustworthy device:

Establish connection to device

"PLC_1" might not be a trustworthy device.

The following errors were found when verifying the certificate:

associated certificate.

-The IP address of the device does not match the addresses of the ~

-The device uses an unknown, selfsigned certificate.

If this device is the one you want, it is trusted and you can connect. If this
device is not the one you want, you should abort the connection.

Display certificates

Cansider as trusted and m| | Abart connection

Figure 7.5 - The "PLC_1" might not be a trustworthy device message

218 Simulating Signals in the PLC

For a simulated PLC, it is safe to click Consider as trusted and m... and allow TIA
Portal to trust the new device. Once you've done this, the Load preview window will be
displayed:

9 Check before loading
Status | Target lieszage Action
+ @ ~ rca Ready for loading. Load 'PLC_1"'

0 Simulated module The loading will be perfermed from a simulated PLC.
Q b Software Download software to device Consistent download
0 Text libraries Download all alarm texts and text list texts to device Consistent download

<] I 2]

| Finish | | Load | | Cancel |

-_————.——l t ;i ;- i-i - ' - i

Figure 7.6 — The Load preview window

Since you're downloading to a new PLC that has never been downloaded to before, you
won't encounter any issues and the download will be consistent.

Note

If the TTA Portal project does not compile, TIA Portal won't throw a
compilation error until this point. The S7-PLCSIM instance and the
connection path to it will remain configured and active.

After fixing these issues, you can perform a standard download to the PLC.
Attempting to start another S7-PLCSIM instance of the same device will result
in error messages.

See Chapter 13, Downloading to the PLC, for more information on standard
download sequences.

Clicking Load in the Load preview window will download the project to the simulated
PLC. Once you've done this, the Load results window will be displayed:

Running PLC/HMI in simulate mode 219

Load results
9 Status and actions after downloading to device
Status ! Target Message Action
1& ® - rca Downleading to device completed without error. Lead "PLC_1"'
Q » Start modules Start modules after downloading to device. Start module
(<] [[2]
| Finish | | Load | | Cancel |

Figure 7.7 - The Load results window

Ensure that Action is set to Start module and click Finish. The simulated PLC will then
be set to RUN mode and the TIA Portal project will be loaded so that it can be executed:

RLL Siemens

PLC_1 [CPU 1515-2 PN]

SIEMENS

RUN | 5STOP
Il ERROR
W MAINT

<na project=

Figure 7.8 — The S7-PLCSIM instance running

The simulated PLC will now execute. At this point, the PLC will behave as a physical CPU
would behave. I/0O, networking, and other connectivity features will be unavailable.

Note that the X1 and X2 network interfaces are now populated with the IP addresses that
have been configured for the PLC. However, they can't be accessed via TCP connections.

220 Simulating Signals in the PLC

Managing simulated inputs

$7-PLCSIM does not provide a solution for managing the simulation of input signals. It is
up to the programmer to choose one of the following solutions:

 Create a watch table and modify its input signals
 Create an input mapping layer with dedicated simulation data

These two approaches both have strengths and weaknesses, but creating an input mapping
layer is the correct choice when you wish to create standard control objects and UDTs.

Using watch tables to change inputs

In the Project tree area, open the Watch and force tables folder. Double-click the Add
new watch table item; a new watch table called Watch table_1 will be created:

= e
=m
LLLLLE

AT T

i Name Address Display format Monitor value Modify value F Cormment

Figure 7.9 - The watch table view

The new watch table will open with no tags to be monitored. In the Address column, an
Input address can be added that you can monitor.

Note

When input cards and remote I/O are added to a CPU in the Device
configuration window, input memory addresses (in the form of tags) are
required to map physical signals to a symbolic reference. These memory areas
are prefixed with % I. Therefore, a 16-channel digital input card may use input
addresses $I0.0 to $I1. 7. These addresses can be added to the watch table
and monitored.

Once tags/addresses have been added to the watch table, the value at the address can be
monitored by clicking the Monitor all button from the toolbar above the watch table:

Managing simulated inputs 221

Iy
o
oy
TH
T
!IIIII
LLILLE

o A A B[T™

i Mame Address Display format | Monitor value
1 "Input 1" %100 Bool [FALSE
2 "Input 2* 101 Bool [FALSE
3 "Input 3" %02 Bool [] FALSE
- “"Input 4" %l0.3 Bool [] FALSE
5 "Input 5" Y04 Bool] FALSE
G "Input 6" %105 Bool [FALSE

Figure 7.10 — Watch table in monitor mode

The current values will be displayed in the Monitor value column. As with other areas in
TIA Portal (such as Data blocks), the value in the Monitor value column can be modified
by right-clicking and selecting Modify and then selecting or entering the value that is
required.

With input addresses, this approach does not work. This is because every time the PLC
finishes a scan cycle, the input memory is written to by the physical hardware layer.
Because only the CPU is being simulated, the value that's written back is always the
default value for the associated data type. In the case of a 16-channel digital input card,
this would mean all the values would return False at the start of the scan. If the modified
value is changed to True, it may only be True for one scan.

To change this behavior, we must change the type of modification process we are using.
You can do this by selecting the Show/hide expanded mode columns button from the
toolbar above the watch table:

— g'ﬁ’gﬁcw

Figure 7.11 - Expanded mode columns button enabled

T

The icon of a list with a small clock to the right of it depicts the Show/hide expanded
mode columns button. When this is enabled, some additional columns will appear in the
watch table:

i MName Address Display format | Monitor value Monitor with trig... | Modify with trigge Modify value 5
] “Input1° %I0.0 Eool [@ FALSE Fermanent Fermanent TRUE E 1
2 “Input2® %I0.1 Bool [d FALSE Permanent Permanent
3 "Input 3* %I0.2 Bool [3 FALSE Permanent Permanent
4 “Input4® %03 Bool [O FALSE Fermanent Fermanent
5 “Input5° %I04 Bool [FALSE Permanent Permanent
6 “Input 8" %I0.5 Bool [3 FALSE Permanent Permanent

Figure 7.12 - Watch table view with expanded mode columns enabled

222 Simulating Signals in the PLC

These extra columns allow you to configure trigger events for monitoring the address and
configuring trigger events so that you can modify the address.

By default, the Modify with trigger column is set to Permanent. This means that the
value in the Modify value column will be permanently written to the address until it's
instructed otherwise.

Once the Modify value field contains the required data, the All actions will be modified
by "modify with trigger" button can be used to activate the modification trigger. The
following message may be displayed:

2 1X]

Modify with trigger

With the ‘Modify with trigger’ function, you intervene in the process
permanently.

Do you want to continue with ‘Modify with trigger’ ?

[] Do not show this message again

r Yes 1 | Mo

Figure 7.13 — The Modify with trigger dialog

This dialogue explains that the watch table will intervene in the process, permanently
setting all the values that have been checked for modification to the Modify value column.

Click Yes to start modifying the values. Those values will now show the requested modify
value.

Once the modification by trigger process starts, it will need to be deactivated with the All
actions will be modified by "modify with trigger" button again before the updating will
stop.

Managing simulated inputs 223

Note

Forcing values via a force table works similarly, but a warning will appear on
the CPU's MAINT indicator while a force is active. The difference between the
watch table and the force table is that going offline from the CPU in a force
table will not stop the variables from being forced into a value.

With a watch table, a programmer must remain connected and online to the
CPU to continue writing the modified value.

Using an input mapping layer to change inputs
A more scalable solution, compared to using a watch table, is to use a specified layer to
bring inputs into the program:

. R e mmmmmmm

|
_— | PLC CPU
Aszzet 1 Input Input Mapping Layer i Main Project
npu :
Card
_— — N
B - .
Digital — - i 1
Asset 2 Inou — i)
vt »| Agset1 - -
— Structured ! o
Datablock i]
Asset 3 —
> Mo — . i
Simulation o | > icati Do
B <Mode? p| Asset2 Ly Apggggt;"” ;
_____ o Yas 3 Structured L —]
T b] | Datablock | i
'!—_): I ! .
LI . Asset1 | i
Simulated Asset 1 IO EE s
P »| Asset3
L g 1 Structured
< | Asset? | >
‘ . . Sim Data ! | Datablock |
Simulated Asset 2 Tt ~— ;
e S| i :
i Assetd | AEnIIIn————]
Simulated Asset 3 SImD?ta I

Figure 7.14 - The input mapping layer and its simulation

The preceding diagram shows an example of using an input mapping layer and
simulation data. This method segregates data that comes from the physical input layer
and simulation data that comes from asset-dependent data blocks.

224 Simulating Signals in the PLC

This approach means that simulation data can be used in place of the real input data that
will be used when it's not in simulation mode:

-

Metwork 1: Simulation Switch
Comment
g5imulation_
Pushbuton #5imulation_Adive #5imulation_Adive
e T e ()
ESimulation_
Pushbuton F5imulation_Adive
" { |
MNetwork 2: Reset Pushbutton
Comment
g5imulation_ ESimulation_
Pushbuton Pushbuton
o o {R F--—4
MNetwork 3: Assetl
Comment
"Sim_Assetr 1. "Asset 1".Input_
Data.Contacor_ Data.Contador_
£5imulation_Adive Closed Closed
I L I L [1
11 11 i I
0.0
Slot 2 - CHO
"Asset 1_
#5imulation_Adive Contacor_Closed”
L i

Figure 7.15 - The input mapping layer with active simulation

Managing simulated inputs 225

The preceding diagram shows how to use the input mapping layer and an active
simulation:

o Network 1: Manages the simulation's status:

» This network checks whether the Simulation Active variableis True or
False.

o Network 2: Resets Simulation Pushbutton:

» This network resets Simulation Pushbutton if it's active. This ensures that
when the next scan is done, the simulation won't be turned off again.

« Network 3: Maps simulation data or real data:

» Based on the status of Simulation Pushbutton, either the data from the
physical I/O layer is used or the simulation data is used.

» Regardless of the status of Simulation Active, the data that's used is written
to the Asset_1 data block. This means that the Asset 1 data block does not
distinguish between real I/0O data and simulation data.

Note

It is important to recognize that the data that's used for the project is the same
data that's used when the simulation is active and not active. By moving the
mapping of the I/O outside of the main project process, the process logic
cannot be changed by changing the mapping. This has the advantage of
guaranteeing that the logic behaves and reacts to input changes in the same way
for real I/O data and simulation data.

There are some key benefits to implementing the input mapping layer approach when it's
coupled with simulation data:

o Simulation data can be connected to a Human Machine Interface (HMI):

* You can use an HMI to make interacting with the system even easier.

» This can help facilitate commissioning/testing, especially with numerical inputs
for analog input data.

226 Simulating Signals in the PLC

« Simulation data can be turned on and off easily.

» The entire simulation system hinges on the Simulation Active variable. If it
is set to False, real I/0 data is used. If it is set to True, simulation data is used.

« Standard control objects can be created for the mapping layers:

» Asset mapping can be condensed into standard control objects, where real I/O
data and simulation data are passed as structures, and mapping is performed
inside the standard control object.

= This has the benefit of speeding up writing time and ensuring that assets are
handled the same way in all instances.

Advanced simulation using standard control objects

An input mapping layer, with a simulation system and structured data, is a recipe for
advanced simulation. By creating standard input mapping control objects (blocks),
structures for simulation can be used alongside the standard structures for asset data:

Metwork 3: Flow Instrument 1 - Mapping [Simulaticn

SWFC38
"Map_Flow_Instrument®
EM ENO ———d
Simulation
#5imulation_Adive — Switth
WW200
"Flew Instrume nt
1" —21110 - Raw Analog
110 - Flow
false = Totaliser Pulse
E5im_Data.Flow_
Instrument_1 — 5 Flgw_Data
EFlow_
Instrument_1_
Data — R_Flow_Data

Figure 7.16 — Example of a standard mapping block for a flow instrument

Managing simulated inputs 227

This type of standard control object can ensure that all the assets of the same type follow
the same conventions:

o Assets are mapped in the same manner:

» This is controlled by the Map Flow Instrument block in the preceding
diagram.

o Assets all contain the same datasets:

« This is controlled by the fact that the mapping block that's being used requires
both simulation data (S Flow Data) and real asset data (R_Flow Data).

When the Simulation Active variable is setto True,Map Flow Instrument
moves the data contained in Sim _Data.Flow Instrument 1 into the relative
locations in Flow Instrument 1 Data. When Simulation Active is setto
False, Flow Instrument 1 Data is updated with the I/O values from the interface.

Note

The S Flow Dataand R _Flow Data interface variables are both InOut,
which means that pointers are used to reduce the overhead of copying data.

228 Simulating Signals in the PLC

Creating a simulation interface

Having an interface for the simulation system is vital if you wish to manipulate your
simulation signals with ease. When the TIA Portal project is tested, simulation signals
will need to be set to particular values to test how the production code reacts to the
simulated input values. While this can be done by creating a watch table, it would be far
more beneficial to the users of the simulation system to create an HMI in TIA Portal that
interacts directly with the simulation code:

» PLC CPU
Asset 1 - Input Mapping Layer i Main Project
npu !
Card
* e -
Assel 2 Digita! ~—
s5€ Inp -~
nput —»| Asset1
| Structured
Datablock
Asset 3 P
[S] d Mo — . {
| Simulation Interface HMI] flﬂ;@fn L1y aseeto =2 | Appication
A : A, 3 Yes 3| Structured o — Usage
Datablock I
Y] 7 Asset1 | .
Simulated Asset 1 @l_m_[_)gla —
Nt L—t| Assel3
P psset2 || L Structured
e | Sim Data Datablock |
Simulated Asset 2 Seeloe” e
g { :
' | Asset3 | ——— :
Simulated Asset 3 ‘\S'.”?,[,’?ta-

Figure 7.17 - The input mapping layer with simulation and an associated HMI

The concept behind this approach is that each asset has a dataset defined as a UDT that's
either stored in a data block or as a variable in a wider simulation data block.

Simulation Interface HMI is connected to Asset Sim Data via a standard Siemens
connection interface. This enables the HMI to change values and specify what is currently
being sent to the PLC's Input Mapping Layer.

Creating a simulation interface 229

Configuring a simulation HMI in TIA Portal

To use an HMI with the simulation data, one needs to be added to the project. This can be
done in the Project tree area by double-clicking Add new device. Select an HMI to use
and add it to the project:

v [HMI_1 [MTP1200 Unified Comfort]
[IT Device canfiguration
% Online & diagnostics
1 Runtime settings

r p_D SCreens

» L4 HMItags
B.Za Connections
[HMI alarms

r L Farameter set types
“ Logs
5] scheduled tasks

» [m) scripts
I3 Collaboration data
) Cycles

4] Text and graphic lists

Figure 7.18 - Unified Comfort HMI added to a project
Once the HMI has been added, HMI tags that point to the simulation data can be created:

Default tag table

Mame a Data type Connection FLC name FLC tag
<0 b Asset_1_Sim UDT_Pump_lnput_Data HMI_Connection_1 PLC_1 Sim_Asset_1.Data
<l b Asset 2_Sim UDT_Pump_lnput_Data HMI_Connection_1 PLC_1 Sim_Asset_2. Data
<0 ¢ Asset 3 _Sim UDT_Pump_lnput_Data HMI_Connection_1 PLC 1 Sim_Asset_3.Data

Figure 7.19 - HMI tags mapped to PLC tags

The PLC tags that are being used should point to the structure of the asset's simulation
data. The PLC simulation structure should consist of the same I/O data that is to be used
in the application.

230 Simulating Signals in the PLC

In the HMI, create a Faceplate by opening the Libraries tab to the right of TIA Portal,
expanding the Project Library > Type folder, and double-clicking Add new type:

Add new type

A_New_Faceplate

miE]
E

Faceplate

Figure 7.20 - Adding a new faceplate

Creating a simulation interface 231

Choose Faceplate from the dialog that opens, ensuring that the correct HMI type is
selected. A new Faceplate will be created, and the Visualization tab will be displayed. The
controls for your Faceplate can be placed here, just as a normal screen would have them
placed, although not all the controls will be available:

Project library » Types » FP_Pump_Simulation » V 0.0.7

10

JaALd X ESIATHUA+HHUNE NS & & &

[Contactor Closed J{ Isolator Closed J { E-5top Closed J

Figure 7.21 - Faceplate visualization design

Once the faceplate's controls have been placed and the size of the faceplate has been
defined, you can create its interface. Because the simulation data that's being used is in the
form of a UDT structure, only one tag interface is required. By clicking the Tag interface
tab, the interface element can be assigned to the faceplate:

Marme Data type User data type structure
Sim_Data Struct UDT_Pump_lnput_Data ¥V 0.0.1

Figure 7.22 - Tag interface assignment in the Tag interface tab

This interface data type is a struct, which is then further defined in the User data type
structure column as UDT Pump Input Data. This is the same UDT that is being used
in the PLC for the simulation data.

Note

To use a UDT in the HMI, it must exist in the same project library. This means
that all the UDTs that are being used in the HMI must be version-controlled.
If the UDT changes, the faceplate must be updated manually as the old UDT
version will be used until it's updated.

232 Simulating Signals in the PLC

Once the tag interface has been created, data from the interface can be assigned to various
controls:

Project library » Types » FP_Pump_Simulation » V 0.0.7

10

JALSIEIIANMHU+EBUEINSE

o o
o Contactor Closed H Isolator Clos ed ‘ ‘ E-Stop Closed ‘
[m} 15) (u]
|§, Properties ||1.L Info "ﬂ Diagnostics
Properties Ewvents || Texts |
[Global definition % Synchronous Emi x CO ‘;0
Activated i export function Buttcon 1 OnTapped(item, x, ¥, modifiers, trigger) |
Deactived - e .
3 let T = Ie.gs{'lSlm_Data.Conr.actor_{:losed' i+
E Click left mouse butten 4
Press key 5 let X = T.Read():
Release key 3
Press L 7
Release " 8
Click right mouse bu... | - if (= 1)
J 10 Te.gs{"ISim_Dar.a.Contactor_Closed"; -Hrite (0}
T 11 }
12 slse
13 i
14 Tags ("Bim Data.Contactor Closed”).Writs(l)
15 1
1&
17}
<l 0 PRIE i |

Figure 7.23 — Assigning JavaScript to the Contactor Closed toggle button

By accessing the Sim_Data property of Tag Interface Element, the faceplate will have
access to the outside instance of the UDT and can access the variables within it.

Creating a simulation interface 233

On the screen where the faceplate will be used, Interface must be set with the appropriate
HMI tag:

Properties

Faceplate container_1 [Faceplate container] [FP_Pump_Si...

Properties I Events

i2BEY

Static value

Appearance
Format

Miscellaneous
Caption - Color [145, 147, 154
Connection status None
Faceplate type FP_Pump_Simulaticn V 0.0.6
lcon
Interface

Sim_Data Asset_1_Sim
Label
MName Faceplate container_1
Tab index 0

b Visibility

Security

Size and position

Figure 7.24 - The Tag Sim_Data interface has been assigned the Asset_1_Sim HMI tag

With that, we have connected the PLC simulation data to a simulation HMI that can
interact with that data directly.

234 Simulating Signals in the PLC

The following diagram shows the connections that have been made here:

———

¢ o Asset1)
_.~».8im Data,’

|
!
]
]
i
i
]
Application i
:
]
]
]
:
]
]
i

unT ;
i i B] s
simison S T ez
: .- ®.5im Data -
: T 7 Assst3 |
: 1 ,-®.Sim Data’
e LEN 1 e !
Type Definition Data Transfer Typé Definition
HMI 3
v
molnes Clossd || Estwp osses |
Eoklce Closed i E-510p Oocad J
Bokator Clos ed il E-5i0p Oosed |
Faceplates

Figure 7.25 - The simulation HMI concept

The preceding diagram helps visualize how connections are being made between the
PLC and the HMI and how the UDT is the structure definition that ties the two systems
together.

Note

Physical devices are not required for testing. Remember that both the PLC and
the HMI can be simulated by clicking the Simulation button at the top of TIA
Portal.

Unified HMISs can be accessed in a standard web browser using the
127.0.0.1IP address.

Safeguarding outputs when in simulation mode 235

Safeguarding outputs when
in simulation mode

When any automation system is running in simulated mode, outputs should be protected
and made safe so that when the simulation is running, they aren't processed.

This can be achieved with an output mapping layer. Much like the input mapping layer,
if the simulation system is active, the output memory addresses are filled with data that
ensures they are in a safe state:

| L (07— PLC CPU
Asset 1 (s Input Mapping Layer : Main Project Qutput Mapping Layer
card !
Digitai I~ -
Asset2 Inou ! _
e "3 Assetl1 e
+3-(Structured
. |Datablock
—> —> N
i Qutput Data
Aszsel 3 —
> No — A) i
Simulation ! o >) | ’ e T
, Mode? <3 Assel2 €—P Application . Simulation
..... Y 5 Yas 3 Structured| = i Mode?
e o L | |Datablock
! psset 1] [—
Simulated Asset 1- S0 202 e : | Yes
S e . Assetl e n All Qutputs Set To
e | Asset2 ! —p Structured - Safe State
< igim pata) ! |Datablock §
Simulated Asset2 -7 | —
et _)E Assetd | R R
SlmuatedAsset?-S-lm [_]?.ta-

Figure 7.26 — Setting outputs to a safe state when in simulation mode

Note

The preceding diagram shows how all the physical data, both input and
output, can be stored in the asset's dedicated structured data block. Preparing
output data in the asset's dataset is a good way of encapsulating the process
data and segregating the input and output layers of the project.

This means that our Input Mapping Layer could be changed to a network
protocol such as Modbus and our Output Mapping Layer could be changed to
a remote I/O solution. This can be done without changing any core logic in the
Main Project section.

236 Simulating Signals in the PLC

With outputs set to a safe state, simulation data cannot damage any of the
equipment involved in the project. The following screenshot shows an example
of an output mapping layer:

1 #Zsro i= 0

2 BIF HOT "H1_H3im Select™.Master Sim Sel THEN

3 "H1_Hl_Mode2éh 0-1% = “ES01".Typed.UV System.Run Outpot_To IV Syatems
5 "HL M1 NHedell RO™ :m "AV302".Typad.P0W_Word;

g "HL_Hl HodelS AQ® = "IFR01".Typed.Raw Value:

i f/R501

g #Tesp INT ;= BLEMOV(SRCHLE := =P501_GL20".Typed.Control Telegeam, DSTBLE =» PRQL340.0 Byte 20);
]

11 /RO Mapping

1z "Cutpat_Mappdng_RIA" ()

13 “Ouzput_Mapping RLAN" ()

14

15 | ELSE

17 #Tesp INT := FILL{BVAL := §Ze&ro, BLEK => P§Q0.0 Byce 30007;

LE

18

20 |END_IE:

Figure 7.27 — Example of an output mapping layer

When the Master Sim_Sel variable is set to True, the IF statement becomes False,
and the ELSE statement is executed. This fills all the @ addresses (physical outputs) with
the value in the Zero variable, which was set to the value of 0 in the first line of the logic.
This ensures that all the outputs are in a safe state when they're in simulation mode.

Summary

This chapter explored the concepts behind using standardized structures in simulations, as
well as how to get starting with the built-in simulation platforms that TIA Portal offers.

Whether programmers are building large-scale bespoke projects or small-scale standard
projects, the principles behind structuring data ensure that simulating any project is
easier. It also means that no additional software is required.

In the next chapter, we will highlight some of the difficulties of standardizing code and
data and what can be done to ensure that flexible options are available when projects
deviate from the standards. We will also look at the dangers of using InOut interfaces with
HMI/SCADA data and how to mitigate those risks.

8

Options to Consider
When Creating
PLC Blocks

This chapter explores additional options to consider when creating programmable logic
controller (PLC) blocks. There are many different approaches that programmers can take
when designing, creating, and then implementing logic solutions. This chapter explores
how to retain standardization while offering a flexible approach.

In this chapter, the following topics are covered:
« Extending standard functions
« Extending standard data
« Managing data through instance parameters

« Asynchronous data access considerations

238 Options to Consider When Creating PLC Blocks

Extending standard functions

A well-built paradigm or design pattern should allow for the extension of standard objects
without affecting the object itself. For example, standard objects should consist of other
standard objects that can also be used outside of their parent object.

Have a look at the following screenshot:

Standard Object Instance 1 Standard Objsct instance 2 Standard Object Instance 3

Standard
Object

Instance 1

Standard
Function Block
1

Instance 2

Standard
Function Block
1

Standard
Object

Instance 1

Standard
Function Block
1

Instance 2

Standard
Function Block
1

Standard
Object

Instance 1

Siandard
Function Block
1

Instance 2

Standard
Function Block
1

Standard Object Instance 3
Instance 3

Standard
—* Function Block
1

Figure 8.1 - Example of an extension

Figure 8.1 shows an example of an extension whereby Standard Object Instance 3 has
an additional instance of Standard Function Block 1 that is used outside of the normal
parent. Because all instances of Standard Object use Standard Function Block 1, and
Standard Function Block 1 is in itself a standard, it can be used outside of Standard
Object, and data that would normally be passed to Standard Function Block 1 from the
Standard Object interface can be passed directly instead.

If the example in Figure 8.1 were to be replicated in Totally Integrated Automation
Portal (TIA Portal), the Standard Object interface might look something like this:

Extending standard functions

239

Standard_Object

Mame Data type Retain Setpoint Comment
1 <@ ™ Input
2 |40 = Trigger_Value_1 Real Mon-retain
3 4= Trigger_Value_2 Real Mon-retain
4 = Add new
5 < ~ Output
6 40w Trigger_1_Active Bool Mon-retain
J |40 = Trigger_2_Active Bool Mon-retain
8 L} Add new
9 41 > InOut
10 41 = » Data “UDT_Standard_Data”
11 L} Add new
12 40 ~ Static
12 <@ = » Standard_Function_Block_Instance_1 "Standard_Function_Block” E
14 4@ = » Standard_Function_Block_Instance_2 | "Standard_Function_Block” E
L i
dHF - A == —
* Block title: ..
Comment

¥ Network 1: .

Comment

#5tandard_ #Standard_
Funcion_Blod_ Fundion_Blod_
Instanee_1 Instance_2
B3 WFB3
"Standard_Function_Block™ "Standard_Function_Block™
EN ENO EN ENQ —
#Data Value \':':IE':”E‘L Trigger_Adive — £Trigger_1_Adive ¢ Dot Value ‘h‘:‘:ﬂl‘?ﬂ?ﬂ, Trigger_Adive — £ Trigger_2_Adive

&Trigger_Value_1

Figure 8.2 shows the Standard Object interface from Figure 8.1 realized in TIA Portal.
This object can then be called in a parent object, and the two Standard Function

Trigger_Value

£Trigger_Value_2

Trigger_Value

Figure 8.2 — TTA Portal example

Block instances will be executed with data from the parent interface.

If a particular instance of the Standard Object interface needs extending, this is done in
the parent object. This is the object in which the Standard Object instance exists.

240 Options to Consider When Creating PLC Blocks

The extension also uses the same data that the block it is extending uses. When using
user-defined types (UDTs), it may be possible that all of the variables required to extend
functionality reside within the UDT; this may mean that only a single InOut interface is

required.

Have a look at the following screenshot:

¥ Block title: “Main Program Sweep (Cycle)”

¥ Network 1: Standard Objects

WDB8
*Standard_Objed_
Instanee_1"
WFB2
*Standard_Object
EN ENO
Bt Trigger_Value_1 %M200.0
40.0 — Trigger_Value_2 Trigger_1_Adive — 50_1
“DBY %M200.1

“Standard_Data_1" Data Trigger_2_Adive — 50_2"

4

Network 2: Standard Object With Extension

HWDB11
"Standard_Objed_
Instane_3"
%FB2
S tandard_Object”

58.4
%DBY9

“Standard_Data_2"

EN ENO

Trigger_Value_1 %200 4
54.0 — Trigger_Value_2 Trigger_1_Adive — 50_5"

*DB9 %WM200.5
“Standard_Data_3" Data Trigger_2_Adive — 50_8"

“Smndard_Data_
3" Value

67.3

HWDBE10
“Standard_Objed
Instanee_2"
B2
S tandard_Object
EN ENOQ —
Trigger_Value_1 %M200.2
Trigger_Value_2 Trigger_1_Adive — 50_3"
%M200.3
Data Trigger_2_Adive —"50_4
WDB12
“Standard_Objed
Instance_3_
Extended_
Instance_3"
%FB3
“Standard_Function_Block™
EN ENQ —
Monitored_ *M200.6
Value Trigger_Adive —"50_7"

Trigger_Value

Figure 8.3 — Extension in TIA Portal

Figure 8.3 demonstrates a typical extension requirement. Network 1 contains two
Standard_ Object instances that are not extended and function as intended when
developed. Network 2 contains a single instance of Standard_Object and an

additional Standard Function_ Block object (which Figure 8.2 reveals is called twice

in Standard Object).

The Standard Object Instance 3 Extended Instance 3 instance of the
Standard Function Block object is the extension of Standard Object
Instance_ 3. Both blocks in Network 2 are using data from Standard Data_3.

Extending standard data

241

While this is only a small example of an extension, the principle is the same no matter
the size of the extension. By taking functions that a Standard Object interface utilizes
and using them alongside the standard object—with data from the same source—the
Standard Object interface effectively has access to an additional instance of a function.

Extending standard data

Similar to program blocks, standard data blocks that use UDTs or structs can also be
easily extended without breaking standardization. For this to work, a data block needs to
be structured in a particular way.

Have a look at the following screenshot:

UDT Data

Bespoke Data

Asset Data block

Figure 8.4 — Example of a data block structured with UDT and bespoke data

Figure 8.4 is an example of a data block that consists of the following two areas:

o Asset UDT Data—This is the data that standard objects will access.

o Asset Bespoke Data—This is an extension of the standard data.

Now, have a look at the following screenshot:

Asset_1
Name

.G -

i 4=
3 -3 L]
- Q a
5 g -

Statc
* Typed

F Input_Signals
b Output_Signals
b Control_Data

Data type

"UDT_Aszet_Data®

Struct
Struct
Struct

Asset_2
MHame
? 1 48 ~ Static

4= ¥ Typed
3 48 & ¥ Input_Signals
A s | =} Output_Signals
5 4 = k Contol_Data
6 @ ™ Bespoke

A L External_lnterdock

Figure 8.5 — Example in TIA Portal data blocks

Data type

[
"UDT_Azzet_Dam”
Struct
Struct
Struct

Struct

Bool

242 Options to Consider When Creating PLC Blocks

Figure 8.5 demonstrates this pattern in data blocks. Asset 1 has the UDT defined as a
variable named Typed, and that is the only variable that appears in the data block. This
means that any standard object that requires data from Asset 1 can access the UDT
under the Asset 1.Typed path.

Asset 2 hasan additional Struct extension that holds data that is not available in the
UDT associated with the asset but is still related to the asset. The Bespoke struct contains
an additional variable, External Interlock. This extended data can be used as part
of the extension of a standard object, to change or enhance behavior.

Next, have a look at the following screenshot:

Network 3: Asset1-Mormal Standard Control & Data

%DB15
“Asset Standard_
Control_17
B4
"Asset_Standard_Control®

EM ENO

Standard Data
“Asset 17.Typed Data

Network 4: Asset 2 -Extended Standard Control & Data

WDEB16
"Asset Swndard_
Control_2"
- "Asser 2T, "Asset 27 Typed.
WFB4 Bespoke.External_ Output Signals.
"Asset_Standard_Control® Interlock Channel_1
EN ENO | | {R}

Standard Data
"Asset 2" Typed Data

Figure 8.6 — Example of both extended control and data

Managing data through instance parameters 243

Figure 8.6 demonstrates this approach in a practical example. Asset 1 on Network 3 passes
the standard UDT data from the Asset_1 data block, through the InOut interface of the
Asset_ Standard Control function block, and the block then performs its logic on
the data and passes it back through the interface.

Asset 2 on Network 4 performs the same actions that are performed for Asset 1, as the
same Asset_Standard_Control function block is called, only this time the data
passed to it is Asset 2 UDT data. Once the standard object has been executed, the
extension (which is a loose ladder after the Asset Standard Control function
block) is then processed. The contact checks if Asset 2.Bespoke.External
Interlock is True and, if so, sets Asset 2.Typed.Output Signals.

Channel 1 toFalse.

This means that the code has changed the standard UDT data, using an extended
method. If Asset 2.Typed.Output Signals.Channel 1 had been setto True
in the Asset Standard Control function block, the extension logic would have
overridden that to False before the rest of the logic continued.

The use of this approach means that no new version of Asset Standard Control
needed to be created, and no structural changes to the UDT were required either. This
protects and simplifies managing large libraries with potentially thousands of blocks and
structures.

Managing data through instance parameters

When creating standard objects that have multiple methods of operation, it is worth
considering which resources may be shared between the methods that an object can
use. Sharing resources has a positive impact on memory allocation and simplification
of an object.

244 Options to Consider When Creating PLC Blocks

Principle to this approach

Consider a standard control object that can be run in one of three modes. Only one mode
can be run at any one time. You can see an example of this in the following screenshot:

Standard Control Object
Method 1
Data
) . Restart Delay
| Start Delay Timer Run Timer Timer
Method 2 5
- Method o .
Selection : Run Timer Resﬁfﬂge'aﬁ
| Method 3
Run Timer

Figure 8.7 — Example layout of a standard control object with multiple control methods

The standard control object accepts a common data structure (UDT, for example) and
contains logic to read the selected method. In Figure 8.7, the three methods contain
different timers that are in use. All methods require at least one timer, with the largest
method (Method 1) requiring three timers.

If a function block were written in this manner, it would contain six timers, even though it
is not possible to run more than three at any one time.

It would be better to declare the timers as an external resource to the methods, as depicted
here:

Standard Control Object

I—-b Method 1 rt—- ——— | Start Delay Timer
paa | L T O\

Method A | —]
E— o —- | —

Selection | Lomeds = Run Timer
|
AY

| T~ Restart Delay
—
Method 3 Timer

Figure 8.8 - Methods with common resource access

Managing data through instance parameters 245

Figure 8.8 demonstrates methods 1, 2, and 3 all having access to timers that they require
to function. This means that only three timers are required, no matter which method is
in use.

This approach optimizes data and helps reduce the amount of complexity when
maintaining the standard control object in the future.

TIA Portal example

This example consists of a Standard Control Object instance that contains an
interface for a UDT called Data and three timers, listed here:

e Start Delay Timer
¢ Run Timer

e Restart Delay Timer

The timers are all declared in the static scope of Standard_Control Object, as
illustrated in the following screenshot:

Standard_Control_Object

Marne Data type
<0 * InDut
<] = p Data "UDT_Asset_Data”
] ™ Static
<] = » Start_Delay Timer TOM_TIME
<0 = p Run_Timer TOM_TIME
<0 = P Restart Delay Timer TOM_TIME

Figure 8.9 — Timers declared in static data

246 Options to Consider When Creating PLC Blocks

The methods are then called as functions in the logic of Standard Control Object,
as illustrated in the following screenshot:

- Network 1:

Method 1

& Data.Control_
Data.Operation_ WFC2
Mode "Method_1*
= | -
_| —e]
Usint [EN ENO
| #Data Data
Start_Delay_
£5tart_Delay_Timer — Timer_Instance
Run_Timer_
ERun_Timer — Instance
#Restar Delay_ Restart Delay_
Imer — Timer_Ins@ne
bt Network 2: Method 2
#Data.Control_
Data.Operation_ WFC2
Mode "Method_2"
= | -
—
—| usint | EN ENO
7 £Data Data
Run_Timer_
FRun_Timer Instance
FRestart_Delay_ Restart Delay_
Timer — Timer_Insance

- Network 3:

Method 3

Figure 8.10 - Method 1 call

& Data.Control_
Data.Operation_ W2
Mode "Method_3"
== |
—l —_—
usint | EN ENO
3 EData Data
Run_Timer_
ERun_Timer Ins@ne

Figure 8.10 shows that Method_ 1 has three interface parameters, once for each timer
required. The static data from the parent object (Standard Control Object)is
passed through this interface, such that Method_1 has access to the timers.

Managing data through instance parameters 247

This means that, as a function cannot hold instance data, the function's parent holds the
instance data on behalf of the child object.

Now, have a look at the following screenshot:

* Network 2: Method 2
¥Data.Control_
Data.Operation_ WCa
Mode “Method_2*
| - | -
USint | EN ENO
2 #Data — Data
Run_Timer_
ERun_Timer Instance
#Restart_Delay_ Restart Delay_
Timer — Timer_Instance

bt MNetwork 3: Method 3
¥Data.Control_
Data.Operation_ WFC3
Made "Method_3"
== | -
—l uUsint | EN ENO —
3 #Data Data
Run_Timer_
ERun_Timer — Instance

Figure 8.11 - Additional methods share the same timer instance data

Figure 8.11 shows that Method 2 and Method_ 3 also use the same instance data, from
the same source. Because the methods cannot be run at the same time, it is safe to share
the timers across different methods.

Note

Careful consideration should be taken when using instance parameters to
ensure that it is safe to use the data more than once. It is also just as important
to remember that data held by the parent object will not reset or update if no
method is utilizing it anymore.

In this example, if the method being executed were to change while a timer was in use,
the timer instance data would still contain the same values when the next method first
accessed it. This could cause adverse effects depending on the required logic.

248 Options to Consider When Creating PLC Blocks

Function block interfaces

When creating instance data for a function block, the following window is displayed by
TIA Portal to determine the call options:

(TR BUORE e

Parameter instance

E Mame in the interface | Instance | =l
B

) If you call the function block as a parameter instance, the
_ Single function block saves its data in the instance you specify as
Instance black parameter and net in the instance of the called block.This

gives you the option of defining the instance for this FB call
during runtime.

o

Multi

instance

+%+
Farameter
instance

MMore...

r oK ‘ | Cancel

Figure 8.12 - Call options for database instance data

If an instance is to be stored in the parent object, as in the example in this chapter, then
Parameter instance should be selected. This will create an InOut interface with the data
type set as that of the instance data of the function block that is being called.

Note

Parameter instance is only available to be selected when a function block
is called inside a function or another function block. When called in an
organization block, this is not an available option.

Asynchronous data access considerations 249

Asynchronous data access considerations

It is important to remember that many modern human-machine interfaces (HMIs)/
supervisory control and data acquisition (SCADA) systems will access PLC data
asynchronously. This means that instead of waiting till the end of the PLC scan to obtain
or write data, the HMI/SCADA system will interrupt the scan to update or obtain data.

Normally, this is not an issue. However, when references via InOut interfaces are in use,
it can cause unexpected behavior. This can be very difficult to diagnose because the next
time data is updated, it may not be updated in the same place in the scan.

Have a look at the following screenshot:

Function Block 1

Function Block 2

Figure 8.13 — Example of an erroneous configuration with InOut interfaces

Figure 8.13 is an example of a configuration that is valid by the compiler but introduces
issues if data blocks are interfaced with an HMI.

The blue data blocks represent asset data—they are connected to InOut interfaces of
Function Block 1. Function Block 1 is moving the data contained in each asset data block
to a consolidated data block (represented by the green data block in Figure 8.13) so that
Function Block 2 can utilize all assets on a single interface element.

The issue with this particular setup is that the InOut interface between the consolidated
data block and Function Block 1 is not actually InOut in the true sense.

250 Options to Consider When Creating PLC Blocks

Now, let's see what's happening here:

Function Block 1

J<— Pointer InOut — Move —
J«—— pointer InOut — Move —|
J«—— Pointer InOut — Move —
J«—— Pointer InOut — Move —|
J«— pointer InOut — Move —
J«—— Pointer InOut — Move —

InOut

e— Pointer Function Block 2

InOut
A
Copies
Figure 8.14 - Example of how copies of InOut-referenced data are created

The Move instruction in Function Block 1 is actually dereferencing the data from Pointer
and creating a copy, which is then passed to the relevant location in the consolidated data
block. This means that all data in the green consolidated data block is a copy of the asset
data and not the original dataset that the HMI is interfaced with.

Because of how the data is accessed by the HMI, the following example of a configuration
cannot guarantee that the data being accessed is the latest data:

v v
Logic Hl
Processed Update

Figure 8.15 - Example of HMI asynchronous update

If Function Block 1 performed the copy of the asset data after the first HMI update, the
rest of the HMI updates would be missed by the PLC until the next update was performed,
as illustrated here:

v v
Logic HMI
Processed Update

Figure 8.16 — Example of missed updates

Asynchronous data access considerations 251

This can result in strange behavior, especially if later on in the program, data is written
back to the original data blocks. This would mean that data that has been updated by the
HMI would revert to original values before the HMI update occurred.

The correct method

Instead of trying to consolidate large datasets into a common data block, it is always better
to interface data blocks separately. This means that there may be many interfaces on a
function block; however, it is safer from issues brought on by unexpected copy events. You
can see an example of this in the following screenshot:

Function Block 1

[Pointer nOut
[Flet— Pointer
||<— —— Pointer

||<— Pointer

| Pointer

| Pointer

Function Block 2
Paointer

Pointer
Pointer
Pointer
Pointer

Pointer nOut

Figure 8.17 - Example of full interface
This approach safeguards against accidental copy events that dereference the pointer data.
All function block interface elements point directly back to the original source data.

In this scenario, it does not matter when the HMI or SCADA system asynchronously
updates data as all references would update at the same time.

252 Options to Consider When Creating PLC Blocks

Summary

This chapter has covered the topic of extension. This is when standard control objects'
standard methods are extended outside of the standard control object, usually by using a
child object that already exists.

This form of extension is a solution to adding methods to a project without changing the
standardization of objects.

This chapter has also covered the extension of standard data. This allows asset-oriented
data to consist of standard UDT data that is extended by bespoke data. This further
supports the method extension by allowing non-standard setpoints and other data.

The next chapter moves away from PLC and over to the TIA Portal WinCC environment,
in which HMIs and visualizations can be created to support projects.

Section 3 -
TIA Portal - HMI
Development

Learn how to develop HMI screens that interact with PLC data. Learn how to enhance
this further with faceplates and structures.

This part of the book comprises the following chapters:
o Chapter 9, TIA Portal HMI Development Environment
o Chapter 10, Placing Objects, Settings Properties, and Events

o Chapter 11, Structures and HMI Faceplates
o Chapter 12, Managing Navigation and Alarms

9

TIA Portal HMI
Development
Environment

This and the next few chapters explore the visualization side of Totally Integrated
Automation Portal (TIA Portal), creating human-machine interfaces (HMIs) and
connecting them to data in associated programmable logic controllers (PLCs). HMIs
are important to the overall feel of a project as they are the mechanism by which people
interact with the project.

Programmers that can both develop a PLC application and the associated HMI
applications are expected in today's working environment. TIA Portal allows the two
different program environments to fall under one application, making it much easier for
programmers to write both the PLC and HMI with ease.

In this chapter, the following topics are covered:

Adding an HMI to a project
HMI development environment overview
Screen objects

Special objects

256 TIA Portal HMI Development Environment

TIA Portal Comfort Panel

In TIA Portal Version 17 (V17), there are now two different types of Comfort Panel
HMIs, as outlined here:

o SIMATIC Comfort Panel
o SIMATIC Unified Comfort Panel (new)

This chapter (and others that reference HMIs) will focus on the newest Unified Comfort
Panel.

Adding an HMI to a project

Just as with a PLC, an HMI needs to be added as a device in a TIA Portal project. Once an
HMI device has been added, different objects appear under the HMI object in the Project
tree pane.

To add an HM]J, the following steps will be used:

1. Double-click Add new device in the Project tree pane. This will open the Add new
device window, as illustrated in the following screenshot:

Add new device m
Device name:
[HM_1 |
e El B Device:
» [SIMATIC Basic Panel
» [sIMATIC Comfort Panel
Contrallers VP_D SIMATIC Unified Comfort Panel
» h 7" Display
] p_D 10" Display
» [12" Display
D » 'I:NS“ Display ;
» [5 19" Display Article no.: | |
HMI v [22" Display et | 2
S » [SIMATIC Mobile Panel
— » [HMI SIPLUS Description:
g » [HMI SIPLUS RAIL SIMATIC Unified Comfort Panel
PC systems
D Start device wizard | o | | cancel

Figure 9.1 — Add new device window

Adding an HMI to a project 257

2. Selecting HMI from the options in the left column will display the available HMIs
in TIA Portal V17. SIMATIC Unified Comfort Panel is the latest version of
Siemens' HMIs.

3. Select a display size and open the corresponding folder. Inside will be the device
that is to be added to the project, as illustrated in the following screenshot:

Add new device m
Device name:
[Hw_T |
- [——
~ [Hw Device:
» [SIMATIC Basic Panel
» [SIMATIC Comifort Panel
= .
e [SIMATIC Unified Comfort Panel
» [7" Display
S 10 Mie
’ IE' 10 D!‘play MTP1200 Unified Comfort
* [} 12" Display
D ~ [5i MIP1200 Unified Comfort ;
] 6AV2 128-3MB06-0AKx Article no.: | 6AV2 128-3MBOG-DAXK |
HMI 4 E 15" Display Version: | 17.0.0.0 |v|
» [19" Display
» [22" Display Description:
» [SIMATIC Mabile Panel 12.1" TFTdisplay, 1280 x 800 pixels, 16M caolors;
» [HMISIPLUS Multi touch; 1 x 4221485, 1 1PROFINE_TJ’Indu5triaI
o - - Ethernet interface with MRP (2 Ports); 1 x
») HMISIPLUS RAIL Ethernet (Gigabit}; 2 x50 card slot; 4 x USE
FC systemns
Start device wizard r oK 1 | Cancel

Figure 9.2 - Adding a 12" Unified Comfort Panel
At this point, different versions of the Unified Comfort Panel can be selected. If
the panel is to be paired with a version 16 PLC, select version 16.0.0. 0 from the
drop-down list; otherwise, leave it as version 17.0.0. 0.

4. Clicking OK will then add the HMI to the project and Project tree pane, as
illustrated in the following screenshot:

I~ | 7 Chapter9
B ~dd new device
gy Devices & networks
» [HMIL_1 [MTP1200 Unified Comfort]

Figure 9.3 - Project tree pane with the new Unified Comfort Panel added

258

TIA Portal HMI Development Environment

Once the HMI has been added to the Project tree pane, it can be expanded with the
arrow to the left of the HMI object. This reveals additional objects, most of which
are different from those of a PLC, as illustrated in the following screenshot:

~ [HMI_1 [MTP1200 Unified Comfort]

I]T Device configuration
% Online & diagnostics
Runtime settings
Screens

HMI tags
Connections

Hil alarms

IR o T

Farameter set types
“ Logs
5] scheduled tasks
v [a] scripts
3 Collaboration data
) Gycles
1.::_..] Text and graphic lists
Figure 9.4 - HMI objects
The most important of these new types are listed here:

= Screens: This is where visual elements are built so that the HMI can display them

to the end user.

» HMI tags: These interface with the PLC so that data can be written and read

between the HMI and PLC.

» Connections: These are the interface connection profiles, where Internet
Protocol (IP) addresses and other protocols are defined to allow the HMI to

connect to other equipment.

* Runtime settings: This setting window allows the programmer to change the
behavior and experience of the HMI when downloaded and the project's runtime

is active.

These are collectively used to configure the HMI.

HMI development environment overview 259

HMI development environment overview

HMI is made up of many different aspects and areas, and hence it is important to
understand these key aspects and the tools that are offered to build an HMI.

Runtime settings

Runtime settings configures how the HMI behaves once downloaded to the hardware. It
is necessary to access this and change the configuration once the HMI has been added to
the project.

In TIA Portal V17, Unified Comfort Panels fail to compile when they are added to
a project due to invalid security settings, and an invalid start screen configured, as
illustrated in the following screenshot:

General

ldentification

Runtirme 1D: | 6afcb1ba-6383-4532-8116-86d4d6a20bf3

Encrypted transfer
[Activate encrypted transfer

Password: | |

Confirm password: | |

0 Allow initial password transfer via
unencrypted download

Screen

Start screen: | |§||

Selected style: |Exter1ded style |v |

Figure 9.5 - Invalid runtime configuration

A password can be set for Encrypted transfer, or the activation of the option can be
turned off by unchecking the Activate encrypted transfer option.

260 TIA Portal HMI Development Environment

The start screen can be defined by clicking the button with the three dots (...), which will
open the following window:

Screen
Start screen: | = ||
selected shle: | _ 15 i1 (MiP1200 Unified | [|]
—
- 7| e Name Name with type version
B
4
»
Compile L
warnings: 0} | < || Il |
Description
o

Figure 9.6 - Start screen window

Here, a start screen can be selected, or a new screen added by clicking the Add new button
at the bottom of the window.

Note

Adding a new screen here will simply create Screen 1 or a similar name.
The screen can be found in the Screens folder in the Project tree pane.

If the HMI project is compiled at this stage, it should now be error-free.

Other notable areas

The Runtime settings option also contains some other areas that can be of use, depending
on how the project is to be used and configured. Let's look at a few of these here:

« Alarms: This allows the editing of static texts for alarms and other options around
handling alarms.

« Services: Allows the HMI to operate as an Open Platform Communications
(OPC) server and allows the designation of a Simple Mail Transfer Protocol
(SMTP) port.

HMI development environment overview 261

« Language & font: Allows more than one runtime language to be defined.
Remember that these are actually set in the Language & resources object in the
Project tree pane and are shared across the entire project.

« Remote access: These options configure how the HMI may be accessed
remotely—via a web client, for example. They include the following options:

» Collaboration: The settings under this heading allow the HMI to share (or
collaborate) with other Unified HMIs and Unified PC stations. When configured
correctly, this allows HMIs to share resources such as screens, despite them not
being part of the same project.

+ This requires an additional runtime license.

» Web client: Allows access to the runtime via a web browser and requires an
additional runtime license.

= Smart Server: Allows access to the Unified Panel from the Siemens Smart Client
application.

« Storage system: Allows configuration of where the storage system is located
(Universal Serial Bus (USB) or Secure Digital (SD) card) and which medium is
being used for tag logging and alarm logging operations.

Folders can be created in mediums, too, to help organize logging.

« Tag settings: Settings here change how the HMI synchronizes tags with any PLCs
connected.

It is recommended to leave the settings as their default settings; however, it may be
beneficial to some projects to amend these if required.

+ User administration: Allows the setting of local user management or User
Management Component (UMC). UMC requires additional resources and
licensing to operate.

Screens

A screen is a visualization object; it is the area that contains objects that will be presented
to the end user on a physical HMI device. An HMI can consist of many different screens
that hold objects. These screens collectively form different areas of a project and require
navigation methods to switch between screens.

262 TIA Portal HMI Development Environment

At least one screen must be created for an HMI to compile correctly. The start screen (the
screen the HMI will display on startup) is denoted by a small green arrow in the Project
tree pane, as illustrated in the following screenshot:

7 Tj Screens
B Add new scre...
F | Screen_1
[] screen_2

Figure 9.7 — Start screen with green arrow indication

The start screen can also be referred to as the base screen. This screen may simply
navigate to other screens or contain screen windows that display other screens.

Screen toolbox

Opening a screen (or creating a new one by double-clicking Add new screen from the
Screens folder in the Project tree pane) will open the screen and update the Toolbox
section to the right of the main TIA Portal window, as illustrated in the following screenshot:

..._1 [MTP1200 Unified Comfort] » Screens » Screen_1 - X

Options
JasIELRISNHUE+IEHVNENIS &' -

v | Basic objects

/s A

[>]

"X

Line Polyline Polygon
= Ellipse Ellipse Circle
segment segment

< O

Elliptical arc Circular arc Circle

_g A Yy

Rectangle Textbox Graphic view

{

v | Elements

gE my

10 field symbolic 10 Button

[>]

field
o i M — =
| Ed O— i
hd | il | 3 ” 100% |v Ananchf o onnan Switch Check box Bar

Figure 9.8 - Screen development toolbox

HMI development environment overview 263

Toolbox contains all of the necessary objects required to build a visual interface for the
screen selected. Toolbox objects are split into different categories, ranging from basic
objects to smart elements and controls, and Siemens-supplied graphics and widgets.

Note

The Graphics and Dynamic Widgets sections of Toolbox are best viewed with
all other areas collapsed. This is because they contain another graphics window
below that displays graphic contents. Items can be dragged out and dropped on
the screen from this additional window.

Screen layout

The screen Layout tab, located to the right of the main TIA Portal window, allows the
configuration of the layer the screen object resides on. Layers are used to place screen
objects on top of each other, splitting them into areas that can be hidden if required. You
can see an overview of this in the following screenshot:

-l X

Options ﬁ

]

— =1

e 55 | Layers g

—

* || Screen_1 |

* = layer 0 e Tht

2 [} Rectangle_1 Ti
1 : A Text box_1 \g
= Layer_1 @ =g

[} Rectangle_2

A A Text box_2 =, |

-) ext box_ e

= Layer 2 - r

Figure 9.9 - Screen objects and layers example

For objects to sit on top of another object, they must be configured to be part of a

higher layer number, or if in the same layer, further toward the next layer in the list.
Figure 9.9 demonstrates that Rectangle 2 is positioned on top of Rectangle 1 as
Rectangle 2 isin Layer 1, which is a different layer that has a higher number. Text
box_1 is positioned on top of Rectangle 1 because it is further toward the next layer
in the Layer 0 list.

264 TIA Portal HMI Development Environment

Note

Moving objects by dragging them around in the Layers window is the same
as right-clicking on an object and changing the arrangement by choosing an
option in the Arrange menu. Remember that arranging objects only affects

their position against objects in the same layer. An object can be moved to a
different layer by dragging it there in the Layers window.

Layers can be hidden in the editor by turning oft the layer with the eye icon, as shown in
Figure 9.9.

Note

At least one layer must be active at all times. An active layer is represented by
the pencil icon. Active layers cannot be hidden. Hidden layers are still visible in
Runtime settings.

TIA Portal V17 bug

When toggling the visibility of layers, sometimes the layers do not come back on in the
correct order. Unfortunately, this is an issue that has no easy resolution other than to
re-organize the layer again. This may be fixed in later versions of TIA Portal V17.

Screen objects

Screen objects are items that are used to build up visuals on screens. There are many
different types of screen objects, and each comes with its own properties and events.

Screen objects can be found in the Toolbox window to the right of TIA Portal when a
screen object is open in the editor.

Screen objects can be placed by simply dragging and dropping the screen object into the
Editor window.

Object properties

When an object is selected, the Properties tab at the bottom of TIA Portal contains the
relevant properties of the object, as illustrated in the following screenshot:

Screen objects 265

[a} O u}
[u} O
O o O
J Properties || Events || Texts
A
iZBE Y
Mame Static value Dynarnization (0}
v Appearance
b Alternative background color I:l 0,255, 0 None
b Alternative border color I:l 255, 255, 255 None
» Background color I:I 200, 205, 215 MNone
» Background fill pattern Solid None
» EBorder color - 125,125,133 None

Figure 9.10 — Example of object property configuration

These properties define how an object looks. Most can also be made dynamic by changing
the Dynamization option to the right.

Note

When Dynamization is selected, additional options appear to the right of the
Properties tab.

Object events

When an object is selected, the Properties window at the bottom of TIA Portal contains
relevant events for the object on the Events tab, as illustrated in the following screenshot:

o {u] o
o [=]
o o a

Properties Events || Texts |

t THE B X

Activated

Name Value
Deactived - StopRuntime
E Click left mouse button Meode (optional) Stop runtime and restart operating system
Press key <Add function=
Release key

Click right mouse butten

Figure 9.11 - Example of object event configuration

266 TIA Portal HMI Development Environment

The event configuration defines how an object behaves when interacted with, such as a
left mouse click. In Figure 9.11, clicking the rectangle results in the HMI runtime shutting
down and restarting.

Note

If we are running a Unified HMI in a simulation environment, by raising an
event against Stop runtime and restart operating system, the development
environment will restart. This will result in the loss of unsaved work.

Special objects

TIA Portal comes equipped with two types of special objects: Elements and Controls.
Both types of object have a range of pre-built properties and events that relate to their
designated purpose.

Both Elements and Controls can be found in the Toolbox window to the right in TIA
Portal when a screen is open, as illustrated in the following screenshot:

Options n
;I =
o
=2
2 | Basic objects E
v | Elements
01 - = |
wy o & Bz K =
= [
10 field Symbeolic 10 Button Switch Check box Bar 2
field 2
~
R, = (o) w— —[a] L \]

o wr) S] o —
o T O- = - g B
Gauge Slider Radic button List box Clock Touch area -

S
e
w
hd | Controls
) p— I e — dm
-l | ke s ;) J m
) L
Alarm Screen Trend control Function Web control Parameter =
control window trend control set control v
==
1 1
Faceplate System —
container diagnosti... o
E
> |N'y controls @
? | Graphics ||

Figure 9.12 - Elements and Controls in the Toolbox section

Special objects 267

These objects have more specific roles than Basic objects. Elements are typically objects
that a user may interact with, such as a button or slider. Controls are objects that allow a
TIA Portal's Unified environment to make use of a particular function, such as displaying
a faceplate or managing alarms.

Elements

Elements are essentially ready-made faceplates that programmers can drop into a
project to enable quick visualization of data. You can see an example of an element in the
following screenshot:

F AL S EERSIANMHUEFENHUE |l 0 828 =)

o o
2900 oo g S J Properties || Events || Texts
HA=N—
Name Static value Dynamization (0}
o * General A
b Label
} Process value 2345 MNone ‘E
b Scale 1
b Title |
155.920000 T Appearance ,
» Alternative background celor - 128,128,128 None ‘
o g » Alternative border color |:| 192,192,192 None
» Background color |:| 255,255,255 None r
» Background color process \.ra...- 100,100, 106 None
» Border color |:|D. 0,0 None
» Border width 1 None
» Font
» Fereground color process val. - 0,0,0 Neone
» MNormal range color |:| 135, 190, 50 Mone
} Opacity 1 None
b Srale harkaraond 1102 102 197 Nane b
H i 3]

Figure 9.13 — Example of a Gauge element and its properties

Elements are highly configurable, allowing easy configuration and dynamization of
options and signals. Building these controls from scratch can be done; however, these
types of controls and indicators are well known in HMI development, and it makes sense
to use a highly configurable object instead of starting from scratch.

268 TIA Portal HMI Development Environment

Controls

Controls are more involved than Elements, from a configuration point of view. Controls
are objects that directly interact with the background systems in the TIA Portal and
Unified environment, allowing access to data stored in alarm databases and tag logging.
You can see an example of a control in the following screenshot:

FascEaATIal+0BWEN=S 4 F¥ag ¥ 1y ' Properes [Info] %) Diagnosties |
T i Properties | Events 1 Texts -:

BBEY
- Genersl A
+ Trend arees s F
. = (0] Trend srea
we | 7 ¥ Auhary bne calor
| L) i
| ¥ Grid lines

b Leftualue aus

» Main line color E 2.7 |
b Mame Trendares 1

¥ Range prapamion 1 M

¥ Rightvalue axs Qitems

b Ruler

P Selected trend Trends[o] L

b Statatics nuber

b Tene st bottorn 1items W
b Teme bz 1op Ditems:
b Trends 1items

¥ Vitshility (=1
= Appearance
b Ares zpacing 10 M
¥ Eackground colar [255, 255, 285 M
) . . . b Extend nuler B
!"-‘i b Show focus visuel (=]
M 4 Ly » M ad ng Q] m @ b Window reming: Show heeding, Show Barder, Can be sized, Canbe. M
- Mseelaneous
@ ¥ Caption - Color B 145. 147,154 M
§ b Connection status None
i 5 b lcon ()
b Label
b Legend
Hame “Trend control_1
¥ Oniine Eu vl
3 n 3

Figure 9.14 - Example of a Trend control, with many more properties

Figure 9.14 shows an example of a Trend control that has been placed onto a screen. This
particular control allows access to the tag logging system, something that is not otherwise
accessible by other, more basic objects.

Graphics and Dynamic widgets

Two more types of special controls relate to visually displaying graphics objects on

the screen. These contain pre-built graphics files that have a number of configurable
properties for color so that an indication of status can be achieved. There are many
different control types to choose from, categorized by different asset types. You can see an
example of these in the following screenshot:

Special objects 269

Options

Basic objects

Elements
Controls
My controls
Graphics

;‘(j

B

4 ',.1"_] Tanks
% Tubing, flexible
1% valves
» ¥ Navigate & operate
4 E‘_] Plant products
»] Technoloay

LI e |

[>] [<]iu]

57

R
= A 3 X

=18

] BN XK B
HXXZK
HRAZS
P ERK"

35D

2.
y

~ | Dynamic widgets

(5
% Containers
m Conveyors
[%] Diagnosis_Overlays IEI
[Flow_Meters
F‘_“] Heatings

- W | e

MagneticF... MagneticF.. MassFlow... TurbineMeter

e

TurbineMet... UltrasonicF... UltrasonicF.. VentunFlo...

Figure 9.15 - Toolbox with Graphics and Dynamic widgets expanded

These can be found in the Toolbox section to the right of TIA Portal when a screen is
open, as shown in the preceding screenshot.

270 TIA Portal HMI Development Environment

Summary

This chapter has given insight into TIA Portal HMI development and what the
environment feels like to develop within. The areas explored only touch the surface of
what can be configured, visualized, and actioned in runtime. The TIA Portal Unified
environment is very powerful and designed well, providing all that is needed to help
programmers create smart, efficient, and visually pleasing environments, with minimal
work.

The next chapter continues the exploration of the TIA Portal Unified environment. The
chapter discusses static and dynamic properties, raising events, and using scripting and
dynamization of properties. These make up the basic principles of HMI development in
TIA Portal.

10

Placing Objects,
Settings Properties,
and Events

This chapter explores screen objects further, explaining how to set static properties and
how to make them dynamic. Human-machine interfaces (HMIs) accept inputs from
operators too. This chapter explains how to create events and how to use scripts within the
Unified environment.

Properties, events, and scripts are all used to change the behavior and feel of the HMI,
from how it looks to how it responds to buttons being touched.

In this chapter, the following topics are covered:
» Setting static properties
« Setting dynamic properties
» Using scripts

» Raising events

272 Placing Objects, Settings Properties, and Events

Setting static properties

Nearly all properties of a screen object have the ability to define a static value. This static
value can be considered a hardcoded value or a constant. This means that it does not
change during the execution of the HMI runtime.

Every screen object that can be placed from the Toolbox section has its own list of
properties that affect the look and feel of the object. Most screen objects contain similar
properties, such as visibility, authorization level, size, and position. You can see an
overview of this in the following screenshot:

=} o
g Text
o o
Properties || Events || Texts
2B E
Name Static value
b General
¥ Appearance
» Alternative background color - 128,128,128

b Alternative border color []2s5. 255,255

¢ Background coler |:| 242,244, 255

» Border color Il 100. 100, 106

» Border width 0

¥ Foreground color - 0,00

» Opacity 1

b Show focus visual E
» Format
b Miscellaneous
* Security

» Allow operator control [+

Authorization
Require explicit unlock (|

¥ Size and position

b Height 40

b Left 45

» Pivot point Absolute from cente

» Rotation 0

» Top 80

b Width 160

» X pivot point 0

» Y pivot point 0

Figure 10.1 - Properties when screen object selected

Setting static properties 273

The Properties list contains everything available to be changed for the selected
screen object.

The General section of the Properties list contains properties that relate to the selected
object only. This means that other screen objects may not have these properties—for
example, a Text box object has the Text property, but a Line object does not.

When static values are changed for a property, Totally Integrated Automation Portal
(TIA Portal) is able to action the change immediately in a visual format (in most cases).
This means that when the property is changed, the object on the screen changes. You can
see an example of this in the following screenshot:

o o u]
o Some New Text 0O
o o o
Properties || Events || Texts
A
izBE
Mame static value
* General
F Font
b Text ISn:nrne Mew Text |v |

Figure 10.2 — Example of the Text property static value being changed and the object updating to reflect
the change

This allows programmers to preview changes as properties' static values are modified.

Note

Not all static values update an object's look in development time. Properties
such as Alternative background color are only displayed in the HMI runtime.

274 Placing Objects, Settings Properties, and Events

Types of static values

There are different types of static values, determined by their functionality and how

they are used. For example, the appearance section of a Text box object consists of color
properties, numerical properties, and also Boolean properties, as illustrated in the following
screenshot example:

ext box 1 [Text box]

Properties

i2BEY

:I-ihlla Static value |-
. * General |
| » Font

o Tex Some New Text String Type |
. > Appearance

| » Alternative background colol 128, 128, 128 Color Type

| » Alterative border color 255, 255, 255 Color Type

| » Background color 2432, 244, 255 Color Type

~ | » Bordercolor 100, 100, 106 Color Type

| » Borderwidth 0 Numerical Type
. b Foreground color 0,00 Color Type

. b Opacity 1 Mumerical Type
| » showfocus visual @ Boolean Type

Figure 10.3 - Example of different types of static values

These different types of static values change how data is entered. When interacting with
Color properties, a color chart is displayed. When interacting with a String or Numerical
property, nothing is displayed, and the programmer can type in the required property
value. Some properties are simply checkboxes that either enable or disable the property.

Setting static properties 275

Key properties

Most objects have some key properties that programmers will interact with often and are
relative to nearly all screen objects, including elements, controls, and graphics. Here are
some of them:

o Miscellaneous
= Name

+ Sets the name of the object in the development environment
+ Used to access the object via scripting

+ Automatically assigned a unique name when an object is placed on the screen;
however, this can be modified if required

- Visibility
+ Sets if the object is visible in the HMI runtime.
+ The default value is True.
o Security
= Allow operator control

+ When enabled, allows operator interaction events to be actioned for the object.

+ When disabled, operator interaction events associated with the object
are ignored.

+ The default value is True.
= Authorization

+ A drop-down box that allows the setting of the minimum required login level in
order to interact with an object.

+ The default value is unset—this means any level can access an object, even
when no user is logged in.

« Size and position

» This section contains many different properties that all relate to where an object
appears on the screen and the size of the object.

276 Placing Objects, Settings Properties, and Events

o Appearance

= This section contains many different properties that all relate to the appearance of
an object.

e General

» This section contains many different properties that all relate explicitly to the
associated object.

= This section differs for different object types but is considered a key section as it is
nearly always required to be interacted with during the configuration of an object.

Note

The Properties tab on the Properties window can be filtered or sorted using
the buttons that appear between the table of properties and the tab header. See
Figure 10.3—note the buttons directly beneath the Properties tab header.

Setting dynamic properties

Nearly all static properties can be made dynamic through the Dynamization feature built
into TIA Portal and Unified HMIs. Dynamization allows the modification of property
values during runtime. This means that properties such as color, visibility, and more can

be modified to react to data that is being passed to a property. You can see an example of
this in the following screenshot:

DynamicSVG_1 [DynamicSVG]

J Properties || Events || Texts |
ZBEEY
‘Mame I‘Stalicvalue |§; Dynarmization (1} |
} Appearance
* Miscellaneous
» Connection status MNone
* Interface
BasicColor []238,238,238 MNone
MName DynamicsVG_1
» Show connection quality gNone
Tab index 0
b Tooltip MNone
b Visibility [Tag

Figure 10.4 - Example of Visibility property set to Tag for dynamization

Setting dynamic properties 277

By setting the dynamization of a property, additional information needs to be provided to
the property, as illustrated in the following screenshot:

DynamicSVG_1 [DynamicSVG] €l Properties Iﬁ Info ylﬂ Diagnostics L=
J Properties || Events H Texts ‘
iy = M
HA=R = Y Tag
!\:am; |.. |# Dynamization (1)] . Settings
pearance
¥ Miscellaneous Tag: =l [T use indirect addressing
» Connection status PLC tag: F g Read-only
> Interface Address:
BasicColor [nene
Name
» Show connection quality [Nene Type Condition [Visibilty]
Tab index 0 @ None
» Tooltip Mone O Range
b Visibility M Tag [=] : .
Single bit |0
~ Security b O d -E
» Allow operator control [None M
Autherization m

Figure 10.5 - Tag dynamization additional properties

These additional requirements appear to the right of the Properties list when a
dynamization property is selected.

Note

Depending on the type of dynamization used, the view may look different and
have different options.

Assigning tags to dynamization properties
Selecting Tag as the dynamization method allows programmers to assign a
programmable logic controller (PLC)- or HMI-based tag to inspect for a condition.

Depending on the conditions set, an outcome can be defined that affects the property that
is being made dynamic.

278 Placing Objects, Settings Properties, and Events

Connecting the HMI and PLC

Before tags from a PLC can be used, a connection between the HMI and PLC must be
made. This can be done by opening Device configuration from the Project tree pane
and opening the Network view tab from the top right of the window, as illustrated in the
following screenshot:

|E Topology view ||¢,-E-¢, Network view ||[|'|‘ Device view

Ee: =

h—kn Metwork r:||:| Connections |—" connection |v| HE % 'i

PLC_1 HMI_1
CPU 1511-1 FM MTF1200 Unifie...

Figure 10.6 — Network view displaying a PLC and HMI with no connection

To connect the two devices together, a network connection must be made. This can be
done by ensuring the Network button in the top left of the window is selected and then
dragging between the green network ports on both of the devices.

When this is complete, TIA Portal will create a Profinet/Industrial Ethernet (PN/IE)
connection between the devices, as illustrated in the following screenshot:

PLC_1
CPU 1511-1 PN

HMI_1
MTP1200 Unifie...

Figure 10.7 - PN/IE network between devices

Once this has been set up, HMIs need an additional step to share tag information between
the HMI and PLC. An HMI connection is required in order to point internal HMI tag data
to the relevant location in a connected PLC.

Setting dynamic properties 279

To make an HMI connection, the Connections button in the top left of the window must
be selected, and the drop-down menu must be set to HMI connection, as illustrated in the
following screenshot:

EIE Metwork '”' Connections| | HMI connection |T| @ %
PLC_1 HMI_1
CPU 1511-1 PN MTP1200 Unifie...

Figure 10.8 - HMI connection selected, but connection not yet made

TIA Portal will highlight devices that are eligible to have an HMI connection established.
Dragging a connection between the green network ports on the devices will create a
connection, as illustrated in the following screenshot:

PLC_1 HMI_1
CFU 1511-1 FN MTF1200 Unifie...

HMI_Connection_1

Figure 10.9 - HMI connection between devices

Now that this has been completed, the HMI is able to read tags and data blocks from the
PLC without additional configuration.

280 Placing Objects, Settings Properties, and Events

Assigning tags

Once the PLC and HMI have been connected, assigning a tag to a dynamization property
is as simple as selecting a tag from a list. If a tag does not exist yet, TIA Portal allows the
selection of data in the PLC data block and will automatically create an associated HMI
tag, as illustrated in the following screenshot:

Delivery Valve 1

e ,a

FUmp 1
2
< i | [>][100% |2 e
|§, Properties ||E.'. Info i "ﬂ Diagnostics |
J Properties " Events " Texts |
H =R
+Z E = | Tag
Name Dynamization (1)
7 oy = — Process
} Appearance Ead
¥ Miscellaneous [l Tag: |§
» Connection status PLC tag: f
~_INEiEEE Address:
BasicColor - None :
HighlightToggle [] none A
Name T Type
» Show connection quality [None (@ none
Tab index 0 || ORange
» Tooltip None “ . .
i Single bit
» Visibility M Tag H| [O sing
¥ Security _:
» Allow operator control [none

Figure 10.10 - Assigning a tag for dynamization

Figure 10.10 shows an object selected and the Visibility dynamization set to Tag. The
Dynamization window appears to the right and highlights the Tag field in the Process
area. The Tag field refers to the HMI tag required to set the associated Visibility property.
The PLC tag field is only used if the tag is connected to PLC data.

Tags can be selected by clicking one of the two available buttons in the Tag field. The
first button displays a list of already defined HMI tags, as illustrated in the following
screenshot:

Setting dynamic properties

281

40 @DeltaActivationState
40 @DiagnosticsindicatorTag
40 ®localMachineMame

40 ®ServerMachineMame
40 @SystemActivationState
40 @SystemHealthindex

4 @UserName

4@ Internal_Tag_1

Figure 10.11 - HMI tag list

These tags are identifiable by a purple icon. These tags can be created and edited in the
HMI tags object in the Project tree pane, and connections to PLC data can also be made;
however, TIA Portal offers a simple method to create PLC data connections.

Clicking the second button in the Tag field loads a project view where the PLC data can be
seen and selected, as illustrated in the following screenshot:

~ [PLC_1 [CPU 1511-1 PN]

] @ Software units
- E Program blocks

~ @ Pump1_Data [081]

4 E Technology objects

» (3 PLC tags
» [i Local modules
~ [HMIL1 [MTP1200 Unified ...

» .3 HMItags

Figure 10.12 - Project browser and selection of PLC data

282 Placing Objects, Settings Properties, and Events

On acceptance of PLC data as the source, TIA Portal will automatically create an
associated HMI tag and use the new HMI tag as the actual value for the Tag field, as
illustrated in the following screenshot:

Tag
Process
Tag: |Pump1_Data_Running_5ignaI |§]_|
PLCtag: Pumpl_Data.Running_Signal A
Address: Bool

Figure 10.13 - New HMI tag and associated PLC tag location

The declaration of the HMI tag and the connection to the PLC tag can be viewed and
modified by opening the HMI tags object in the Project tree pane and then opening
Show all tags. A table like this will then appear:

HMI tags
Marme Taq table Data type | Connection FLC name FLC tag
< Internal_Tag_1 Default tag table Bool <Internal tag= <Undefined>
< Pump1_Data_Running_Signal Defaulttag table Bool HMI_Connectio... PLC_1 Pump1_Data.Running_Signal

Figure 10.14 - HMI tag table

The Show all tags object in the Project tree pane will open the HMI tags window. This
window displays all HMI tags, both internal and those that are connected to PLC data.

In Figure 10.14, you can see an internal tag (Internal Tag_1) and a PLC-connected
tag (Pumpl Data Running Signal). Both of these tags are available for use in the
dynamization properties as they are both still HMI tags.

Setting conditions
Once the HMI tag has been defined, a type and condition can be set.
The type refers to the HMI tag and how the data is checked. For example, a Word data

type could be checked for a particular range of 0-2, or a single bit could be checked for a
1 or 0 value.

Once a type has been set, the condition value and associated action can be set, as
illustrated in the following screenshot:

Using scripts 283

Type Condition Wisibility
0 O
O Mone 1 E
O Range

® single bit

Figure 10.15 - Setting Condition and Visibility properties

Figure 10.15 shows that when the associated tag value's bit 0 is 1 (or True), then the
Visibility property is set to True. If bit 0 is 0 (or False), then the Visibility property is
setto False.

In the HMI runtime, the visibility property value causes the screen object to be displayed
or hidden, as illustrated in the following screenshot:

.

Pump 1

Pump 1

Figure 10.16 - Runtime view of dynamization (left pump is when the running signal is True)

Figure 10.16 shows dynamization in use in Runtime. When the tag Pump1l Data
Running Signal is set to True, the pump changes color and flow arrows appear. This
is all completed with the Dynamization properties set to Tag.

Using scripts
TIA Portal's Unified system can make use of JavaScript against screen object properties.
Historically, Siemens used Visual Basic Script (VBS) for dynamization in an HMI

environment; however, Unified has moved to a more advanced and commonplace
JavaScript language.

284 Placing Objects, Settings Properties, and Events

Scripting can be used by setting Dynamization to Script, as illustrated in the
following screenshot:

J Properties ” Events " Texts |
;% B = ¥ —'im =l Global definition j Synchronous e RGN
Neme —|# Dynamization (1) 1 export function Dynamic5VG_§_Visible_Trigger({item) {
> A ~ N
ppearahce =l 3 var value
b Opacity 1 HMone n
» Show focus visual ENone 5
* NMiscellaneous 6 var OpenSignal
» Connection status
- Interface) 8 OpenSignal = EMIRuntime.Tags({"Walwvel Data Open").Read()
BasicColor I:l MNone 1 8
Mame -
. . 11 var CL d5i 1
» Show cennection quality BNUI’]E | | N ossdbigna
Tab index 0 " o
b Tockip B il 14 ClosedSignal = HMIRuntime.Tags("alvel Data Closeq”).Read()
b Visibility E Script E i 15
¥ Security 16
» Allow operator control B Mone 17
Autharization 18 walue = Open5ignal &: !ClosedSignal:
Require explicit unlock [Hene -
¥ Size and position o
= 21 return value;
» Height .. Mone '
b Left .. MNone o

Figure 10.17 - Visibility property set to Script for Dynamization, with the script shown to the right

When Script is used as the Dynamization type, a script file is displayed to the right of the
window.

The script file can be used to perform more complex evaluations of data before setting
the associated properties. This allows greater flexibility and customization than other
dynamization options.

Construction of script files

Scripts are semi-constructed when the Script option is selected from the Dynamization
list. TIA Portal will provide the necessary function declaration and an associated return
variable, which is usually declared as value. You can see an example of this in the
following screenshot:

1l export function DynamicS5Vsz 8 ToolTipText Trigger (item) {
2 var value;

3 return value;

4

Figure 10.18 — Example of TIA Portal-provided script

It is up to the programmer to fill in the desired function between var value; and
return value;. You can see an example of this here:

Using scripts 285

1 |export function DynamicSVG_ 8 Visible Trigger(item) { Function Declaration - Automatically added
2 vax_:-;;it-le-m e Declare Return Value

4

5 Define the Open Signal variable

P var OpenSignal Declare Tag Signal

! Fad ThE ERLLAT Read Tag Signal

E OpenSignal = HMIRuntime.Tags ("[falvel Data Oper").Rezd ()

g
10 Define the Closed Signal wvariable
11 var ClosedSignal Declare Tag Signal
12
13 RFead the HMITag Read Tag Signal
14 ClosedSignal = HMIRuntime.Tags ("falvel Data Closeq").Read()
15
18 is TRUE and Closed Signal is False
17 Store result in lus" Test Acquired Signals
15 value = OpenSignal &: 'ClosedSignal;
1%
20 Feturn value To proper Return value to property |
21 return value;
22 |1 End Of Function Declaration - Automatically added

Figure 10.19 - Example of a visibility script

Figure 10.19 demonstrates a script that is reading two states of a valve position (Open or
Closed) and, depending on the signals returned, setting the visibility of a screen item.
Because this script is looking at two pieces of information in order to set the property, a
script is the only option available.

Figure 10.19 also shows different areas that the script contains, with the original var
value; and return value; instances enveloping the rest of the user script.

Reading/writing tags

In order to read an HMI tag in a script, the HMIRuntime object must be accessed,
and the Tag object used to obtain tag information. Figure 10.19 demonstrates this as
HMIRuntime.Tags ("Valvel Data Open") .Read().

The HMI tag to be read must exist in the HMI Tag list in order for the script to execute
successfully. If a tag does not exist, the default value for the property associated with the
script will be returned.

Writing tags can also be achieved by using . Write (value), where value is the value
to be written to the tag.

Note

Right-clicking in the script window accesses the Snippet menu, which allows
quick access to pre-written code. These snippets can be used to quickly set up
read and write access to tags; however, they are often bulkier methods across

multiple lines and with potentially unnecessary variable declarations.

286 Placing Objects, Settings Properties, and Events

Compilation errors

A common issue with the Unified HMI platform when using scripts is a The
configured tag is invalid:compilation error message, as illustrated in the
following screenshot:

€y~ Screens A 1 0 6:2527AM
(%) * Screen 3 A 1 0 6:25:27 AM
0 * DynamicSVG_8 ’ 1 0 6:25:27 AM
Q The configured tag is invalid. F 6:25:27 AM
__ﬁw Compiling finished (errors: 1; warnings: 0) 6:25:27 AM

Figure 10.20 - Compilation error

This error suggests that a tag in the script is incorrect; however, that is not strictly
true. When TIA Portal first creates a script, the trigger for the script is automatically
set to Trigger on tag. This means that the script is only actioned when a particular tag
is accessed by the HMIRuntime object. Since TIA Portal does not know which tag a
programmer wants to use, it leaves it blank, which causes a compile error.

Unfortunately, the compile error message does not link to the correct Add trigger window
but, rather, displays the script window only.

By clicking the Triggers icon above the script window (the icon is a clock), the following
window is displayed:

Trigger ITE gs |v|

Tag
<Selecta tag> |_::|

r a]'4 ‘ | Cancel |

Figure 10.21 - Add trigger window

This window contains the missing tag that is causing the compilation failure. The
programmer can then select an appropriate tag or change the trigger method to a cyclic
update based on time.

Raising events 287

Note

It is a good idea to reduce the number of cyclic triggers used in an HMI. Too
many cyclic actions can cause the HMI to have poor performance, especially
when large scripts are in use.

Global scripts

Scripts can also be written globally as opposed to written against a screen object
property. This then allows local instances of the script to be called and parameterized by
screen objects.

The advantage of this is that many items can call the same script, and if the global script is
updated, all objects calling that script are automatically updated too. If any interface to the
script is changed, TIA Portal will fail the compilation of items that use it, making it easy to
find and update local instances.

Note
Global scripts can be found in the Scripts object of the Project tree pane.

Raising events

As well as reading tags and setting properties for the visual display of data, an HMI is
commonly used to set data in a PLC via events, such as the pressing of a button. The
Unified HMI platform has not changed this approach from nearly all other Siemens
environments, with a simple interface for the declaration of the event. You can see an
example of an event in the following screenshot:

‘ Properties " Events ” Texts |
BE & X

Activated Mame | Value

Deactived ~ SetTagValue

Click left mouse button Tag Pumnp1_Data_StartStop_PB
Press key Value 1
Release key <Add function=
Press
Release t
Click right mouse bu...

Figure 10.22 - Example of an event

288 Placing Objects, Settings Properties, and Events

The event configuration can be accessed by clicking on a screen object and selecting
Events from the Properties window at the bottom of the screen. Similar to the Properties
tab, the Events tab lists possible event types on the left and then the configuration of the
selected event on the right.

Figure 10.22 is an example of a Set TagValue event type, where, when the Click left
mouse button trigger is raised by the HMI runtime, the Pumpl Data StartStop PB
tag is set to the value of 1 (or True).

The Pumpl Data_ StartStop PB HMI tagis connected to a PLC variable, and the
PLC variable is therefore written to by the HMI, updating the value in the PLC code.

This allows the HMI to directly affect the following logic.

"Pumpl1_Data” Start "Pump1_Data”. "Pump1_Data".
Stop_PB Running_Signal Running_Signal
et e EE ymmmmmmmnm—en { r--—
i
“Pump1_Data”. ‘Pump1_Dam‘.51art:
Running_Signal Stop_PB :
: _________________ J
“"Pumpl1_Data”™ Start “"Pumpl1_Data”™ Start
Stop_PB Stop_PB
B 4R bmmm

Figure 10.23 - Logic interacted with by HMI event

When the SetTagValue event is triggered, the "Pumpl Data".StartStop PB
variable in the PLC is written to 1 and the PLC logic then acts accordingly, as illustrated in
the following screenshot:

Raising events 289

“Pump1_Dafa” St&rt "Pump1_Data". "Pump1_Data”.
Stop_PB Running_Signal Running_Signal

— b vh--—- {)

"Pumpl_Datz". ~Pumpl_Data” .Start

Running_Signal Stop_PB
| | /1
“Pump1_Data™ .Start “Pump1_Data™ .Sfart
Stop_PB Stop_PB

Figure 10.24 - Logic after the HMI event has been actioned

The logic shown in Figure 10.23 and Figure 10.24 resets the "Pumpl Data" .
StartStop PB variable whenever it is set to True from the HMI event. It is possible
to have the HMI reset a push button variable by making use of more than one event—for
example, Press and Release, where Press sets the variable to True, and Release sets the
variable to False.

Note

It is important to understand the requirements of the application when setting
up events. It is possible, under certain conditions, for events to be missed by
the HMI. If it is critical that buttons/events do not get stuck with an active
value, ensure that the PLC handles this independently of the HMI, as Figure
10.23 and Figure 10.24 demonstrate with the reset coil.

290 Placing Objects, Settings Properties, and Events

Event scripts

Events can also be script-based, and TIA Portal offers a quick method to convert an
existing event into a script so that customized event data can be added. The following
screenshot shows how this is done:

* T BEE R X

Converts the function list to a script

MNarme Walue

* GSetTagValue
Tag Pump1_Data_5tartStop_PE
Value 1

<Add function=

Figure 10.25 - Convert to script button

When the button highlighted in Figure 10.25 is clicked, the event is converted to a script
equivalent, as illustrated here:

export async function Button 1 OnTapped(item, x, ¥, modifiers, trigger) |

1
2
3
i}

Figure 10.26 — Equivalent event script

This can then be modified or added to make an event more dynamic. An example use case
may be to write to more than one tag dynamically.

Ssummary

This chapter has covered the setting of properties and the dynamization of properties,
as well as scripting and raising events. All of these are required in order to successfully
interact with the HMI and any associated PLCs connected to the HMI.

Understanding when to use scripts over the built-in configuration menus is something
unique to each programmer and application developed. It is important to remember that
scripting should be used only when needed and not for the sake of it. Large scripts can
cause issues if there are too many running at once.

The next chapter explores connecting structured data from a PLC to predefined faceplates
in an HMI, allowing large datasets to be retrieved and utilized easily while maintaining a
standardized and structured approach.

11

Structures and
HMI Faceplates

This chapter expands further on the benefits of using structured data and faceplates in
the Unified Human Machine Interface (HMI) environment. By utilizing faceplates,
programmers can standardize graphical objects that use standard structures, completing
the structured development approach.

In this chapter, we'll learn how to enhance projects even further using structured
approaches and how to pass single tags as structures to an HMI faceplate. This approach
enables HMI interfaces to stay updated with programmable logic controller (PLC)
interfaces, leading to fast and effective programming.

In this chapter, we'll cover the following topics:

o What are faceplates?
« Creating a faceplate
o Creating interfaces

« Creating and handling events in faceplates

292 Structures and HMI Faceplates

What are faceplates?

Just as with a function block in a PLC, a faceplate is a reusable object that can be
instantiated with its own parameters. This allows an HMI to reuse objects with interface
properties populated with different values. You can see an example of a faceplate
instantiation in the following screenshot:

Buttons Faceplate

Typed Library Version

v

Buttons Faceplate

Instance 1

. Buttons Faceplate
Datablock
Instance 2
Asset 2

v

L Buttons Faceplate
Datablock
Instance 3
H1"-i|.55:=.t J

Figure 11.1 - Example of faceplate instantiation

Faceplates are very useful for common object controls due to their reusable nature. They
also offer a method by which we can update multiple instances by modifying one library
version. In Totally Integrated Automation Portal (TIA Portal), faceplates must be
created at the Project library level and then instantiated in the project. This ensures the
paradigm shown in Figure 11.1 is followed at all times.

Creating a faceplate 293

TIA Portal V17 faceplates

In TIA Portal Version 17 (V17), there are two types of faceplates: one for Panels / WinCC
Runtime Advanced and another for Unified Comfort Panel / WinCC Unified PC, as
illustrated in the following screenshot:

Specify device for the new
] pecify type
L) (*) Panels | WinCC Runtime Advanced
() Unified Comfort Panel | WinCC Unified PC
Faceplate

Figure 11.2 — Choice of type of faceplate when creating a new one

The Unified environment is the latest addition from Siemens. For the purposes of this
chapter, the Unified Comfort Panel / WinCC Unified PC faceplate will be used.

Creating a faceplate

Creating a faceplate starts in the Libraries window on the right-hand side of TIA Portal,
as illustrated in the following screenshot:

Libraries
Options =
#] Library view £ .| E'
=
v [Project library w
B & [an EEEE
Marme |5t... £
Ve * =]« |l =
7 Q] Project library E'

7 r_ﬂ Types
ﬁ Add new type

Figure 11.3 - Libraries window

294 Structures and HMI Faceplates

By double-clicking the Add new type object, a new window is opened where a
faceplate can be named and the type of faceplate can be selected, as illustrated in the
following screenshot:

Add new type

Button_Cluster]

iml[E]
i

Faceplate

Figure 11.4 — Adding a new faceplate

Creating a faceplate 295

After clicking OK, Library view will open and display version 0.0.1 of the new faceplate.
The new faceplate will be in the in work status. When a faceplate is in work, it is
unavailable to be instantiated.

Note

In work is the equivalent of in test when editing library objects in a PLC.

Available objects and controls

Not all screen objects and controls are available in faceplates. In the Toolbox window on
the right-hand side of TIA Portal, the Controls and My Controls tabs are empty when
editing a faceplate, and the Dynamic widgets window is not displayed at all.

Faceplates are designed to be basic by design. They are best utilized to serve as repetitive
interfaces to standardized data. This is the reason why only Basic objects and Elements
are offered in Toolbox, along with items from the Graphics section.

Have a look at the following screenshot:

Project library » Types » Button Cluster » ¥V 0.0.19

o ww e en v R
e

Figure 11.5 - Faceplate example

Figure 11.5 is an example of 10 buttons placed in a faceplate called Button Cluster.
This particular faceplate is on its 19th development iteration, which is evidenced by the
incremental version number being 0.0.19.

Note

Faceplates are created in the same way that screens would be created: dragging
objects and elements onto the faceplate and configuring them with properties.

296 Structures and HMI Faceplates

Creating interfaces

Just as with function blocks in the PLC environment, faceplates also have an interface, by
which information is passed into the faceplate.

There are two types of interfaces in faceplates, as outlined here:

 Tag interface: Connectss HMI tags to the faceplate

« Property interface: Sets properties of objects and elements in the faceplate

By using these two types of interfaces, faceplates can be customized both in the data that
the faceplate has access to and the behavior of internal screen objects via their properties.

Tag interface

Tag interface is accessed by clicking the tab in the top right of the main window, as
illustrated in the following screenshot:

Project library » Types » Button Cluster » V 0.0.19

E Visualization || Tag interface || Property interface |
=512 T
Marne Data type User data type structure
Data Struct |i| UDT_Button_Interface ¥ DD[_]
<Add news=

Figure 11.6 — Tag interface tab

This tab contains interface elements that allow the parent screen to pass data types and
associated values to the faceplate.

When passing information to the faceplate from the parent screen, the Faceplate instance
must be selected and the Interface property populated with required data, as illustrated in
the following screenshot:

Creating interfaces 297

Chapter 11 » HMI_1 [MTP700 Unified Comfort] » Screens » Screen_1

JASABAIANHU+EBE NENSS §AS P =

Properte

BEEY
4' Nam Static value | Dy
- > Appearance
- » Show focus visual E None
- » Window settings None Nane
- * Format
- } Fitto size None None
- * Miscellaneous
- » Caption - Color 145,147, 154 None
- } Connection status MNone
[| Faceplate type Button_Cluster V0.0.18
- b lcon None
|~ interface
e [buron Dsts [
v Label
[| Name ~ [PLC_1 [CPU 15152 PN]
- Tab index » [g@ Software units
- b Visibility 3 EB Program blocks
- > Security > [i Technology objects
- » Allow operator control 4 [i PLC tags
-v Size and position 3 [i_ucalmudules
| ¥ Height ~ (5 HMI_1 [MIP700 Unified Comfort]
C oy et ~ [HMI tags
| » Pivotpoint]
| » Rotation » @0 Button_Data
- b Top
T width
I | v xpivotpoint
|| » ¥pivotpaint

Figure 11.7 - Example of interface data being passed to the faceplate

Figure 11.7 shows an example of passing the Button Data HMI tag to the faceplate
using the Data tag interface element. By passing the Button Data user-defined type
(UDT), the faceplate then has access to all elements within the UDT.

Note

In order for a UDT to be passed as a tag interface element, the UDT must
exist as a Typed object in the same Project library section as the faceplate. A
typed object is any object that is version-controlled in the Typed folder of a
Project library.

298 Structures and HMI Faceplates

Using tag interface data in the faceplate

Once UDT data has been passed through the interface to the faceplate, it can then be
used in the properties and events of the objects as if elements in the UDT were passed
individually.

Have a look at the following screenshot:

Project library » Types b Button_Cluster b V 0.0.19 -

Tag i Property interi
FALIEIIAMHUE+FHNENS 6 & 82 F 25
100% o
— v
Button_1 [Button] [} Properties [%i} Info &%) Diagnostics l
Froparies
ZBEY Tag
e Jsat P
[| » Atemative background c [ll] 125,125, 128 None -
|| » Atemative border color 255, 255, 255 None [Data Button_indicationlo] __[E[..]
[cecigoundeobr Josnzuszss Wl
| » Bordercolor 100,100, 106 None Gl
[» Borderwidth 1 None
» Font
= b e 0.0.0 Hone | condition |Background color |Flashing | Alternative velue |Frequency |
B opacity T T EMM_HMM
B DEseERn & None 1 [0. 255.0 No. Ml 255.0.0 Medium
	Style item appearance Button
	~ rormat L
	» spacing 1 [
	~ miscellaneous !

Figure 11.8 — Usage of Data.Button_Indication[0] to change the background color of an object

Figure 11.8 shows the Background color property being dynamized by a tag. The tag that
is being used comes from Tag interface and contains the data values from the HMI tag
assigned by the parent screen object instance of the faceplate.

This means that two instances of the same faceplate can act upon different data that is
passed via the interface.

Creating interfaces 299

Property interface

Property interface is very similar to Tag interface, except it allows external access to
dynamization for internal faceplate properties.

This means that items such as Background color can be exposed at the instance level so
that programmers can set the value using the appropriate tools (such as the color picker).

Property interfaces are configured on the Property interface tab at the top right of the
TIA Portal window when editing a faceplate, as illustrated in the following screenshot:

Project library » Types » Button_Cluster » V 0.0.20

Options m | Visualization || Tag interface || Property interface |_
|% Library view| [£ | = =N T
hd | Project library Name Data type
[[all [-] = » Background_Color Color
— SingleLineMode Boolean B
<Add new>
Voe *

= Ll Project library
~ 3 ypes
‘:'P.dd new type
= [&] Buttan_Cluster
[E2 v 0.0.20 [in work]
[5g V 0.0.19 [default]
» 17 UDT_Button_Interface
» [0 Mester copies

Figure 11.9 - Property interface configuration

Figure 11.9 shows two properties that have been configured for the Button Cluster
faceplate. These properties can be used for the dynamization of objects that exist within
the faceplate.

Using a property interface

Once a property interface has been created in the faceplate, the properties can be used by
an instance of the faceplate to change the value of a property that the property interface is
assigned to.

300 Structures and HMI Faceplates

In order for this to be available, the faceplate must first allocate a dynamization method to
the property that needs to be accessed at an instance level, as illustrated in the following
screenshot:

Project library » Types » Button Cluster » V 0.0.20 - X
m | Visualization || Tag interface || Property interface |

dAasasamHu+mE NE

4=

ISa Fe@Fi=s

Faceplate type [Faceplate type]

J Properties || Events ” Texts ‘
B8 E \(Property interface

Name Static value # Dynamization (2) 5

> Miscellaneous | | | TS
» Background gra... Name: |Background_Color m
» Displayname Mone
~ Interface

Name Button_Cluster_V_0_0__..

¥ Appearance
» Alternative back..[| 235, 235,235 None
¥ Background color - 192,192,192 E Property interface E
» Background fill . Solid Mone

Figure 11.10 - Background color dynamization set as the Property interface

Figure 11.10 shows that the property called Background color has had its Dynamization
method set to Property interface. The area to the right, which allows configuration of the
Dynamization method, simply shows a dropdown of property names that come from the
Property interface tab.

Note

Only compatible data types are shown. The tag name will not appear in the list
if the tag data types do not explicitly match.

Once the dynamization is configured, instances of the faceplate can have the property set
at the interface of the faceplate, as illustrated in the following screenshot:

Creating and handling events in faceplates 301

aceplate container_1 [Faceplate container] [Button_Cluster V 0.0.20]

Properties Events Texts
i2BEY
_}“ Static value I“; ization (0} I
. ¥ lcon Mone L)
||~ Interface
[| Data Button_Data
[Background... 0,0, 255 None
. SingleLineM...) Mone

Figure 11.11 - Instance of a faceplate with interface properties

When a faceplate has Tag interface or Property interface items configured, the
configured interface items will appear in the Interface property area of the faceplate.

Figure 11.11 shows that the Background property and the SingleLineMode property
both exist in the interface of the faceplate. At this point, these values can be changed in the
same way that a normal property value would be changed. The properties can also have
dynamization applied to them.

Note

Scripts can also access interface tags. An example would be this:
var single;
single = Faceplate.Properties.SingleLineMode

The single variable then contains the value contained in the Interface
property.

Creating and handling events in faceplates

Some faceplates may require end users to interact with objects within the faceplate, such
as a button or an input field. Unlike normal screen objects, faceplates require events to
be handled in scripts. This means that programmers will need to write scripts in order to
process user events.

302 Structures and HMI Faceplates

You can see an example of an event script in the following screenshot:

Project library » Types » Button_Cluster » V 0.0.25

10

JaALIEEIATHUFIHVUE IS 08 QN8 oy

Larled ol e
s)) (2

Properties Events || Texts |

—F'iw =] Global definition ﬂ Synchronous ﬂ "'mi X CO GO

. 1 export function Button 1 OnTapped({item, x, ¥, modifiers, trigger) {
Activated — =
. 2 Tags("Data.Button Request[0]|").Write(l};
Deactived 5 =
Il click left mouse button
Press key

Release key
Press

Release

Click right mouse bu...

Figure 11.12 - Example of an event script
Events can be configured against a selected object by clicking the Properties tab at the
bottom of the TIA Portal application and then the Events tab.

On the left side of the Events tab, event triggers are listed. When an event trigger is
selected and the Converts the function list to a script button is pressed, as illustrated in
the following screenshot, an area will appear in which a script can be written:

17 BE @ X

" Converts the function list to a script |

i
Figure 11.13 — Converts the function list to a script button

In faceplates, actions cannot be added in any manner other than scripts.

Accessing tags

In order to write a value out of a faceplate, the variable to be written must exist in the
Tag interface.

Creating and handling events in faceplates 303

Tags can be written using the following script:
Tags ("TagVariable") .Write (Value) ;

Figure 11.12 shows an example of setting up a button click event. When the left mouse
button clicks button 1, the Data.Button Request [0] value is written with a value
of 1.

Scripting allows programmers to get more dynamic. While hardcoding the name of a
tag works perfectly fine, sometimes it's better to derive the name of the tag, which means
when the object is copied, the new tag name resolves itself and no editing of the script is
required.

Have a look at the following screenshot:

Project library » Types » Button_Cluster » V 0.0.25

n

JdALYIELIIANMAHUIH NS IS5 0 88 5 2y

ER|EN RN

MERIEN| N

L

Properties Events || Texts |

B 2 Global definition 52| Synchronous | 18] 9 % €9 Gg
SXDO f ion B o t OnTanoed i = .
Activated 1 export function Button 5 OnTapped(item, x, ¥, modifiers, trigger) {
. 2 war num;
Deactived . -) .
3 num = parselnt({item.Text) - 1;
fiad Click left mouse button 4
Press key 5 Tags({"Data.Button Request[™ + num + "]™).Write(l}
Release key g1
Press
Release
Click right mouse bu...

Figure 11.14 - Dynamic script

Figure 11.14 shows a script that derives the numerical index for an array based on the
number that is assigned to the button text of the selected object.

Note

Because arrays start at 0, the value in the object's Text field is subtracted
by 1.

304 Structures and HMI Faceplates

This method allows for any numerical value to be placed in the object's Text field, and
the script will dynamically access the correct tag.

This approach also works for reading tags through script dynamization for properties.

Now, have a look at the following screenshot:

Button_5 [Button] [, Properties If_‘-k Info
J Properties " Events || Texts |
;% B E Y E‘ﬂ% Global definition E Synchronous ﬂ E'Ii m CQ GQ
Name |Slal\'cva\ue |§; Dynamization (1) | 1 export function Button 5 BackColor Trigger(item) [
= var num;
~ General) 3 var reg;
b ZemEns 4 var value;
» Graphic 5
}» Graphic with pressed butt.. [num = parselnt(item.Text) - 1:
b Text 6 None 7
b Textwith pressed button Mone 8 req = Tags("Data.Button Indication[™ + num + ™]").Read();
¥ Appearance 9
» Alternative background c_. [lll 128, 128, 128 None 10 if (reg == 1) {
- 11 item.BackColor = HMIRuntime.Math.RGB(255, 0, 0, 255);
b Alternative bordercolor [] 255, 255, 255 None = A . ks { ot !
12] else |
» Background color []242,244,255] script 2] 13 item.BackColor = EMIRuntime.Math.RGB{242, 244, 255, 255);
» Border color Il 100. 100, 106 None g
» Border width 1 None 15
» Font 18 return value;
¥ Foreground color -0. 0.0 None 17
» Opacity 1 None L 18k

Figure 11.15 - Dynamization with a dynamic script

Figure 11.15 shows the Background color property being updated with colors depending
on the status of the Data.Button indication array. The array is indexed by the
script, based on the text that is placed inside the object.

Summary

This chapter has explored faceplates and how to create an interface and use a faceplate.
By building frameworks and standard objects that use faceplates, UDTs, and standard
program blocks, the ease with which projects can be developed increases significantly.

When working with faceplates, it is important to remember that they are encapsulated
and have no access to HMI tags or global scripts. In order to use a faceplate, the interface
needs to be set up appropriately. It's also worth noting that faceplates must be created in
the Project library, and only released faceplates can actually be used in a screen. Similarly,
in order to modify a faceplate, the typed version must be edited in the Project library.

The next chapter covers navigation and alarms in the Unified environment. This includes
how to raise, accept, and clear alarms, and the differences between PLC-driven alarming
and conventional alarming.

12

Managing
Navigation and
Alarms

This chapter focuses on how to create navigation between pages in TIA Portal's Unified
HMI environment and how to create an alarm management system between the HMI
and PLC.

Navigation is important in the HMI, and it is something that an end user interacts with
often. There are different styles and approaches to navigation. Alarming is also important
as that's how an end user is notified of potential issues. Methods for alarming can also be
achieved in many different ways.

In this chapter, the following topics will be explored:

o HMI navigation
o HMI alarm controls
o Alarm tags - accepting and resetting

o PLC-driven alarming

306 Managing Navigation and Alarms

HMI navigation

In order to change pages on the HMI so that more than one page of information can be
displayed, a navigation system is required.

TIA Portal offers a standard approach to managing page navigation that is both simple
and easy to utilize. Depending on the application requirements, pages can be configured
in multiple ways, such as free navigation or controlled navigation:

o Free navigation is a method where every page has a navigation link to every
other page:

¥ T 3
Page 1 Page 2 Page 3

!]
| }

Page 4 Page 5 Page 6

PR -

it 1 by

Figure 12.1 — An example of free navigation

+ Controlled navigation is a method where page access is controlled via the current
page. This allows the segregation of settings pages, for example:

L R

‘ Page 1 % Page2 <~ Page3

Page 4 Page 6
Page 5 ~—J

Figure 12.2 — An example of controlled navigation

HMI navigation 307

Free and controlled navigation styles can be mixed also, whereby some pages are
accessible at all locations, and some are controlled and can only be accessed in key
locations. Mixing navigation styles can also help with the management of page changes.

Managing page changes

TIA Portal Unified HMIs have a built-in event method that triggers a display page change.
It is important to understand the dynamics of how the screens can be configured to
understand how the event can operate.

TIA Portal offers complete control over navigation, giving options for which screen should
be loaded into view and where that view exists. This means that programmers can update
the base screen (the first screen that is loaded), or can update a screen window object,
which is essentially a screen within a screen. Figure 12.3 is an example of a base screen
that is never navigated away from:

Chapter 12 » HMI1 [MTP1500 Unified Comfort] » Screens » Base

dALABIIAMHU IR NE S & #0885 25

TSR | PR =TI | A TER || S

Sereen_1

Figure 12.3 — An example of a base screen containing navigation buttons and a screen window object

All of the navigation takes place in Screen_1, which is a screen window object. By
following this approach, static items (such as the top navigation menus) can be accessed
from any page. Individual screens can then be loaded into Screen_ 1.

308 Managing Navigation and Alarms

The ChangeScreen event

The ChangeScreen event can be used on nearly all objects that allow events to be
configured. Figure 12.4 demonstrates the ChangeScreen event being used to update the
current screen to the Screen_1 screen:

FALIBLATMHU+EIE WEINSE F 8PP 12

EPagDE1 E Page 2 “ Page 3 J{ Page 4 J

m }

Properties Events || Texts |

+t T BE B X

Activated e Value
Deactived
fia click left mouse button

Press key

¥ ChangeScreen
Screen name Screen_]

Screen window path Current screen

Release key ¥ SetTagValue
Precs Tag Screen_|MND

Release Value |

Click right mouse bu... <Add functions

Figure 12.4 — The ChangeScreen event

There is also another event that is setting an HMI tag called Screen IND to the value 1,
which is used to change the background color of the Page 1 button.

In this particular case, this screen change will result in the navigation buttons for pages

1, 2, 3, and 4 disappearing from view, as Screen_1 would be loaded into the current
screen, which is also the base screen. By changing the Screen window path property, the
target of the screen change can be directed to the Screen_1 screen window.

Important Note

Screen 1 is an ambiguous name in this example and relates to both a screen
page and also a screen window. TIA Portal does not raise this as a conflict, as
the screen window exists only in the base screen and therefore has a different
call path.

HMI navigation 309

In order to change the screen window page, the ChangeScreen event needs to be modified
at the Screen window path parameter. This can be done by clicking the small button to
the right of the Value field and choosing the Screen window option:

MNarme Walue
¥ ChangeScreen

Screen name Screen_1

X Screen window path Current screen | il L

¥ SetTagValue ¥= Selection
Tag Screen_IND] = creen window
Value 1 Hirg String

<Add function=

Figure 12.5 — The Screen window path options

When this is completed, the Screen window path value will be removed, and a new
button option will appear. After selecting Screen window path as the required screen
window, the new path will be displayed in the Value column:

Mame Value
* ChangeScreen
Screen name Screen_1

L Screen window path |§ r_“H

* SetTagValue

Value
<Add function=

T vl |

Figure 12.6 — The Screen window path screen window configuration

310 Managing Navigation and Alarms

The button is now configured to change the SW1 screen window. Because both the button
and screen window are on the same base screen, the button is always accessible no matter
what page is displayed.

Note

This concept can be expanded further by having two screen windows on a
base screen. This can then allow a screen window dedicated to navigation
buttons and another dedicated to screen information. This approach allows for
complete control over navigation, split between two screen windows.

HMI alarm controls

One of the main reasons for an HMI to be included in a project is so that alarms can
be relayed to an operator or end user. TIA Portal has a ready-made control for alarm
management called the alarm control:

Alarms
S =Bx | =
Alarm clas, Origin | Area Alarm text Status text Ellipse
1
2 &
3 v | Element
4
5 10 field
6
7 w | Controls
; =
9 Alarm
contral
10
V|Wmntr
iR
(4}
12 [
5 =
Reports
e | (e | (===t | (==, | (B | = [a |
g B EEEEEE
+
-

Figure 12.7 - An example of an alarm control on a screen with the alarm control object in the toolbox
on the right-hand side

HMI alarm controls 311

The Alarm control option can be found in the Controls section of the toolbox. Alarm
control can simply be dragged and dropped onto a screen as with any other object.

Alarm control connects to many different areas and has many different configuration
options for customizability. In most cases, for a quick setup, the preset options are enough
to display and interact with alarms.

Note
The HMI used in this chapter is an MTP1500, running V17 Firmware.

Configuration of HMI alarms

In the Project tree and under the HMI object, an object called HMI alarms exists. It is
within HMI alarms that the alarm text, triggers, and more are configured. Figure 12.8
demonstrates the configuration of some discrete alarms:

Chapter 12 » HMI1 [MTP1500 Unified Comfort] » HM alarms

|,n,' Discrete alarms ”jj Analog alarms "u:' (

= &
Discrete alarms
ID Mame | Alarm text Alarm class Trigger tag Trigger bit Acknowledgment status tag Acknowledgment status ta... a
Cal 1 (Alarm_1 Alarm 1 Active Alarm Alarms_Alarm_Group_1_Active{0} O Alarms_Alarm_Group_1_Accepted{0} O
Cql 2 Alarm_2 Alarm 2 Active Alarm Alarms_Alarm_Group_1_Active{0} 1 Alarms_Alarm_Group_1_Accepted{0} 1
Cal 3 Alarm_3 Alarm 3 Active Alarm Alarms_Alarm_Group_1_Active{0} 2 Alarms_Alarm_Group_1_Accepted{0} 2

Figure 12.8 — Example of discrete alarms configured in the HMI alarms window

These alarms are monitoring an associated trigger tag and acknowledgment status

tag. These tags are used to display the alarm's status at various points across an alarm
management routine. This routine is managed at a class level. The Unified HMI
environment allows custom alarm classes to be created, but by default, the Alarm alarm
class is used.

Trigger tag is the PLC (or HMI) tag that is used to trigger the alarm. In most cases, this
is a Word or Dword data type; however, a Boolean is also accepted. Trigger bit is used to
select the individual bit inside a Word or Dword data type.

The Acknowledgment status tag column is used by the HMI in order to hold whether or
not the alarm has been acknowledged by an operator. This tag is usually held in the PLC
also. Unlike Trigger tag, Acknowledgment status tag cannot be a Boolean and must be
a Word or Dword data type with an Acknowledgment status tag bit set.

312 Managing Navigation and Alarms

Analog alarms can also be configured using the Analog alarms tab. These alarms use a
predefined limit and limit mode. The trigger tag is evaluated against the limit using limit
mode; if the condition is True, the alarm is raised in the same way that a discrete alarm
is raised.

Note

Discrete alarms are digital alarms, where the trigger tag is driven by a
boolean data type tag. Analog alarms are driven by a Numerical data
type tag and have different limit modes that raise alarms.

The alarm class is configured by default to follow the following routine, otherwise known
as the alarm with single-mode acknowledgment state machine:

PLC HMI

Trigger tag = True o
>

Acknowledgement status tag = False

-

Display associated alarm
(unacknowledged status)

Operator Interacts With HMI

| Acknowledgement event

{........‘

Acknowledgement status tag = True
3

Update associated alarm
to acknowledged status

Alarm Comdition Clears In PLC

Trigger tag = False

Y

FRemove associated alarm
from list

PLC HMI

Figure 12.9 — An alarm with the single-mode acknowledgment state machine routine

HMI alarm controls 313

Figure 12.9 shows how the PLC and HMI interact with each other to manage an
alarm. When the alarm's Trigger tag Boolean is set to True, the HMI performs some
management in the form of updating the Acknowledgment status tag column and
also displaying the alarm on any alarm controls that are configured to display the
corresponding alarm class.

When an operator interacts with the HMI and acknowledges an alarm, the
acknowledgment status tag is set to True and the alarm control is updated. When the
trigger tag returns to False, the alarm is removed from the alarm control list. If the
trigger tag returns to False before the acknowledgment status tag is set to True, then
the alarm is immediately removed from the list on acknowledgment.

Note

Alarm controls, by default, display all alarms. However, they can be configured
to filter out particular alarms so that only customized lists are displayed. This
will be covered later in this chapter in the Setting filters on alarm controls
section.

The configuration of classes

The HMI alarms window contains an Alarm classes tab, which allows the configuration
of custom alarm classes as well as the configuration of predefined alarm classes:

Chapter 12 » HMI1 [MTP1500 Unified Comfort] » HN

‘m Discrete alarms HQ Analog alarms ||’E OPCUA A&C HE System events Hg Alarm classes L

=

Alarm classes
Name State machine Priority | Log Backgro.. Textcol.. Backgro.. Textcol.. Backgro.. Textcol.. | Backgro.. Textcol..

Cal | Acknowledgement Alarm with single-mode acknowledgment 0 255 Moo Ilz2ss Moo []2ss. oo [|255. oo
G Mo Acknowledgement Alarm without acknowledgment o Bl zss.- oo Ilzss. oo []2s5.. Iloo. [255 [lo.o.
Cal systemAlarmWithoutCle_.. Alarm without outgoing status with acknowledgment 12 B 255 [|2ss. [l 255 []2ss. @M 2ss.. [|2ss. [l ass. [|2ss..
L& systemMotification Alarm without acknowledgment 4 173 Il o.o.. 0173 [l o.0.. [J173.. Il 0.0.. []173.. Il 0.0..
Ca systeminformation Alarm without outgeing without acknowledgment 1 [J220.. Ml o.0.. []220.. [lo.0.. []220. oo [|220. [llo.o.
[SystemWarningWithoutC... Alarm without outgoing status with acknowledgment 8 [Jzs5.- MM o.0.. []255.. llo.o.. []2s55.. Il o.o.. []255.. 0.0
Ca systemAlarm #Alarm with single-mode acknowledgment 12 B 255 [|25s. [l 255 []2ss. @M 2ss-. [255 [M2ss. [255
L& SystemWarning Alarm with single-mode acknowledgment 8 [255.- - 0.0.. [] 255.. - 0,0.. []255.. - 0,0. I:IZSS -Ilo.o.
Ca Information Alarm without outgeing without acknowledgment 1 D 220 22 [22 1220 Mo
L& Alarm Alarm with single-mode acknowledgment 12 EI:I B- ED E- ED E- EI:I E
Ca Notification Alarm without acknowledgment 4 D 173 173 [REES o []7s..
L WarningWithReset Alarm with acknowledgment and confirmation 8 (] 255.. .. [2s5.. - 0,0.. []255.. - 0,0.. []255.. - 0.0.
Ca Warning Alarm with single-mode acknowledgment 8 [J2ss5 ,0_. []255.. [lo.0. [J2s5.. llo.0. []255_ o0
gl AlarmvithReset Alarm with acknowledgment and confirmation 12 I 255 .. [l 255.. []255.. [255.. [255.. [l 255.. []2s5..
& CriticalithReset Alarm with acknowledgment and cenfirmation 16 | REE e [255 3o [255 [Il3e. []2ss
&l Operatorinputinformation Alarm without outgeing without acknowledgment 1 [2z0.. ,0.. [J220.. [l 0.0.. []zz0.. Wl 0.0.. []zz0.. Il 0.0..
s OperatorinputRequest Alarm with single-mode acknowledgment 5 Mo.o. . lo.o.[255 Moo [255 Ilo.o. []2ss..

Gl | critical Alarm with single-mode acknowledgment 16 | REES
<Add new

.l 13e 255 130 [255 139 []2ss..

Figure 12.10 - The Alarm classes tab

The predefined alarm classes are set by TIA Portal and the names cannot be edited. In
most cases, the colors can be edited, but some are restricted and cannot be edited.

314 Managing Navigation and Alarms

Every alarm configured in the HMI must have an associated class, which is configured
on the Discrete alarms or Analog alarms tab. Depending on the class configuration, the
alarm will behave differently.

Note

Alarm controls that have no filters set will display mixed alarm classes, which
may result in different alarms behaving differently from each other. It's good
practice to either keep the alarm class the same for all alarms in an alarm
control or set the State machine option for multiple alarm classes that appear
in the same alarm control to the same value.

Creating a new alarm class

Whilst TTA Portal offers a wide range of different alarm classes by default, a programmer
may want to create a new alarm class for their own system. A custom alarm class can be
created by opening the Alarm classes tab in the HMI alarms window.

Double-clicking the <Add new> row will add a new alarm class with the default name
Alarm class_1. A default Alarm with single-mode acknowledgment state machine
will also be selected:

[e4 OperatorinputRequest Alarm with single-mode acknowledgment 5 - 0,0.. l:l 255.. - 0,0.. l:l 255... - 0,0.. l:l A - 0.0.. l:l 255...

L& critical Alarm with single-mode acknowledgment 16 Il zo [255 Q3o [J2ss. 139 [Jzss. [139 []2s5.
L&l Alarm_class_1 Alarm with single-mode acknowledgment 0 - 255.. - 0,0... - 255... - 0,0.. l:l 255... - 0,0.. l:l 255.. - 0,0..

<Add news

Figure 12.11 — A new alarm class added

It is not possible to create custom state machines; an existing one must be selected. The
selection of a state machine changes how the alarm needs to be handled in terms of
resetting or acknowledging the alarm. The selected state machine also changes the color
requirements, enabling and disabling the available options.

Priority does not affect how an alarm is managed, but setting a priority allows the alarm
control to filter or sort based on the priority value assigned.

Note

If an alarm requires logging (storing for future review), the log to be used must
be specified at a class level. Alarm classes contains a column called Log where
this is added. Double-clicking in the Log column will allow the selection of a
configured log.

HMI alarm controls 315

The colors to be displayed in the Alarm control are specified at a Class level in the Alarm
classes tab.

Logging alarms

Unified HMIs can log alarms, storing the events related to alarms in a file for later review.
In order to log alarms, a log object must be created from the Logs window.

The Logs window can be found in the Project tree:

J Devices || Plant objects |

~ [53 HMIT [MTP1500...

I} pevice config...
4] online & diag...
'f Runtime settin...
4 E screens
~ Ea HMI tags
& showallta_.
ﬁb'ﬁdd new ...
.i-f’ Default tag...
24 Connections
4 HM alarms
4 D Farameter set ...

Wl Logs

E Scheduled task:;
v [scripts
B collaboration _
m Cycles
'g_.d Textand grap...
[!E, Ungrouped dew...

¢ M |

Figure 12.12 - Logs in the Project tree

In the Logs window, with the Alarm logs tab open, a new alarm log can be added by
double-clicking the <Add new> row. A new Alarm log_1 object will be created with
the default storage medium set to SD-X51, which is the memory card medium.

316 Managing Navigation and Alarms

The first time a log is configured, the Runtime settings option needs to be modified to
allow logging. If this has not been completed, a warning message will be displayed in the
Logs window:

Mame Storage medium
FZ Alarm log_1 [FECR
ST M 1o logs are X
allowed if logging
is switched off.
Celete the log or

turn on lagging in
the runtime
settings by
specifying a main
database location.

Figure 12.13 - The error if logging is set to disabled

In the Project tree, the runtime settings can be opened and the Storage system option
selected. The Main database location for alarm logging option must be set to an
appropriate location, such as SD-X51:

Main database location for alarm logging

Storage medium: | 5D-X5° ﬂ
Foder:

Figure 12.14 - The configuration of the main database location for alarm logging in the runtime settings

Note

It is a good idea to set up a folder too; this way, alarm logging is segregated
from other logging types.

Once the runtime settings have been updated to allow logging, the configuration of the
alarm log can continue.

The Logs window and the Alarm logs tab also require additional options to configure
when alarms are logged and how often to save data to the storage medium. A storage
directory can also be specified, which further segregates individual logs.

The log time period covers the maximum time period covered by the log. Once the time
has elapsed, a new log will be created. The same is true for the maximum log size.

HMI alarm controls 317

In addition to the log, segments of data within the log also need a maximum time period
and size allocated. It is also possible to set a segment start time should it be required to
start a segment at a particular time.

Note

In the Unified HMI environment, it is not possible to set a backup mode.
The Backup mode option is available when using a Windows-based unified
environment.

Configuration of alarm controls

In order to actually display an alarm status, an alarm control must be placed on a screen.
The alarm control must then be configured to display the required alarms. If a new alarm
control is placed on a screen, it will display all alarms from all classes by default.

Alarm controls can be configured to filter out alarms that are not required to be

displayed by the alarm control. For example, an alarm control with no filter set will show
SystemAlarmand SystemNotification class alarms. Figure 12.15 shows that an
alarm control with no filter shows all alarms from all classes, including those that have not
been configured explicitly by the programmer:

Alarms

Status text

Alarm text

Alarm class Origin

Alarm Generic Fault Plant Room 1 Alarm 1 Active Incoming

Custom Alarm Class 1 Critical Fault Plant Room 2 Alarm 2 Active Incoming

SystemAlarm System/HMI/Syste| Computer1 (DESKTOP-EK1B12B): Storage medium not available. Tag: S| Incoming

SystemAlarm System/HmilStora{ Computer1 (DESKTOP-EK1B128B) - Host1: AlarmLogging (DefaultStorag{ Incoming
SystemAlarm System/HMURunti| Computer] (DESKTOP-EK1B12B): Service (AlarmLogging) is not being g Inceming

SystemNotification DESKTOP-EK1B1 System/HMI/Userli Script Debugger is enabled Incoming

L R T B Y

[v:}

10
1"
12
13

HF R EREENE B =]

)

22

Figure 12.15 - An alarm control showing configured alarms and automatic system alarms

318 Managing Navigation and Alarms

If a filter is not set, system alarms that may be unrelated to the project can be displayed. It
is advised that controls are configured with filters so that these alarms are not displayed.

Setting filters on alarm controls

Filters can be configured in the Properties tab of the alarm control in TIA Portal or can
also (if enabled) be set at runtime on the HMI itself. Allowing HMI operators to set the
filter at runtime can be advantageous in some environments, but in most cases, filters are
best set in the development environment.

Note

Operators of the HMI will still be able to change/remove filters if the Selection
display toolbar option is enabled in the Properties tab of the alarm control.
The Selection display button can be removed by selecting the alarm control
and changing the property at Toolbar | Elements | [26] Button (Selection
Display) | Visibility to False.

The same can be done with all other buttons, allowing configuration of how the
alarm control is to be used.

Filters can be set for an alarm control by expanding the Filter property for the alarm control:

J Properties || Events || Texts |
HEY -1 ="
2B E
Name Static value Dynamization (0}
¥ General
b Alarm source | Pending alarms Mone
b Filter AlarmClassMame -::-'S}f;temN..T Mone -]

» Appearance

Figure 12.16 - Filtering alarm control

When the property is expanded, by clicking the ... button, the Alarm filter configuration
window opens, which allows filters to be created and modified. Figure 12.17 shows an
example of a filter:

HMI alarm controls 319

Alarm filter configuration %
AND [OR Criterion Operand Setting
Alarm class name Notequal SystemMotification
AND Alarm class name MNotequal SystermAlarm

[oK ||' Cancel]

S —
Figure 12.17 - Alarm filter configuration
By declaring Criterion as alarm class name, the Unified HMI checks which class the

alarm belongs to. The Operand column shows how the check is performed. The Setting
column shows the value that will be filtered.

The example in Figure 12.17 only displays alarms that do not originate from a system
class.

Note

Remember that the filter sets what is being displayed, not what is being
removed.

Filters can also be modified or created at runtime if the configuration of the control allows
it. To call the filter window, the following button is used on the alarm control. This button
is available by default but can be removed if required:

=

Figure 12.18 - The filter button

320 Managing Navigation and Alarms

When clicked, a window displays the configuration of the filter. This window behaves in a
similar way to the development window:

Criterion Operand Setting
Mame of alarm class Mot equal SystemMatification

Name of alarm class Not equal SystemAlarm

Filter :

AlarmClassMame <> 'SystemNotification” AND AlarmClassName <> 'SystemAlarm’

Apply I I OK] I Cancel

Figure 12.19 - Configuration of filters at runtime

By clicking Apply or OK, the filter is configured and set. The alarm control will then
display the latest changes to the filter.

Alarm tags 321

Note

Once the page containing the alarm control has been reloaded (such as
navigating away and returning), the changes to the filter will have returned to
those defined in the development environment; the filter is not retained.

Alarm tags

In the PLC, dedicated tags or data block addresses are required to be used in order to
tell the HMI that an alarm has been raised. These exist in the HMI as the trigger tag and
acknowledgment status tag.

Logic is developed against these tags in order to react to operator acknowledgment of
alarms and to raise the instance of the alarm. Figure 12.19 shows a basic example of ladder
logic controlling a latching interlock:

125.0

. . “Alarmz® Alarm_
Instrurment_1".

! Group_1. “Instrument_1".
Scaled_Value Active[0].3:X0 High_Interlock

I : I [/ i [/ i

| Real | \ i
“Instrument_1".
High_Alarm_

Trigger

1000

"Alarms® Alarm_
Group_1.
Accepted[0]3%X0

/1

Figure 12.20 - An example of a basic alarm interface

322 Managing Navigation and Alarms

When Scaled Value for Instrument 1 isabove High Alarm Trigger, both the
trigger tag ("Alarms" .Alarm Group 1.Active[0].%X0)andHigh Interlock
are set to True. When this occurs, the HMI writes to the acknowledgment status tag

("Alarms".Alarm Group 1.Accepted[0].%X0)and setsitto False, which then

holds on to the trigger tag:

“Alarms" Alarm_
Group_1.
Accepted[0].3X0

/1

85.0 “Alarms®.Alarm_
“Instrument_1". Group_1.
Scaled_Walue Active[0].3X0

1 1

-

R e = -——

| Real !- Lk
“Instrument_1".

High_Alarm_
Trigger
1000

“Instrument_1".
High_lInterlack

{ A

' d

Figure 12.21 - A latched alarm in the HMI

If the trigger tag returns to a False value, the acknowledgment status tag is still set to
False, as the operator has not acknowledged the alarm yet. In this scenario, the logic

continues to set High Interlock to True:

“Alarms® Alarm_
Group_1.
Accepted[0].%:X0

85.0 "Alarmsz" Alarm_
“Instrurnent_1". Group_1.
Scaled_Value Active[0].3:X0

1 1

>

b ke————- - -——

| Real !- Lk T
“Instrurment_1".

High_Alarm_
Trigger
100.0

"Instrument_1".
High_Interlock

Figure 12.22 - Resetting the alarm

PLC-driven alarming 323

Only when the HMI acknowledges the alarm does High Interlock resetto False.
It is possible that the operator may acknowledge the alarm before the trigger tag becomes
False again. If this occurs, then as soon as the alarm's trigger tag is set to False, the
alarm will clear from the alarm control.

Note

There are many different methods to control alarming; each needs to be
considered on the state machine in use by the alarm class.

The PLC logic that controls the alarms is best created as a function block or function that
works with the alarm class in use. By standardizing the alarm management, alarms become
quicker to deploy, and less testing is required to ensure that the alarms work correctly.

Note

Figure 12.21 shows an example of accessing bits in a Dword data type. This
can be done by dragging the required Dword (or any other numerical data
type) into the instruction and then adding . $X to the end, where is
replaced with the bit number required.

This also works for Bytes in Word by using . $B and other variations.

More information about this is available in the TIA Portal Help system (press
FI) at Information system | Programming a PLC | Programming basics

| Using and addressing operands | Addressing variables in data blocks |
Addressing areas of a tag with slice access (S7-1200, S7-1500).

PLC-driven alarming

When a PLC and an HMI exist in the same project, common alarm classes can be
configured for use in both devices.

Using supervisions and the ProDiag function block, the PLC can drive alarms to the HMI
without having to configure HMI alarms in the HMI itself. One of the biggest benefits of
using PLC-driven alarming is that the alarm resides in the function block associated with
a supervision. This means that if the function block is standardized in a library, every
project that uses the function block will be able to generate the same alarm automatically.

324 Managing Navigation and Alarms

Supervisions can easily be created for any variable that is stored in a data block or as a

PLC tag:

Instrument_1 w
Name Data type | Startvalue |Retain Accessible f_ | Writa_. | Visiblein _. Setpoint Supervision | Comment

<@ v Static F

g = Scaled_Value Real 0.0 (] =] =] =] (] |:

< - High_Alarm_Trigger Real 1000 = = =] =] =]

4 = High_lnterlock Bool false (] ™M =] =] (] €
. Low_Interlock Bool false = = =) =] B - L
- <Add news =¥ Insertrow Ctri+Enter
=¢ Add row Alt+ns
¥ cut Crl+x
5| Copy Curl+C
T2 Pasts crrl+v
¥ Delete Del

of use Ctrl+shift+G

Go nition Crl+5hift+D
€ Crossreferences F11
3¢ Crossreference information Shift:F11

T

Figure 12.23 - Creating a supervision

In the Supervision column, right-click and choose Add new supervision. The properties
window at the bottom of the screen opens on the Supervisions tab.

Note

TIA Portal will automatically create a global ProDiag function block and
an associated data block if at least one does not already exist to manage the
supervisions.

The Supervision tab allows for the configuration of the supervision element that monitors
the variable and raises the alarm with the HMI. There are a few different properties to

the supervision element that need to be configured to change the behavior of the alarm.

In addition to properties displayed for the new supervision, there are also project-wide
settings that need to be configured for application usage.

When a new supervision is created, the default supervision type is Operand. The Type
of supervision option sets a preset configuration for the behavior of the supervision.
The Type of supervision presets, and other configurations, can be modified by opening
Common data | Supervision settings from the Project tree:

PLC-driven alarming

325

= ii Commaon data

Collaboration devices
Cal Alarm classes

0¥ Systern diagnostic settings

Supervision settings :

» TH Logs
v [

Instruction profiles

Figure 12.24 - Supervision settings

The Supervision settings option configures the global settings for the supervision system
(or GRAPH language, in which supervisions are built).

Supervision categories

In the General section of Supervision settings, Categories can be configured. The
categories not only help segregate alarms into different types but also allow the
configuration of the alarm class:

* General
Categories
Subcategories 1
Subcategories 2
Types of supervision
Central time stamp
w Alarm texts

GRAPH supervisions

-

Basic supervisions

-

Supervisions with an error message

-

Supervisions with a text message

Categories

Activate the categories and associate them to alarm classes:

Category Activation | Alarm class Acknowledgement | Priority
1 | Error Acknowledgement B 0
2 Warning =] Mo Acknowledgement 0
3 | Info =] Mo Acknowledgement 0
4 | Category4 0 <no alarm class> 0
5 |Category5 = <no alarm class> 0
6 |Category6 = <no alarm class> 0
7 | Category7 = <no alarm class> 0
8 | Category8 = <no alarm class> 0
(<] il

Figure 12.25 - Supervision categories

By default, only three categories are configured, with a maximum of eight available to be
configured. Subcategories can also be configured from the menu on the left (as shown in
Figure 12.25) by selecting Subcategories 1 or Subcategories 2.

326 Managing Navigation and Alarms

Note

The Supervision settings option accesses the common data alarm classes, not
the HMI alarm classes. In Common data in the Project tree, an item called
Alarm classes exists. Here, configurations for globally accessible alarm classes
can be made. When a new alarm class is made, any HMIs in the project will
automatically have the new class added to their Alarm class tab; however, the
name will not be updated to any new name given to the global class.

Types of supervision

The Types of supervision option relates to how the supervision behaves and the
preconfigured options available in the dropdown when configuring a new supervision:

- General M -
Types of supervision

Categories

Subcategories 1
Subcategories 2 Specify the default settings for each type of supervision within your project. These settings are applied to new supervisions.
7 EE CiTLmanEan Ifyou select the check box. the triggering status is TRUE.
Central time stamp

o tert You will be able to adapt these defaultvalues for every supervision. Your changes regarding the language sensitive type names will affect the alarm texs.
- Alarm texts

GRAPH supervisions Type of supenvision Trigger C1 wrigger c2 trigger €3 trigger Delay time
} Basic supervisions | Operand (] =] =] =] TEOms
} Supervisions with an error message 2 interlock [m] = =] =] TEOms
» Supervisions with s text message |{ 3 | Reaction B =]])] T#5:
[| 4 Action =) =] =] =] T#200ms
» 5 Position [m] [m] =] =] TEOms
[| & |Errormessage ™ =]])] T#0ms
7 | Textmessage =) =] =] =]

T#0ms
GRAPH-nterlock T

w o

GRAPH-Supenvision T#
10 GRAPH-Waming T#

Figure 12.26 - Types of supervision

The Type of supervision names cannot be changed and no new types can be added. The
Trigger checkbox determines whether the supervision's alarm trigger is True = alarm
state or False = alarm state. The C1 trigger, C2 trigger, and C3 trigger checkboxes
determine whether the additional triggers should be True or False in addition to the
existing trigger. Delay time is the length of time the trigger and any C triggers should be
in the required state before an alarm is raised.

PLC-driven alarming 327

Note

Although the Type of supervision names cannot be edited, a language value
can be applied by inspecting the Properties window with a type selected.

By changing the default value for a language, Alarm control will display the
language version instead of simply Operand or the selected type.

Alarm texts

In the supervision settings is a section that allows the setting of alarm texts. By dragging
and dropping supported alarm text fields into the Alarm text field, a programmer can
build an alarm text that is sent to the alarm control. There is more than one type of alarm
text, depending on the origin of the supervision. Figure 12.27 demonstrates how these
alarm text values are configured:

~ General
Categories
Subcategories 1

> Tags

Subcategories 2 Configure the alarm text fields by dragging and dropping the required text frames and resort the text fields if necessary.
720 El e e supported alarm text fields: Alarm tex:
Central time stamp
~ Alarm texts T
<Subcategory 1=
<Subcategory 2>
<Type of supervision> Information tex:

<Category- ' <Type of supervisions ' <ProDiag FB names : <Supervision ID> : <Tag address= : <Tag name= ' <Tag comments

GRAPH supervisions

- Basic supenvisions

Tags

<PLC name:
78 parameters | ‘

<ProDiag F8 name=
P Supervisions with an error message <ProDiag FB number=

P supervisions with a text message <Supervision D> Additional alarm text 1:

Tag address>
| |
<Tag comment=

Tag comment paths Additional alarm text 2:

Specific text field | ‘

Separator for alarm text fields:
Additional alarm text 3:

Figure 12.27 — Alarm text configuration

Each of the text fields added to the alarm text is replaced with the relative information
from the PLC. Free text is not allowed to be entered in the Alarm text area (or any other
areas); all text must come from the Supported alarm text fields area.

Text fields can be deleted by right-clicking them and choosing Delete. Between text fields,
the separator for alarm text fields is automatically applied, which can be modified to a
different value by editing the Separator for alarm text fields value.

328 Managing Navigation and Alarms

The tag comment is most commonly used as the custom alarm text and originates from
the comment assigned in the supervision function block in the PLC:

= W E= |P.II global supervisions |'|
J Global supervisions || Supervision instances |
Supervised tag Trigger ProDiag FB ID | Type of supervision Category
1 LE “Instrument_1".Low_Interlock |i|[j False Default_SupervisionFB IZ‘ 1 Operand B 1: Error E
2 Add new supervision
[<] I
J General || Texts || Supervisions
General [G I
: enera
Attributes

Mame | Low_Interlock

Data type |Boo|

Default value |fa|5e

Startvalue

Comment |Low|nstrumentl Level

Figure 12.28 - Modification of the tag comment

The tag comment is the comment assigned in the supervision, not the comment assigned
to the variable in the PLC. In order to modify the tag comment, open the associated
supervision function block and highlight the supervised tag; in General, enter the desired
tag comment in the Comment field.

Note

When changing the supervised tag's comment, remember to download the
changes to the PLC that is driving the ProDiag supervisions for the changes to
take effect.

PLC-driven alarming 329

An example of changing the alarm text to a simpler configuration would be the PLC name
and tag comment. Figure 12.28 demonstrates that the PLC name is displayed, followed by
the comment assigned in the supervised tag comment:

Alarms

Alarm clas: Origin Area Alarm text Status text

Alarm text:

«<PLC namex: <Tag comment=>

[Eo T = T B o L) [o P

w N = O

il

Fea=z-=cgec2a=

2

o E‘

Figure 12.29 - An example of simple alarm text

If the Alarm text style is changed (and downloaded to the PLC), the HMI alarm control
will update accordingly without any modifications to the HMI.

330 Managing Navigation and Alarms

Setting global alarm class colors

Alarm class colors for global alarm classes cannot be modified at a global level in the
common data area. The colors must be assigned on a per-HMI basis in the standard HMI
alarms window on the Alarm classes tab:

‘_ni Discrete alarms Hﬁ,1 Analog alarms H,,.‘ OPCUA A&C ||E System events ||1, Alarm classes L
==

—a

Alarm classes

Neme State machine Priority Log Backgrou... Textcol.. Backgro.. Textcol.. Backgro.. Textcol.. Backgro.. Textcol.. Common alar...
T Acknowledgement Alarm with single-mode .. © I =ss. 255... .0 []255.. [l oo []255. [l v.0.. Acknowledge..
[NoAcknowledgement Alarm without acknowle... O s . 255.. [lo.0.. []255.. Il oo []z255.. [llo.0.. noAcknowle..
Lal Custom Alarm Class 1 Alarm with acknowledg_ 0 Alarm log_1 [l 255. 55 oo [(255 oo o2 [l0.0- oalarmcla
& custom Alarm Class 2 Alarm with single-mode ... 0 Moo Iz Iz Moo [J2s55. [lo.o.. []255. [llo.0.. <Noalamcla..
C@ SystemAlarmWithoutCle... Alarm without outgoing ... 12 255 .. []2ss. [2ss.. []255.. [25s.. []2ss.. [l 255.. []255.. <Noalarm cla..
L& SystemMotification Alarm without acknowle... 4 173 Mlo.o. 173 Moo []173. [lo.o. []173. [llo.0.. <toalarmcla
L& Systeminformation Alarm without outgoing . 1 [J2z0,.. Mlo.o. [Jzz0. oo []zz0. [llo.o. []z20. [lllo.0.. <toalarmcia
@ SystemWarningWithoutC... Alarm without outgoing ... 8 [J2s5... Moo [J2s5. [lo.o. [Jzss.. llo.o.. []2ss.. [llo.o.. Noalarmcla..
@ SystemAlarm Alarm with single-mode ... 12 Il 2ss .. []2ss. [2ss.. []25s.. [l 2ss.. []2ss. [l 255.. []255.. <Noalarm cla..
L& SystemWarning Alarm with single-mode .. 8 [J2s5.. MMo.o. [J255. oo []zs5.. oo []z255. [llo.o.. <toalarmcla
Cd Information Alarm without outgoing .. 1 [J220,. Moo []220. oo []2z0_ oo [220 0.0 <Hoalarmcla
@ Alarm Alarm with single-mode ... 12 Il 2ss .. []2ss. [l 2ss.. []25s.. [2ss.. []2ss.. [l 255.. []255.. <Noalarm cla..
[Notification Alarm without acknowle... 4 173.. Ilo.o. 173 llo.o.. 175 o 173... [l 0. 0. <Noalarm cla..
L WisrningWithReset Alarm with acknowledg.. 8 Oas E- E]D B- ED E- E]D B- E <Ho alarm cla
L Warning Alarm with single-mode . 8 [2ss, [Jass [ass [Jass <No alarm cla
@ AlarmWithReset Alarm with acknowledg... 12 s |:| 2s5... [255 |:| 255... [l 255. |:| 255... [l 255. |:| 255... <Noalarm cla...
L CriticalvithReset Alarm with acknowledg_.. 16 B zo . [oss. 3o 255 139 [2s5. [l 139 []255.. <Noalarmcla
L& Operatorinputinformation Alarm without outgoing .. 1 [J2z0,.. Mlo.o. [Jzz0. oo []zz0.. oo [Jz20. [lllo.0.. <toalarmcla
‘@ OperatorinputRequest Alarm with single-mode .. 5 Moo []zss5. oo []2ss. oo []2ss. o0 []255.. <Noalarmcla..
L@ Critical Alarm with single-mode .. 16 Ml izo . [255 MM ze. [J2ss.. @39 [J2ss.. MM 139 [|255.. <Noalarmcla..
@ AlarmClass Alarm with single-mode .. © Bzss - Eloo. Ilzss Eloo. 255 [loo. []2s5. oo critical
Ll AlarmClass_1 Alarm with single-mode . 0 Mz - Eloo. [lzss- Iloo. []255. oo [255 oo Aamclass

Figure 12.30 - The common alarm color configuration in Alarm classes

By unhiding the Common alarm class column, it is possible to distinguish which alarms
belong to the global alarm classes from the Common data section of the project.

Note

Columns can be unhidden by right-clicking on any of the header items and
choosing Show/Hide and then placing a checkmark in the box of the column
to be unhidden.

Summary

This chapter has explored essential areas of HMI navigation and alarming. These aspects
of HMI development are key to providing information to the end user and building a
robust and easy-to-use system. Being able to create easy-to-use navigation systems and
clear alarming systems can set a project apart from others, ensuring that end users have an
easy experience when the overall system is in use.

Summary 331

Using PLC-driven alarming via the supervision tags can help reduce the amount of

work required in the HMI by allowing the PLC to interact directly with the HMI's alarm
control. The utilization of PLC-driven alarming ensures that function blocks will raise
the same alarms no matter what project they are used in (subject to ProDiag supervisions
being available), which can have large time-saving benefits as well as standardization.

Supervision tags use the ProDiag system that requires an additional license after the
configuration of 25 supervisions. The license can be set in the PLC device properties in the
runtime licenses section.

The next chapter focuses on the deployment of the PLC and how to download a project to
both a physical PLC and a simulation. The chapter covers areas such as reinitialization and
snapshots and what these mean for projects that require downloads.

Section 4 -

TIA Portal -
Deployment and
Best Practices

Learn how to download items to a PLC, including what to watch out for and how to
mitigate issues that arise in online PLC downloads. Explore some additional best practices
that help to continue the learning experience beyond this book.

This part of the book comprises the following chapters:
o Chapter 13, Downloading to the PLC

o Chapter 14, Downloading to the HMI
o Chapter 15, Programming Tips and Additional Support

13

Downloading
to the PLC

Downloading to a Programmable Logic Controller (PLC) is an important and necessary
part of any project. It is the point at which an offline project or modification is actually
sent to the CPU. A download might consist of just software changes or also hardware
changes. TIA Portal does a great job at managing this download process to ensure it
occurs fault free. This chapter explores, in detail, how the download process works in
TIA Portal and what is new in TIA Portal 17. Before making downloads to a PLC, it's
important to understand the actions that TIA Portal needs to take and what this could
mean for data in the PLC.

In this chapter, we will cover the following topics:
« Downloading to a PLC
+ Retaining data in optimized and non-optimized blocks
« Uploading from a PLC

o Considerations

336 Downloading to the PLC

Downloading to a PLC

At some point, a download to the PLC is required to move the development code into the
PLC runtime environment. When a download is initiated from TTA Portal, a sequence is
initiated that compiles the project and checks the conditions for download. During this
sequence, the programmer is prompted for actions (if any are required) and to confirm
the PLC download action before the PLC is affected:

Download Button
Clicked By Developer

A 4

Hardware / Software
Compile

i

Successful Compile?

fes

Pre-download Checks No

i

Pre-download Checks OK?
|

es

Error
Download Stopped

Mo

Load Preview Displayed
Developer Configures Mo
Actions & Clicks Load

i

SBuccessful Download?

i

Load Results Displayed
Developer Configures Any
Actions And Clicks Finish

¥

Download Complete

Figure 13.1 - The PLC download event sequence

Downloading toa PLC 337

The download sequence ensures that the PLC is up to date before any downloads occur.

Note

When the Download button is clicked on, a compilation of the hardware and
software occurs. This means that if there are errors anywhere in the logic or the
hardware configuration for the PLC being downloaded to, the download will
not occur.

Initiating a download

There are multiple methods that you can use to start a download to the PLC; all of them
initiate the same download procedure.

The most common method to start a download is to click on the Download button from
the toolbar at the top of TIA Portal:

AL ER

Figure 13.2 — The download button (highlighted second from the left)

There are other places from where a download can also be started:

« Clicking on Online from the toolbar and selecting Download to device.

« Right-clicking on the PLC in the project tree, choosing Download to device, and
then choosing Hardware and Software.

 Additionally, it's possible to download just the software or hardware via the same
right-click menu.

In all of these cases, the PLC device (or a child of the PLC device) must be selected in the
project tree.

338 Downloading to the PLC

Once a download to the PLC has been requested by one of the preceding methods, TIA
Portal will complete a compilation of the software. If any errors are found during this
compilation, the download will be aborted, and the Load preview window will display the
following error:

Gk BB S (o] B G m[] €6 2 B P fa la b | () Crmkisionionsns
Sl
': i — Sascus. |- Targex Messsge Action
e e M W0 v Loading vall nat be earcuted Load TLET
O > Input
€ initalCall Basl ial £all o i
T Remanenc - Bl =True, d remanent data) &
L e
A e B P o
>) Netwaork 2: Temp
==
[hebesn
Cancel
q Properties |% Info & [8] Diagnosties | B
General | Crossreferences | Compile | Syntax & :
O 1[0 0w it mriages = VB
tE
i [Pah Description Gots Urees Wamingt Time
Q - A 1] 4:03:43 P £l
€ v Pogemblocks »] 0356 w
[} 0BT} o 1] 20346 P reey
[} presoe 2 The cperand requined a1 the input or outpat is mitting orbuc s A 7 40346 P 3
(=] Compiling finizhed {errorz: 1 waming:: 0} 4:03:49 M »

Figure 13.3 — An example of a compilation error during a download

Figure 13.3 displays a compilation error that has occurred during a download. The Load
preview window displays that an error was found during compilation. The error is
displayed in the Info panel, which automatically opens at the bottom of the TIA Portal
project.

In this example, the issue is caused by an instruction that has not been completed with
a variable.

Setting load actions

Once the project has been compiled successfully, the Load preview window displays
options that are required to be set before the download occurs. These options can vary
depending on what has changed in the project since the last compile and download.

Downloading to a PLC 339

Typically, when the Load preview window is displayed, one of the following three
scenarios occur:

o The download is consistent, and no actions are required.
o The download is inconsistent and actions to confirm reinitialization are required.

o The download requires the PLC to be stopped and restarted.

Depending on the changes made to the program, and how those changes were made, it
can be determined which actions are required before the download commences.

Consistent downloads

When a download is consistent, no actions are required before the load takes place. The
programmer can simply click on Load and the download will commence:

L
9 Check before loading
Status 1 Target Message Action
4 @ ~ P Ready for loading. Load 'PLC_1"'
0 Simulated module The loading will be performed from a simulated PLC.
0 » Different modules Differences between configured and target medules (enline)
(] » Software Download software to device Consistent download
] [5]
| Finish | E Load i | Cancel |

Figure 13.4 - A consistent download

A consistent download means that the PLC does not need to stop, and no data will be lost
or reset to their starting values. Although the Load preview window displays an action
and a drop-down menu for consistent downloads, there is no other option available. Some
examples of consistent downloads are listed as follows:

» Logic changes that do not change the declaration section of a function or
function block

340 Downloading to the PLC

» Adding a new program block and calling it with a single instance data
block (global)

 Changing variable comments

« Changing accessibility options for variables (accessible via OPC UA/an HMI)

Note

Figure 13.4 also demonstrates how the Load preview window displays
messages that do not have any options for actions, such as The loading will
be performed from a simulated PLC - this is a message that is displayed when
PLCSIM is in use.

Inconsistent downloads

An inconsistent download occurs when the PLC is required to reinitialize or reset data as
part of the download. When inconsistent changes to the PLC require downloading, TTIA
Portal will ask for confirmation from the programmer that the loss of data is acceptable:

Load preview X

9 Check before loading

Status ! Target Message Action
l,"lx W~ PLC1 Loading will not be performed because preconditions are notmet! Load ‘PLC_1°
9 Simulated module The loading will be performed from a simulated PLC.
() } Different modules Differences between configured and target modules (online)
1 * Data block re-initialization The data blocks will be re-initialized with their start values. Mo action

Due to changes in the DB, all data values, including retentive data,
will be initialized with their defined start values during loading. Set

! the CPU to STOP before loading.
0 » Software Download software to device Consistent download
() Text libraries Download all alarm texts and text list texts to device Consistent download
| Finish | | Load | | Cancel |

Figure 13.5 - Load preview with inconsistent data block(s)

Downloading to a PLC 341

When this occurs, the option of either No action or Re-initialize is offered as an Action
option for the data block reinitialization. The message (when expanded) explains how
all data, including retentive, will be initialized back to the start values. Additionally, it
suggests that the CPU be set to STOP before continuing; however, this does not stop the
download from executing successfully but can place additional risk on the process the
PLC is controlling due to a sudden change of values.

By clicking on the Software section of the Load preview window, it is possible to see what
specific areas of the project are changing. For example, the download in Figure 13.5 is
reinitializing due to the Instrument_1 data block being expanded with new variables:

o previey
9 Check before loading
Status | ! Target Message Action
JE(I~ PLC1 Loading will not be performed because preconditions are not met! Load 'PLC_1'
(] Simulated module The loading will be performed from a simulated PLC.
0 » Different modules Differences between configured and target modules (online}
1 * Data block re-initialization The data blocks will be re-initialized with theirstart values. Mo action

Due to changes in the DB, all data values, including retentive data,
will be initialized with their defined start values during loading. Set

I the CPU to STOF before loading.

0 ~ Software Download software to device Consistent download
] ¥ Ovenwrite online? Objects thatexist online and are overwritten.

0 Instrument_1 [DB2] The values in the work memory will be re-initialized. Overwrite

0 Default_SupervisionFB [F_. Overwrite

0 Main [OB1] Overwrite

(] Text libraries Download all alarm texts and text list texts to device Consistent download

| Finish | | Load | | Cancel |

Figure 13.6 — Load preview with detailed changes displayed

The Software section, when expanded, details which blocks are changing and how they
are changing. Figure 13.6 shows that Instrument 1 will be reinitialized and overwritten
in the PLC. The other two objects will also be overwritten.

Note

To proceed with the download, there must be no actions with the selection
of No action present. TIA Portal requires the programmer to acknowledge
the reinitialization.

342 Downloading to the PLC

Some examples of inconsistent downloads are listed as follows:

 Changing the number of variables in a structure or data block
+ The renaming of a variable within a structure or data block

« Changing the Retain setting of a variable

Inconsistent downloads do not stop the PLC - they only reset the variable data. This is
important to remember as the PLC will continue with the reset data immediately.

Downloads requiring the PLC to be stopped

In certain conditions, such as when there is a change in the hardware configuration, TTIA
Portal will state that the PLC must be stopped in order to execute the download:

Load preview b4
9 Check before loading

Status ! Target hessage Action
1 & - P Ready for loading. Loadd 'PLC_1"
1 ¥ Protection Protection from unauthorized access
0 Simulated module The loading will be performed from a simulated PLC.
0 b Different modules Differences between configured and target modules (enline)
& ~ Stopmodules The modules are stopped for downloading to device. Stop all

Depending on the objects to be downloaded and the current
dialog settings, download to device "PLC_17 is only possible ifthe
device was set to STOP mode prior to download. Select "Stop all®
in the "Action™ column to perform the download. Ifthe current
downlead includes a PLC program, all data values, including

0 retentive data, are initialized with their start values.
0 ¥ Device configurati... Delete and replace system data in target Download to device
Delete and replace existing device configuration for "PLC_1" in the
0 target system?
0 » Software Download software to device Censistent download
0 Text libraries Download all alarm texts and text list texts to device Consistent download
[<] [2]
| Finish | | Load | | Cancel |

Figure 13.7 - Load preview showing a PLC stop must occur

Retaining data in optimized and non-optimized blocks 343

In Figure 13.7, the Load preview window displays Stop modules with an action already
defined as Stop all. The only other option for Action is No Action, which then disallows the
download from continuing.

Note

The PLC program will be stopped. It is important to ensure that any controlled
devices are in a safe condition. Data within the PLC will be reinitialized,
including retentive data.

Following a stop of the PLC and a successful download, TIA Portal will prompt you via
the Load results window whether the PLC should be restarted again.

Retaining data in optimized and non-
optimized blocks

When a PLC loses power, runtime variable data is lost and reset back to its default values,
unless it is checked to be retained. Retained data persists after a power fail or a download
to the PLC, and it only resets to its default values when a reinitialization occurs or a
memory clear of the PLC occurs. If a variable needs to retain information, the Retain
function needs to be selected in the corresponding data block or interface:

Marne Data type |Start value Retain

1 |« = Static

2 4@ = Scaled_Value Real 0.0 D
3 . High_alarm_Trigger Real 450 D
4 g = High_Interlock Bool false B
5 a1 = Low_Interlock Bool false D
6 |« = Low_Low_Interlock | Bool falzse D
AT L Scaled_NMax Real 0.0 @
g g m Scaled_Min Real 0.0 W)
9 4q = Raw_Max Int 0 [
10 40 = Raw_Min Int 0 W)

Figure 13.8 — The Retain checkbox

Figure 13.8 shows an example of four values set to Retain in a data block. Once the Retain
box has been checked for some given data, the changes must be downloaded to the PLC.
This will cause a reinitialization of the data.

344 Downloading to the PLC

Retaining data in instance data

Function blocks and associated instance data blocks can also have data retention set.
However, there are more options involved, and it also depends on whether the function
block is optimized or non-optimized.

Optimized function blocks

Optimized function blocks allow the Retain value to be configured within the function
block itself:

MNarne Data type Default value | Retain
1 < * Input
2 4 = Active Bool false Mon-retain
3 [« ~ Output
4 |« = Status Byte 1680 Mon-retain
5 = Add new
& <l > InOut
7 <10 = F Power_Data Struct
8 = Add new=
8 <@ ¥ Static
10 +q] = Line_1_Max Real 0.0 Setin IDB
11 g7 = Line_1_Min Real 0.0 Setin IDB
12 |<q] = Line_2_Max Real 0.0 Setin IDB
13 |<q] = Line_2_Min Real 0.0 Setin IDB
14 4] = Line_3_Max Real 0.0 Setin IDB
15 <41 = Line_3_Min Real 0.0 Setin IDB
16 < = Rolling_Average Real 0.0 Retain
17 <40 = Temp
18 <@ = » Temp_Array Array[0..20] of Real

Figure 13.9 — The Retain settings of the optimized function block

Figure 13.9 is an example of a function block that is set to Optimized with the Retain
values configured. Optimized function blocks can individually set each variable's Retain
value. The Input, Output, and Static variables can be retained. However, InOut variables
cannot be retained. Additionally, Temp variables do not have Retain configuration data
associated with them as they do not persist in any capacity.

Retaining data in optimized and non-optimized blocks 345

Optimized function blocks can choose one of the following three options for Retain data:

o Non-retain: Data is not retained.
o Retain: Data is retained.

« Set in IDB: Data is retained, but only if the instance data block is configured to
retain data.

Note

The Retain option is used to ensure that all instances of a function block will
retain the variable, irrespective of the configuration of the instance data block.
This has advantages if the information is critical for the continued operation of
the function block following a download or a power failure.

Setting the configuration in the instance data block (which is abbreviated to IDB in
the Retain configuration) is achieved by opening the associated instance data block and
setting the Retain checkbox in the same way as a standard data block:

MNarme Data type Startvalue Snapshot Retain
1 |« = Input
2 4] e Active Bool false =
3 |4 ™ Output
4 | = Status Byte 1680 =
5 |4l > InOut
6 <] = Power_Data Struct =
7 |4 T Static
B 4] = Line_1_Max Real 0.0 - B
9 lgqnw Line_1_Min Real 0.0 -]
10 |z = Line_2_Max Real 0.0 —]
11 <@ = Line_2_Min Real 0.0 —]
12 |4q = Line_3_Max Real 0.0 —]
13 |47 = Line_3_Min Real 0.0 — B
14 |«qQ = Rolling_fAverage Real 0.0 -

Figure 13.10 — The Retain settings of the instance data block

346 Downloading to the PLC

When a Retain option is set, all the variables inside the data block will be set to Retain. It
is not possible to retain individual variables in the data block:

Marne Data type |Startvalue Snapshot Retain
I <@ ¥ Input
2 4 = Active Bool false -
3 < * Output
4 |4 = status Byte 1680 =
5 |4 T InQut
G | = Power_Data Struct —
7 |4 T Static
8 4= Line_1_Max Real 0.0 — ™
9 4= Line_1_Min Real 0.0 — ™
10 lqq = Line_2_ Max Real 0.0 — ™
11 40 = Line_2_Min Real 0.0 — ™
12 lqQ = Line_3_Max Real 0.0 — ™
13 |40 = Line_3_Min Real 0.0 — v
14«4 = Rolling_Average | Real 0.0 =

Figure 13.11 - The instance data block with all static options

Figure 13.11 demonstrates how all variables set to Set in IDB in the function block are
checked when any single variable's Retain checkbox is checked.

Note

The Active and Status variables are not available to be checked because
the function block's configuration for them is set to Non-Retain. This means
that even the instance data block cannot be retained. Similarly, the Rolling
Average variable is checked and disabled, disallowing the unchecking of the
Retain option. This is because the function block configuration for this variable
is set to Retain.

Non-optimized data blocks

Function blocks that are non-optimized are unable to set the retain data for individual
variables, and the Retain column does not exist in the function block:

Retaining data in optimized and non-optimized blocks 347

Name Data type Dffset Default value |Accessible f.. Writa... |Visiblein ... | Setpoint | Supervision Comment
1 <@ ~ Input
2 4w Active Bool 0.0 false E E E
3 41 ~ Output
4 @@= Status Byte 20 620 =] =]]
5 -« ~ InOut
& < = » Power_Data Struct 4.0
7 40 v Static
8 = Line_1_Max Real 10.0 0.0 ™ ™ ™ =)
3 = Line_1_Min Real 14.0 0.0 =] =] =] [l
10 4 = Line_2_Max Real = 180 0.0 =] =] ™ =
1 qme Line 2 Min Real 220 0.0 =l =l =l =
12 = Line_3_Max Real 26.0 0.0 ™ =] ™ =)
13 @ = Line_3_Min Real 300 0.0 =] =] =] [l
14 4 = Rolling_Average Real 340 0.0 E E E D
15 @ « Temp
16 @ = » Temp_Array Array[0..20] of Real 0.0
17 <@ ~ Constant
18 = <Add new

Figure 13.12 - No Retain column is available in a non-optimized function block

To set retainable instance data in a non-optimized function block, the variables must be
set in the instance data block:

Line_monitor_DB

MName Data type | Offset Start value Snapshot Retain Accessible f.. Writa.. |Visiblein .. | Setpoint
1 <@ ~ Input
2 |@n= Active Bool 0.0 false = =)
3 |- ¥~ Output
4 |4Q = Status Byte 2.0 1680 = =)
5 < ™ InDut
6 |4 m Power_Data Struct 4.0 — @
7 <0 * Static
8 |lag = Line_1_Max Real 10.0 0.0 —]|
9 @ = Line_1_Min Real 14.0 0.0 —]
10 |an = Line_2_Max Real 18.0 0.0 — =]
1 |a = Line_2_Nin Real 220 0.0 — =]
12 |ag = Line_3_Max Real 26.0 0.0 — =]
13 |an = Line_3_Nin Real 300 0.0 — =]
14 41 = Rolling_Average Real 340 0.0 = E

Figure 13.13 - A non-optimized instance data block

Similar to the Set in IDB option, the instance data block checks all the retain values when
a single variable's Retain checkbox is checked.

Note

In non-optimized instance data blocks, the interface variables will always be
available to set to Retain. Only optimized blocks can set the default retain
value and prevent the programmer from changing it.

348 Downloading to the PLC

Downloads without reinitialization

One of the drawbacks of the TIA Portal environment is the ease with which a
reinitialization is triggered. Changing the name of a variable in a data block from
Variable 1 toVariablel will cause a reinitialization of the entire data block.
This means that if a project has a data block that contains 100 variables for the
parameterization of devices, all 100 devices would be affected due to 1 name change.
Therefore, each device would be reinitialized back to its starting value.

The methods offered to help retain data and lessen the impact of modifications to a program
vary, depending on how the programmer has configured program blocks in the project.

The biggest difference between optimized and non-optimized blocks is that optimized
blocks can take advantage of the Download without reinitialization option. This feature
allows the block size to be defined as larger than the variables that occupy it:

Datablock

Memory Occupied By Declared Variables | Memory Reserve

Figure 13.14 - An example of a memory reserve
By declaring a fixed number of bytes for the Memory reserve option, the block can be
expanded into the reserve without a loss of information.

The same can be achieved for any retentive memory by setting the Retentive memory
reserve option:

Retaining data in optimized and non-optimized blocks 349

Instrument_T [DEZ H
J General || Texts
General) o
: Download without reinitialization
Informaticn

Time stamps

Compilation Memory reserve: | 100 Bytes | (100 bytes available)
FE EH e E Enable downlead without reinitialization for
Antributes retentive tags.

Download without reinitialization Retentive memaory reserve: 100 Bytes | (100 bytes available}

T = T =

<] i [2]

r oK 1 | Cancel |

Figure 13.15 - The Download without reinitialization configuration

Figure 13.15 shows the Download without reinitialization options. This can be accessed
by right-clicking on a program block from the project tree, selecting properties, and then
navigating to Download without reinitialization.

Note

Download without reinitialization should be used sparingly. Setting large
reserves for multiple blocks is a quick way to fill the PLC memory, leaving little
room for further development.

If the Optimized block access block attribute is unchecked, the Download without
reinitialization options will be unavailable for use. Spare variables can be declared when
developing the data for later use. However, resizing or renaming these variables will result
in reinitialization.

350 Downloading to the PLC

Snapshots

TIA Portal offers a convenient method that captures current variable values and stores
them in the offline project. These can then be recalled later to replace either the current
value in the PLC's running program or the start value.

Taking a snapshot
Snapshots are taken in one of two ways, and an online connection to the PLC must be
maintained during the process:
1. Right-click on a data block or group folder in the project tree and choose Snapshot
of the actual values.

2. Open a data block and click on the Snapshot of the actual values button from the
Snapshot toolbar:

ﬂr Snapshot of the actual values
.ﬂl, Load snapshots as actual values

Snapshot M8 &

W, Load startvalues as actual values
Copysnapshots to startvalues]

Figure 13.16 - The Snapshot menu items and buttons (left: the right-click menu; right: the data block
Snapshot toolbar)

3. Once a snapshot has been successfully taken, a new column will appear when the
data block is open, displaying the snapshot values. Additionally, a header text is
supplied stating the time and date of the latest snapshot:

Alarms (snapshot created: 1/11/2022 11:45:10 PM)

MName Data type Start value | Snapshot
<0 ~ Static
<1 ® ¥ Alarm_Group_1 “UDT_Alarm_Group®
S| = ¥ Accepted Array[0..1] of DWord
<] Accepted[0] DWord 1620 16£0000_0000
-0] Accepted[1] DWord 16£0 16£0000_0000
<0 B b Active Array[0..1] of D... E

Figure 13.17 - An example of the Snapshot header text and column
The Snapshot column can also be shown or hidden without taking a snapshot.

Retaining data in optimized and non-optimized blocks 351

Note

When snapshots are called from the project tree, all objects beneath the
selected object (including the selected object) will have a snapshot taken. If
a snapshot is requested from the Data block snapshot toolbar, all variables
within the data block are captured.

Snapshots cannot be taken if the offline data block does not match the online version
in the PLC. This is not highlighted very well by TIA Portal, so it might seem like the
snapshot has been successful. It is important to take snapshots before any modification
work is required.

Restoring snapshot data

Once data has been captured via a snapshot, it can be reinstated as the current value in
the online PLC program. Similarly to taking a snapshot, restoring data can be achieved in
more than one way, as shown in Figure 13.18:

LY Snapshot of the actual values
B | 5ad snapshots as actual values

W, Load startvalues as actual values
Copysnapshots to startvalues 3

Snapshot ¥y B Copysnapshots tostartvalues [(2. Load startvalues as actual values [y, H

Figure 13.18 - The right-click menu and the data block snapshot toolbar

There are different methods of restoring data into data blocks that have different effects on
the data and the PLC program:

« Load snapshots as actual values: This option loads the captured values as the
current values in the online PLC.

« Copy snapshots to start values: This option copies the snapshots to the starting
values and filters them according to one of the options selected:

» All values
* Only setpoints

= Only the retain values (only accessible via the right-click menu)

352 Downloading to the PLC

Note

It is important to understand what the PLC program that is running will do
when the snapshot data has been loaded, especially if all values have been
loaded. For example, sequences might jump from one step to another without
determining the intermediate steps due to the sequence step data suddenly
being overwritten with data from a previous date.

The Load start values as actual values option should not be confused with the snapshots
directly but can be used in conjunction with the Copy snapshots to start values option to
help perform downloads without losing information. When the Copy snapshots to start
values option is used, the data stored within the snapshots is loaded into the start values.
This needs to be downloaded to take effect in the PLC.

When a data block is reinitialized, the new start values from the snapshot are used instead
of the default values for the data type.

Note

It is recommended that you use the Setpoints checkbox in data blocks to help
restrict which variables can be written with new start values and then copied to
actual values. If the consequences are not understood, changing variables that
control the process equipment or machines should be avoided while the system
is running.

Uploading from a PLC

PLC programs can also be uploaded out of the PLC and back into the TIA Portal project,
which is useful if the version of the offline project does not match the project in the PLC:

Uploading froma PLC 353

~ (g PLC_1 [CPU 1515-2 PN] 40
[y Device configuration
ﬁ Online & diagnostics
b I_ﬁ Software units

w [Program blocks o
ﬁ""ﬁ.dd new block
3 Main [OB1] O
4 ProDiagOB [DB250] @
i8 Default_SupervisionFB [FB1] O

3 Line_monitor [FE2] O
@ Alarms [DB1] e}
@ Default_SupervisionDB [DB3] @
@ Instrument_1 [DE2]]
@ Line_monitor_DE [DE4] O

Figure 13.19 - An example of an unmatching online project

The project tree will identify any objects that are not consistent with the online project. By
right-clicking on an object and selecting the Upload from device (software) option, the
Upload preview dialog box will open:

Upload preview
9 Check preconditions for upload from device
status ! Target Message Action
I & - pca Ready for loading.
() simulated module The loading will be performed from a simulated PLC.
(] b Different modules Differences between configured and target modules {online)
1 ¥ Conflicts Conflicts occurred during upload from the device. Ovenwrite
(<] I 2]
| Upload from device | | Cancel |

Figure 13.20 - Upload preview

354 Downloading to the PLC

The Upload preview window displays information about the upload that is about to take
place and also asks the programmer for a decision regarding conflicting objects. A conflict
is detected when a block that is different in the offline project has the same name as an
object in the online project.

The programmer can choose the Action option, deciding to either Overwrite or Insert with
different name.

Once the Action option has been selected, clicking on Upload from device begins
updating the offline project with online block data.

Unlike the download process, uploads can occur at a singular block level. By selecting
one program block, right-clicking on it, and uploading it, only the single program block
is uploaded.

Uploading a single program block, such as an instance data block, can cause an issue
where the function block and the associated instance data block do not match. By only
uploading the instance data block, TIA Portal remedies the mismatch in one of two ways:

o When the function block is opened, the associated instance data block is
regenerated, undoing the upload changes.

« Ifadownload is initiated, the Software synchronization before loading to a device

window is displayed.

A software synchronization is an event where TIA Portal uploads inconsistent
dependents before downloading:

Software synchronization before lToading to a device

1 The CPU contains changes that cannot be automatically synchronized.
u

! Software synchronization Status Action
1w PLC1
1 > 'Program blocks'

@ Line_rnonitor [FB2] 4 Upload and overwrite in the project
1 Main [OB1] 4 Manual synchronization required

(<] [2]

| Offlinelenline comparison | | Synchronize | | Continue without synchronization | | Cancel |

Figure 13.21 - Software synchronization before loading to a device window

Uploading froma PLC 355

Sometimes, TIA Portal is able to automatically synchronize data without having to
perform an upload. Where this is not possible, a Manual synchronization required
message is displayed.

Note

Manual synchronization means TTA Portal is unable to detect the version of
the block (offline/online). The message for manual synchronization appears
when the PLC's timestamp for the block is newer than the offline project.

TIA Portal requests Manual synchronization, which means the programmer
should click on the Offline/online comparison button and review the changes,
modifying them appropriately if required.

Click on Continue without synchronization to close the Software synchronization
before loading to a device window and load the normal Load preview window. Note that
the changes recommended in the Software synchronization before loading to a device
window will not have been implemented.

At this point, a compilation of the program is executed, and the differing instance data
block is regenerated. If this is then downloaded to the PLC, the online changes in the PLC
are lost as the older function block has been downloaded.

When TIA Portal displays the Software synchronization before loading to a device
window, clicking on the Offline/Online comparison button loads the Compare editor
online window:

E
]
£
H
i
3
H
i
i
¥
£
3

i
7 \

BEERaaze

onoaaenlalou:bos:o:.cn;g

Figure 13.22 — The Compare editor online window

356 Downloading to the PLC

This window allows direct comparison between the offline project (on the left-hand side)
and the online PLC project (on the right-hand side). The example in Figure 13.22 shows
that the Line_monitor_DB and Line_monitor objects are different:

rame

300&9&905

Figure 13.23 — Comparison results

Figure 13.23 demonstrates that the Line_monitor_DB object has a newer interface
timestamp in the online PLC than the offline project. However, the code timestamp is the
opposite, with the offline project being newer than the online project. It is for this reason
that a manual synchronization is required.

By clicking on the pause icon between the offline project and the online PLC project
for an object, a drop-down menu opens that allows you to select Upload from device or
Download to device, along with No action.

Note

It is not possible to set some objects to upload and others to download at the
same time.

By setting both the Line_monitor and Line_monitor_DB objects to upload, it ensures
that the function block, which is dependent upon the instance data block, is also kept
consistent:

MName Status Action MNarne
~ [PLC_1 i 0o 2 E PLC_1
ﬁ Software units "
+ [5l Program blocks o 2

3 ProDiagOB [OB250]] 48 ProDiagOB [OB250]
& Main [OB1] = O 1 2 Main [OB1]
38 Default_SupervisionFB [FB1] 9 48 Default_SupervisionFB [FB1]
4 Line_monitor [FE2] 6 +« 3 Line_monitor [FE2]
@ Alarms [DB1] [] @ ~larms [DB1]
@ Cefault SupervisionDE [DB3] [*] @ Default SupervisionDB [DB3]
@ Instrument_1 [DB2] [] @ Instrument_1 [DEZ2]
@ Line_monitor_DE [DB4] O - @ Line_monitor_DB [DB4]

Figure 13.24 - A selection of upload actions

Once the actions have been set, clicking on the Execute actions button will perform
the synchronization:

Considerations 357

i—'ﬂél)‘fi

I} Execute actions I

Figure 13.25 - The execution button

Depending on the action that has been requested, the appropriate load window will be
displayed, and the event (upload/download) is then completed as normal.

Note

When performing uploads, it is important that the dependencies of the objects
are examined thoroughly and that manual synchronizations are executed
correctly. If manual synchronization is skipped, TIA Portal will download
differencing objects, and any online changes will be irreversibly lost.

Considerations

Managing downloads can become more difficult the larger projects become, especially
if the process that the PLC is controlling is also critical and PLC downtime is to be kept
to a minimum.

Data segregation

A good method of reducing the effect of reinitialization and the chance of it needing to

set the data in your project to the starting values is to segregate data into more than one
data block:

- DB1
— ”
DB1 X
P X3 A
X1 -~
x2 DB2
X3
Y1 > Y1
Y2 Y2
Y3 Y3
Y4 . Y4
z1 P
Z2 DB3
z3
— z1
z2
z3

Figure 13.26 - An example of segregating data

358 Downloading to the PLC

By grouping data into singular data blocks, where the data has something in common
with the data it is grouped with, reinitialization only affects data that is grouped together.

Figure 13.26 shows an example of mixed data in DB1 on the left-hand side. If a variable
was added, removed, or modified in this data block, the entire data block would be
reinitialized. Then, groups of unrelated data would be set to the starting values.

By splitting the relative data into three data blocks, only the data block that contains the
added, removed, or modified data will be reinitialized, leaving the segregated data intact.

Using functions

Functions do not utilize their own instance data. This means that any function block that
they are placed in does not require its interface to change. When making modifications to
a function block, consider whether the modification required can be made in a function,
as this will be considered as a consistent download.

Summary

Downloading to a PLC is a fundamental part of PLC programming. However, it is often
considered to be a simple click of a button. This chapter has highlighted the important
aspects of the download process that are often overlooked, such as the retention of data
and methods to keep offline and online projects in synchronization.

TIA Portal always warns programmers of impending changes and will often require

the selection of an action in order to proceed. It is important that habits are built by
programmers to check the warnings and messages to ensure that the changes about to be
actioned are understood.

In the next chapter, we will focus on the same principles, but for an HMI. This includes
the configuration of connection parameters, downloading to hardware, and other
important considerations.

14

Downloading to
the HMI

Human Machine Interfaces (HMIs) found within a project also require a download in

a similar fashion to PLCs. During this download, items such as the graphical screens,
connection configurations, user administrations, and more are sent to the HMI's runtime
system. In order to download to an HMI, additional steps are required in the TIA Portal
project than that of a PLC, with more steps required to be confirmed by the programmer

performing the download.

In this chapter, we will cover the following topics:

« Connection parameters
« Downloading to an HMI
« Simulating a unified HMI

o Security considerations

360 Downloading to the HMI

Connection parameters

HMIs are designed to offer an interface for a machine or process, hence the name Human
Machine Interface. Before the HMI can be downloaded to, a connection must be made
between the PLC and the HMI. This connection is then used to pass information between
the HMI and the PLC.

Note

Connections must be made before the HMI is able to access variables created
in the associated PLC.

TIA Portal offers many different communication drivers for HMIs, allowing
communication between all Siemens devices and even other vendors such as Allen
Bradley and Mitsubishi. This enables a single HMI to talk to multiple PLCs, even if they
are not of the same type.

Creating connections

Inside the project tree and within the HMI object, you will find the Connections object.
By opening the Connections object, the Connections window opens. Here, connection
definitions can be made, including those connections that are not Siemens devices.

A new connection can be added by double-clicking on the <Add new> option inside the
Connections window:

#¥ Connections to 57 PLCs in Devices & networks

Connections
MName Communication driver | Station | Partner Mode Online Comment
<Add news=

Figure 14.1 - The Connections window

This will enter a new connection within the Connections window. The Communication
driver field will be set to the last used selection. Alternatively, it will be set to SIMATIC S§7
1200/1500 if no connection has previously been set.

Once a selection has been made for the Communication driver field, the Parameter tab
(which is located below the Connections window) will display the configuration properties:

Connection parameters 361

Parameter

MTP1500 Unified Comfort Station
Interface:
|Indu5tria| Ethernet |V| “
HMI device PLC
Address: [192 168 .0 .2 | Address: | 192 168 .0 .1 |
Access point: |S?ONLINE | Access password: | |

Figure 14.2 - The Connections Parameter tab

Depending on the communication driver that has been selected, different options will
appear in this window. For the SIMATIC S7 1200/1500 driver, the properties displayed in
Figure 14.2 will be used.

Note

In TIA Portal V17, PLCs can have enhanced security profiles configured that
deny HMI communication or restrict communications to read-only. Ensure
that the PLC's configuration is correct and that the Access password value has
been entered in the Parameter window that is displayed (as shown in Figure
14.2).

More than one connection can be configured in the Connections window. Figure 14.3
demonstrates how the HMI can contain more than one connection type across different
communication drivers:

Connections

MName Commmunication driver Station Partner | Node Online Comment
EEB Master_PLC SIMATIC 57 1200/1500 S7-1500/ET200MP ... PLC_1 CPU 1515-2 PN, PR... E
'2. Air_Temp_System_1 Standard Modbus TCPIIP E
'2. Air_Temp_System_2 Standard Modbus TCPIIP E
*2e Air_Supervisory_PLC ﬁllen-BradIeyEtherNe...E [~

Figure 14.3 — The Connections window with four configured connections

362 Downloading to the HMI

In this example, a Siemens SIMATIC S7 1515-2 device is in use, and the following list of
non-Siemens devices have also been configured:

o Air Temp System 1 - Modbus TCP
o Air Temp System 2 - Modbus TCP
« Air Supervisory PLC - Allen-Bradley EtherNet/IP
Only the Siemens PLC can be configured with the Station, Partner, and Node properties.

These properties are automatically updated by TIA Portal once a successful connection
has been configured.

Note

The Online column allows the quick activation and deactivation of
connections. This is useful if the HMI is common between different asset types
that may or may not be included within the project.

Devices and networks

In the Connections window, there is an option that switches the view to the Devices &
networks window. This button is located above the title of the Connections window and
is labeled Connections to S7 PLCs in Devices & networks:

&} Connections to 57 PLCs in Devices & networks

Connections
MNarme Commmunication driver | Station Fartner Node
Eg'h Master PLC SIMATICSF 12001500 S7-1500/ETZ00MP ... PLC_1 CPU 1515-2 PN, PR...

Figure 14.4 - The Connections to S7 PLCs in Devices & networks button

The Devices & networks window will be populated with any connections made
previously, as shown in the following graphical diagram:

Connection parameters 363

HMIT
MTF1500 Unifie...

PLC_1
CPU 1515-2 PN

192.168.1.1

[PNAE_1: 192.168.0.2 PN/IE_1: 192.168.0.225
192.168.1.2

Air System 1 Air System 2

Allen Bradley 5_..

Ethernet device Ethernet device

Ethernet device

[PNAIE_1: 192.168.0.3] [PNJIE_1: 192.168.0.4]

|F‘N.I'IE_‘I 1 192.168.01 |

Figure 14.5 — A graphical representation of the configured connections

Additionally, it is possible to modify and change connections from this view by dragging

the connection points to the newly added devices or deleting connection points from
existing devices.

Note

The programmer might need to reorganize the location of the devices in the
Devices & networks view. Following the creation of new connections and
devices, the objects might all appear on the same line.

Once all the connections have been configured, the HMI can be compiled by selecting it

in the project tree, selecting Compile, and then selecting Hardware and software. If the
HMI compiles correctly, it can be downloaded.

364 Downloading to the HMI

Downloading to an HMI

The principles behind downloading to an HMI are very similar to that of a PLC. Starting a
download is performed in the same manner - by selecting the HMI in the project tree and
then clicking on the Download button. Additionally, the right-click menu can be used to
initiate a download.

When the Load preview window is displayed, the options differ from an HMI to a PLC:

L .1
9 Check before loading
Status ! Target Message Action
4 @ -~ = Ready for loading. Load "HM_RT_1'
[v] b Load Runtime Stop Runtime and perform full download Full download
0 b Runtime start Start Runtime after download to target systern. Startruntime
0 b Runtime values Keep current values in runtime or reset to start values from the engineering project. keep currentvalues
0 b Resetlogs Resetall logs in the runtime Mo reset
Q } HMI Runtime Informations
} Secure transfer Load runtime unencrypted Unencrypted transfer
!
Finish | | Load ‘ | Cancel |

Figure 14.6 — Load preview

The HMI Load preview window has more actions available than the PLC Load preview
window, and these actions directly affect how the download is completed:

+ Load Runtime: Under certain conditions, a Delta download option is available
rather than a Full download option. Delta download allows the HMI to continue
running during the download process, and only changes are downloaded as
opposed to the entire download. When a Full download occurs, the HMI must be
stopped temporarily, and this happens automatically.

o Runtime start: The action can be set to Start runtime, which restarts the runtime
on the HMI once the download has finished, or the value can be set to No action.

Simulating a unified HMI ~ 365

o Runtime values: This action has three options:

» Keep current values: All tags, active alarms, and user management data remain
the same (if possible).

* Reset to start values: All tags, active alarms, and user management data will be
reset to the starting values defined.

» Keep selected: Depending on the selections made when the Runtime values
section was expanded, the Keep current values action will be applied to checked
items, and Reset to start values will be applied to unchecked items.

« Resetlogs: Logs, such as tag logs, alarm logs, and other historical functions will be
reset in the runtime.

« HMI Runtime: This section does not have any actions, but it does highlight
important information about the runtime environment that is to be downloaded.

« Secure transfer: If Encrypted transfer is configured in Runtime settings, it will
check whether the HMI contains a matching transfer password to the project. If
Encrypted transfer has been turned on for the first time, at this point, a different
message might be displayed explaining that the Allow initial password transfer via
unencrypted download action needs to be checked to continue.

Once the preceding sections have the appropriate actions applied, clicking on the Load
button will execute the download. Once the download has been completed, the Load
preview window will close. Compared to downloading to a PLC, an HMI download does
not produce a Result preview window after a successful download.

Simulating a unified HMI

TIA Portal V17 can simulate a unified HMI on the localhost (that is, the laptop/PC being
used to develop the project). The simulation can be started in the same way that a PLC
simulation is started - by clicking on the Start simulation button from the toolbar.

366 Downloading to the HMI

Unlike with a PLC, no simulation window or program will open. Instead, TIA Portal starts
a background service that runs the unified simulation. This can be accessed by opening the
SIMATIC Runtime Manager window, which can be accessed from the Windows Start
menu (type in SIMATIC Runtime Manager after opening the Windows Start menu):

K SIMATIC Runtime Manager

Runtime Server information

Computer name or IP address: | |
Projects
i
O W<]
Project Autostart Device name State Type jin]
O . Chapter 12 HMI_RT_1 Running Simulation 75c694b0-9586-4851-bd92-ef79054e5ce3
>~ =)
Updated project state W OK

Figure 14.7 — SIMATIC Runtime Manager

The SIMATIC Runtime Manager window displays any active runtimes, including
simulated runtimes. Figure 14.7 demonstrates this by displaying a project called Chapter
12 that is active and running with a Type value of Simulation. This is the runtime that
was used for the Chapter 12 project.

Note

The SIMATIC Runtime Manager window can be used to start and stop a
runtime, without the need to open TIA Portal.

Accessing a unified HMI simulation

In order to access the simulation of an HMI, the name of the laptop/PC that is running
the simulation needs to be known. This can be found by opening a Command Prompt
terminal and typing in whoami:

Simulating a unified HMI

367

»whoami
Jiam bee

\Liam Bee>

Figure 14.8 — The whoami command

This will then display the name of the device followed by \ <usernames.

In an HTML5-compatible browser, open the following URL: https://desktop-
512hk8i/.

Replace desktop-512hk8i with the name of the laptop/PC displayed inside the
console. If everything is working correctly, the following page will be displayed:

SIEMENS

User management

WinCC Unified RT

WinCC Unified Help

Figure 14.9 - The runtime management menu

Figure 14.9 shows the runtime management menu. This is the starting point of a unified
runtime system. From here, the user management or the unified runtime can be started,

or additional help can be displayed.

https://desktop-512hk8i/
https://desktop-512hk8i/

368 Downloading to the HMI

By clicking on the WinCC Unified RT button, the User Login window will be displayed:

User Login

‘ Change language

Figure 14.10 - The User Login window

At this point, a user must be logged in to continue. Ensure that the language is set
correctly before clicking on the Sign In button.

Note

Users are configured in the Users and roles section of the project tree, under
Security settings. This user configuration applies to the entire project. Ensure
that a full download, along with reset runtime values, has been performed to
update the runtime with the latest user data.

Once the user has logged in, the runtime will be started and the simulated HMI will begin
running in the browser. The behavior of the runtime and how the project is operating can
now be tested within a test environment.

Security considerations 369

Note

Simulated HMI runtimes can interact with physical PLCs via the connections
that have been configured. Also, simulated PLCs can be connected to HMIs as
if they were physical devices.

Security considerations

In TIA Portal V17, security standards have been implemented and Siemens recommends
using security methods whenever possible. These include encryption transfer but extend
beyond this to items such as OPC UA.

With a vast variety of connection protocols and interfaces available on different hardware
platforms that can run the unified environment, Siemens has detailed its security
considerations in a freely available document that can be downloaded from the Siemens
website or via the following QR code:

Figure 14.11 - The QR code to Siemens Support for HMI security considerations

If the QR code in Figure 14.11 cannot be read, the same information can be found by
searching for Security guidelines for SIMATIC unified HMI operator devices on the internet.

On the support site, there is a PDF file spanning over 40 pages that lists, in detail, all the
security considerations and steps to enable these security functions. It is unlikely that
all projects will need to consider all of the security concerns; however, it is useful for
programmers to understand what they are and why some of these options exist.

In nearly all cases, security is disabled by default or, at the very least, has no password set.
And it fails the compilation until a password has been set (or the feature has been disabled).

370 Downloading to the HMI

Summary

In this chapter, we covered the steps required to download a unified HMI, including how
to simulate and access simulated HMIs. Downloading to HMIs is similar to downloading
to a PLC. However, many different options directly affect how the download proceeds and
what happens to the runtime of the HMI once the download has finished executing.

The unified environment is capable of running on different hardware platforms, even
PCs. The download procedure for all of these should be the same. However, there might
be small differences in the Load preview window depending on the capabilities enabled
(such as OPC UA and other interfaces).

In the next chapter, we will focus on writing tips such as simplifying logic, naming
conventions, sequences, and where to find further support.

15

Programming Tips
and Additional
Support

The final chapter covers programming tips for different areas of TIA Portal. These are
items that are useful to know and that may help advance knowledge and writing styles for
programmers.

The items described in this chapter serve as a good starting point for any programmer to
adapt and modify to suit their individual writing style. This chapter also covers additional
support information and where programmers can find more resources to help continue
their learning.

This chapter covers the following areas:
« Simplifying logic tips
« Managing sequences
« Naming conventions and commenting
o Additional Siemens support

o Further support

372 Programming Tips and Additional Support

Simplifying logic tips

There are hundreds of different ways of completing the same task when it comes to
logic writing. There is no clear approach that is the perfect way to achieve the desired
logic output; all that should matter is that it is easy to read, easy to modify, and well
documented. In addition to this, programmers should write logic code with their own
style that is comfortable to them but be considerate of the fact that it is likely that other
programmers will also work on the project.

Good logic will be simple and easy to follow without much deciphering required by those
that find themselves working on it.

Delay timers

When using timers, such as the Timer On Delay (TON) timer, it is important to
understand why that timer is being used. Consider a scenario where an output is required
to be delayed both before and after a signal is set to True. This may look something like
Figure 15.1:

E Network 1: ..

THOMS
#5tart_Delay
TON #5tart_Delay_
#Start_Signal Time Done
1 T IN Q {)
: T#10s —IpT ET T#0m
1
1
i #5top_Signal
i
—— NOT}

* Network2: .

THOMS
#5top_Delay

-

#5top_Signal

Network 3:

#5tar_Delay_

Done

TOMN
#Run_Output Time
1

#5top_Delay_
Daone
Y

#5top_Delay_
Dane

L

#Run_Output
Y

#Run_Output

L

Figure 15.1 — Example of start and stop delay timers

Simplifying logic tips 373

While there is nothing wrong with this approach, it can be simplified, as the Stop Delay
TON timer is being used as a permissive delay instead of an inhibiting delay. When
Start Signal issetto True, the Start Delay TON timer will start timing for 10s.
On completion, the Start Delay Done bit is set to True, and it is this variable that sets
Run Output to True on Network 3.

When Start Signal is set to False, then Run_Output is active (as long as the
Start Delay timer has completed). This then starts the Stop_Delay timer on
Network 2. When this timer completes, the inverted Stop_Delay Done bit on Network
3 breaks the hold on contact for Run_Output and the system stops.

There is nothing wrong with this approach and all works correctly; however, it can be
simplified further, as shown in Figure 15.2:

- Network 1: ...

THOMS T#125_94M5
#5tart_Delay #5Stop_Delay
S TR TOF
#5tart_Signal i Time i Time #Run_QOutput
1 1
\ Fem——- HIN QLmmmmmmmm e IN Q
T#10s —dpT Elr— 7% T#205 —|PT ETf— T=0r

Figure 15.2 - Simplified timer delay solution using a TOF timer

This example shows how using a Timer Off Delay (TOF) timer in conjunction with a
TON timer simplifies the process drastically. No additional variables are required other
than Start Signal and Run Output, and no new timers are required either.

Note

The preceding example shown in Figure 15.2 shows the TOF timer keeping
Run_Output in a True state following Start Signal switching to
False.

Remembering what tools are available and how they can be used together is an important
practice and one that programmers should try to exercise often.

374 Programming Tips and Additional Support

AT constructor

The AT constructor is a special attribute that can be applied when declaring static and
temporary variables. It allows memory locations to overlap each other so that the same
data can be represented as different data types.

Figure 15.3 demonstrates this functionality:

3 <@ ¥ Output

4 g1 = Output Bool false Non-retain =
5 < ¢ InDut

6 < ™ Static

7 <= » MyAray Array[0..15] of Bool Setin DB @
8 |ad MyWord AT"MyArray™ | Word Setin IDB

Call path: Main [OB1]
= < IH ROT
AF Ak 0= B 5 S oeaiee & dF

hd Network 1: .

Comment

True #hytrrayl8]

#Nhyhrray[9]

P
(P

#MyArray[10]

b Network 2: .

Comment

5

#MyWord #0utput

Figure 15.3 - AT constructor example

Network 1 shows a True signal setting elements 8 and 10 of a Boolean array. Array
element 9 is set to False as it is an inverted coil.

In the Interface section of the block, MyArray is defined as a 16-bit Array and MyWord
is defined as Word; however, it has the constructor AT "MyArray" defined, meaning it
is overlayed with the same memory as MyArray.

This is demonstrated by Network 2 having the value of 5, which is the value of the 16 bits
represented as a Word value.

Simplifying logic tips 375

To use an AT constructor, the preceding variable's Retain setting must be set to Set in
IDB and the word AT must be typed exclusively into the Data type field and the Enter key
pressed. Once this is completed, TIA Portal will prompt for the data type required.

Note

Non-optimized blocks can also use the AT constructor. The Retain setting

does not affect the availability of using the AT constructor in non-optimized
blocks.

IF statements

When writing in the Structured Text (SCL) language, it is easy to use IF statements
unnecessarily. Figure 15.4 contains two examples of IF statements that can be simplified:

//Example 1

IF #High lewvel = True AND #5yatem Running = True THEN
#High Alarm := True;

ELSE
#High Alarm := False:

END IF;

f/Example 2
IF #5cale _Valus < 20 THEN

#5ignal_Healthy := True:
ELSE

#3ignal_Healthy := False;
END IF:

Figure 15.4 — Unnecessary IF statements

Example 1 is simply comparing two boolean variables and setting a third variable to True.
Example 2 is performing a basic comparison between a constant and a variable and setting
a variable to True if the variable is less than the constant.

Both examples can be written without the use of an IF statement:

S/Example 1

#High Alarm := $#High lewel AND #5ystem Bunning;
J//Example 2
#5ignal Healthy := #3cale Value < 207

Figure 15.5 - Simplified examples

376 Programming Tips and Additional Support

Example 1 and Example 2 now both store the result of the instructions that were
previously within the IF statement. This approach writes both True or False depending
on the outcome of the variables being tested.

Note

Set and Reset coils are unavailable in SCL; however, setting a variable to True
in an IF statement that has no ELSE statement means that the logic to set the
variable back to False must be handled elsewhere. This is the same principle
as a Set and Reset coil in ladder logic.

Serializing
The Serialize instruction is a TIA Portal-provided instruction, found in the Move
operations folder in the Basic instructions window when programming. The instruction

converts a Variant data type to a numerical sequential representation. The Variant
data passed can be almost any type, as long as the length of the data is less than 64 KB.

The instruction is most often used to flatten out structured data to either transmit to
another device over a communication protocol or to bundle data together for further
processing.

An example of this is shown in Figure 15.6:

1630000

Serialize #BUﬁE:—LWDrd' #Structure_1_
MOVE Variant to Variant . W2 . Contains_Data
<=
EN — EN ENO word F===""—~ < -
b (1])) 1650
st OUT1 — #TempPos #My_Data_ Ret_Val — #Ret_Val
Structure_1 SRC_VARIABLE
o |4 DEST_ARRAY [— #Buffer
#TempPos — POS
1630000
Serialize #B“fﬁ?:—u‘wrd #Structure_2_
Variant to Varant W0 Contains_Data
]]
I S — U W
EN ENO vora { k-
o 1650
#My_Data_ Ret_Val — #Ret_val
Structure_2 SRC_VARIABLE
4 g DEST_ARRAY [— #Buffer

#TempPos = pOsS

Figure 15.6 — Example of the Serialize instruction

Simplifying logic tips 377

This example is taking two structures of data and serializing them both, and storing them
in the Buf fer output. The TempPos variable keeps track of how much data has been
processed by sequential Serialize instructions so that the data in the Buf fer variable
does not get overwritten by the next dataset.

Once the serialization of the data has been processed, both sets of information are merged
and stored in the Buf fer variable. Figure 15.7 shows how the data is structured in the
interface:

Mame Data type Offset

< ¥ Static

4l = ~ My Data_Structure_1 Struct B8O
| a Status_Word Ward 8.0
R = Control_Word Word 10.0
4l = ~ My Data_Structure_2 Struct 12.0
| a Status_Word Ward 120
R = Control_Word Word 14.0
<0 = ~ Buffer Arrayl0..7] of Byte 16.0
R = Buffer[0] Byte 16.0
< L] Buffer[1] Byte 17.0
| a Buffer[2] Byte 18.0
R = Buffer[3] Byte 19.0
< L] Buffer[4] Byte 200
| a Buffer[5] Byte 21.0
R = Buffer[&] Byte 220
| a Buffer[7] Byte 230
R Buffer_LWord AT Buffer” LWord 16.0
4] = Structure_1_Contains_Data Bool 240
4] = Structure_2 Contains_Data Bool 241

Figure 15.7 - Interface data

The Buf fer variable is an Array consisting of 8 Bytes and an AT constructor is in use,
overlaying the Buf fer LWord variable on top of the Buf fer variable. This then means
that the Buf fer variable can be accessed as an LWord.

A comparator checks to see if each data structure variable contains any Control Word
data being used. This works by accessing each control word directly in the Buffer
variable. TIA Portal will swap the Words in the LiWord when the AT constructor is used;
this is the reason why the first serialize block compares Word 2 and the second serialize
block compares Word 0.

378 Programming Tips and Additional Support

Note

This could be simplified by simply comparing My Data_ Structure 1.
Control Word; however, for the purpose of explaining how serialization
can cause byte/word swapping, the Buf fer data is used.

Once the serialization of the data has occurred, if both Control Word variables in the
structures contain data, the data is output from the block using the logic shown in Figure

#Structure_1_ FStructure_2_
Contains_Data Contains_Data MOVE MOVE
1 i EN — { NOT | EN — ENO|——
16#4EFF_D000_9... 16#0000_0000 0. O—{IN]
#Buffer_LWord —i|ny #Control Data 3 QUTI — #FillZero
3¢ QUT] = CQutput
FILL
Variant
EN ENO
o 0
#FillZero —| ByAL RET_VAL — #Ret_Val
16#0000_0000_0...
#Control_Data_
BLEK = Output

Figure 15.8 - Moving Buffer_LWord into Control_Data_Output

By looking at the instance data of this block, it is clearer to see how this logic affects the
data. Figure 15.9 shows the instance data with some variables updated with values:

Name Data type
Input

* Output

= Control_Data_Output Lword
InOut

~ Static

B ¥ Ny Data_Structure_1 Struct
L] Status_Word Word
L} Control_Word Word

= ¥ Wy Data_Structure_2 Struct
= Status_Word Word
L} Control_Word Word

= ¥ Buffer Array{0.7] of Byte
L} Buffer[0] Byte
= Buffer[1] Byte
L} Buffer[2] Byte
L] Buffer[3] Byte
L} Buffer[4] Byte
L] Buffer[5] Byte
L} Buffer[&] Byte
L} Buffer[7] Byte

- NN

Structure_1_Contains_Data Bool

Structure_2_Contains_Data Bool

Offset

0.0

8.0

8.0

100
120
120
140
16.0
16.0
17.0
18.0
19.0
200
21.0
220
230
240
241

Monitor w

alue

16# 0000_0000_0000_0000

16#4EFF
1620000

16#9024
1620000

16%4E
16#FF
16200
16200
16%90
16#24
163200
16200
FALSE

FALSE

Figure 15.9 - Instance data

Simplifying logic tips 379

At this point, neither of the Control Word variables contain any data. Because of this,
no data is output to Control Data Output,as Structure 1 Contains Data
and Structure 2 Contains Data are both False.

The Buf fer variable contains the Status_Word variables for both structures decimated
into individual Byte elements in the Buf fer array.

Note

In the Buf fer array, the data is not byte swapped. The data exists in the
expected locations for a straight serialization.

Figure 15.10 shows the instance data with values once the Control Word variables
contain information:

Name Data type Dffset Maonitor value
e | Input
-1 * Output
4] = Control_Data_Output LWord 0.0 16£4EFF_1234_9024 5678
e | InQut
< * Static
-4l = ~ My Data_Structure_1 Struct 80
L | = Status_Word Word 80 16&4EFF
1| = Contrel_Word Word 10.0 16#1234
<0 = * My Data_Structure_2 Struct 12.0
< L Status_Word Word 12.0 1659024
1| = Control_Word Word 14.0 16#5678
40 = ~ Buffer Array[0..7] of Byte 16.0
< L Buffer[0] Byte 16.0 16H4E
R 1| L Buffer[1] Byte 17.0 16#FF
R 1| L Buffer[2] Byte 18.0 16812
R 1| L Buffer[3] Byte 19.0 16534
R 1| L Buffer[4] Byte 200 16590
R 1| L Buffer[5] Byte 21.0 16524
R 1| L Buffer[&] Byte 220 16856
R 1| L Buffer[7] Byte 230 16878
1 = Structure_1_Contains_Data Bool 240 TRUE
1 = Structure_2_Contains_Data Bool 241 TRUE

Figure 15.10 - Instance data with Control_Words containing data

Once the Control Words variables contain data, the Control Data Output
LWord is updated and contains the merged information.

This type of logic can be extremely useful for quickly checking large arrays for a single
value. For example, consider an Alarm Array. A Serialize instruction can be used
to pass the Array to an LWord and then the LWord compared against a 0 value. If the
Array contains any information, the LiWword will be greater than 0.

380 Programming Tips and Additional Support

Refactoring

Refactoring is a process by which logic and the data used are reviewed and then
re-structured or re-written to simplify the process. This is something that all programmers
should perform on their projects toward the end of a development cycle. Refactoring

provides an opportunity to improve structure and logic without affecting the tested
output.

For example, Figure 15.11 shows logic that repeats the same function a number of times
with different datasets:

RefactoringExample

Mame Data type Default value | Retain Accessiblef.. Writa... Wisiblein ..
8 <@ = P Datasetl Struct =] Non-ret... IE' [+ =]]
9 «g = » Dataset2 Struct Non-retain E E E
10 @0 = » Dataset3 Struct MNon-retain @ E E
11 < = Result Dint 0 MNon-retain [+ []
[O |
B JI"ﬂ IF.. cgs:.... TFDOD"QW;'C',LE (*...*) REGION
1 //Passl
2 $#Result := #Datasetl.h + #Datasetl.B + #Datasetl.C;
3 f/Passa
4 $Result := #Besult + #Dataset2.’ + #Dataset2.B + #Dataset2.C;
5 f/Pass3
& $Besult := #Besult + #Dataset3.i + $Dataset3.B + #Dataset3.C;

Figure 15.11 - Multiple passes of the same logic with different datasets

While there is nothing wrong with the logic, this approach is not easily expanded, even
though it is written in SCL, which makes copy and pasting and replacing easier. If this
had to be expanded to include an additional 50 passes, the interface would be busy, and
the code would be long. If the logic then needed to add a Dataset . D variable into the
process, it would become very tedious to update.

By performing a refactoring process on this logic, a few items of potential improvement
can be observed:

« The Dataset structures, all of which contain the same data, would be better
configured as an Array of struct.

+ The logic could loop the same method instead of having to write the logic for every
pass. This would mean the logic could easily be expanded.

Simplifying logic tips 381

Figure 15.12 demonstrates how the logic and data have changed following the refactoring:

RefactoringSolution

Mame Data type Default value Retain Accessible f... Writa... Visiblein ..
& @ = F Datasets Array[0..49] of Struct Mon-retain]|))
9 4= i Int 0 Non-retain)] [+ [
10 440 = Result Dint 0 Mon-retain)] [+ [
ma =T
= !
= =] F.. CASE.. FOR.. WHLE. . .. pecny

OF.. TODS. DO..

FOR #1 := 0 TO 4% DO
#Besult := #Result + #Datasets[#i].A7

[R S TR R

#Result := #Result + #Datasets[#1].B;
#Besult := #Result + #Datasets[#1i].C7
END_FOR;:

Figure 15.12 - Refactored code and data

This refactored logic performs the same logic 50 times, from Array element 0 through
to 49. This is achieved as part of the For instruction. The Datasets variable now holds
all of the necessary data and can be easily expanded if required. If the Datasets array is
expanded, the For statement would also need to be increased in the loop count to ensure
the new data is processed.

Note

The Datasets elements are populated outside of this block. This could also
be an important reason for refactoring, as large interfaces are cumbersome to
connect to variables. Very large interfaces may even reach a limit, whereby TIA
Portal will not compile the block as the interface is too large.

Consolidating blocks

Consolidating code and wrapping it into dedicated functions and function blocks is a
quick way to create re-usable code that can speed up the development process. It is very
easy to leave loose code in program blocks that span across multiple lines of code, but
these lines of code achieve a common functionality. When this occurs, other programmers
may copy the multiple lines of code and use them elsewhere, or in different projects.
When this section of code gets updated, it needs to be updated in multiple places and it
becomes very difficult to control. Building a habit of consolidating logic into functions
and function blocks ensures that code is locked away in a block that can have many
instances. When the block is updated, all instances are updated. All instances are also
cross-referenceable, making the code easier to find no matter where it is used.

382 Programming Tips and Additional Support

Sequences - best practices

Sequences in PLC control are extremely common and are used for many different
application types and use cases. Controlling sequences correctly, efficiently, and retaining
an easy method by which they can be modified is important.

There are many ways to control a sequence, from custom-built sequence management
logic to using the GRAPH language. Sequences are inherently application-specific, but
their management does not have to be and can be standardized to some degree.

Note

TIA Portal's GRAPH has a pre-built method to create advanced sequences.
However, in many circumstances, GRAPH may not be suitable or desired,
especially for sequences that interact with other proprietary code. GRAPH is
flexible enough to be programmed to do what needs to be done, but it comes
with additional functions that may not be desired.

Using constants instead of numerical values

It's very common to see sequences that use numerical values to manage the sequence step.
This may look something like the example shown in Figure 15.13:

* Network 1: Wait For System Ready

Comment

#5equence_Step #5ystemn_Ready MOVE

== _I] | -
|U5Int| 11 EN

1 2— N 3 QUTI — #S5equence_Step

Figure 15.13 - Sequence step management using a USInt value

While there is nothing wrong with the logic behind how this works, the 1 and 2 values
do not represent anything significant to the sequence itself. The network comment
suggests that it is waiting for the system to be ready and when the System Ready
variable is True the 2 value is moved into Sequence_Step. This does not help another
programmer or maintenance engineer understand what sequence step two is.

Sequences - best practices 383

A better idea is to use constants to represent sequence steps. This way, the 1 numerical
value is given a symbolic name that can be used to explain the sequence step. Figure 15.14
demonstrates this approach:

Metwork 2: Wait For System Ready

#Seu:iuence_IStep #System_Ready MOVE
== | |
| Usint | 11 EM
1 2 ¥ 0UT #5equence_Step
The system is The priming
waiting for the system is
external System requested to run
Ready signal #"5tart Priming
#"Wait For System” N
Systern Ready’

Figure 15.14 - Sequence step management using constants

By allocating constants, the current step and the step that is loaded next are much more
self-explanatory. Not only can a constant carry a meaningful symbolic name, but it can
also carry a comment that adds more context to the meaning of the constant's name. This
allows programmers and maintenance personnel to view a section of a sequence and very
quickly identify what each step represents.

Note

Another advantage of using constants for sequence step management is

that constants can be cross-referenced. This means that programmers and
maintenance personnel can quickly see where steps are used and which steps
transition to other steps.

Managed transitions

Every sequence needs to transition from one step to the next. These transitions can be
managed by a dedicated function or function block. By providing a managed sequence
transition, it can be guaranteed that all transitions follow the same approach and
additional logic can be applied to all steps.

384 Programming Tips and Additional Support

Network 3: Wait For System Ready

Comment

2
#Sequence_5tep

Figure 15.15 demonstrates a managed transition:

#Requests.Prime_
System
[}

The priming
system is
requested to run
#"Start Priming
Systern”

WFc1
"Managed_Transition”

The priming
system is
requested to run
#"Start Priming
System”

#Prime_System_
Feedback
1
LI |

3

The system is
waiting for the
priming to
complete
#"Priming Delay” =

EN

Next_Step

#5equence_
hManagement

2

Transition

Sequence_
Management

2

#Sequence_Step —

Sequence_Step

ENO

Figure 15.15 — Managed transition step

! !

The key difference with this approach is that the Managed Transistion dedicated
function is being used to change the Sequence Step value. The Managed
Transition object accepts the next step, a transition input, a dedicated Sequence
Management structure, and finally the sequence step.

Sequences - best practices 385

These variables are all used together to control how the sequence is allowed to transition
between different sequence steps.

Network 1: Transistion To Next Step

w Only Allow Transition If The Systemn s NOTPaused
IfSingle Step Mode Is Active, The Advance Signal Must Be Active To Permit Advancement

#oequence_ #sequence_
Management. Management.
MOVE #Transition Paused SingleStepMode MOVE
EN — o EN — ENOF---- -
a 3 2
#Next_Step — |y #Sequence_Step —d|y 1
#Sequence_ #Sequence_ #Sequence_
Mﬂmg?mﬁ"i #Sequence_ Management. Management.
st pum — Debug Next_Step Management singlestep Debug Previous_
SingleStepMode Advance 55 QUTY — SteP
1 [
1T i
MOVE
EN — ENOF---- -4
3 2
FMext _Step—IIN 3¢ OUTI— #Sequence_Step
MOVE
EN — ENOR==== -
2
#Sequence_Step —d |y 2
#Sequence_
Management

Debug.Current_
s pUTI— SteP

Figure 15.16 — Managed transition function logic

Figure 15.16 shows the logic inside the Managed Transition function. The logic is
simple but offers greater control over the transition of all steps that utilize the function.
The following controls have been added to every transition that uses this object:

« Ability to block the transition because the system is paused

« Ability to single-step through the sequence if Single Step Mode is active and Single
Step Advance is operated

« Ability to track the next step, previous step, and current step within the
Sequence Management structure

386 Programming Tips and Additional Support

In order for this function to work, the parent object must pass the Sequence
Management structure to each Managed Transition object. This then holds the
relative information as demonstrated in Figure 15.17:

4 4@ * Static

5 41 = Sequence_5Step Usint 0 = &

6 <4 = Systermn_Ready Bool fal: — "RLE
7 4] .= Prime_System_Feedback Boal fall — FALSE
8 <1 = ¥ Sequence_Management Struct =

9 |« = Paused Bool fal: — |[FALSE
10 |« = singleStepMode Bool fal: — FALSE
11 < = singleStepAdvance Bool fal: — FALSE
12 = ¥ Debug Struct —

13 <0 = Previous_Step Usint o — 1

14 a0 . Mext_Step Usint o0 — B

15 -« . Current_Step Usint 0 =

Figure 15.17 - Sequence_Management structure containing transition data

This methodology can be expanded to include any number of variables or information
that a particular sequence may need. For example, a sequence that is tasked with testing
widgets may also record if a step passed or failed upon transition to the next step.

Note

The debug section could be expanded further to utilize an array. This would
mean that more than one previous step could be held in memory, which means
the entire step chain could be held, improving the debugging experience.

Managing output requests

Sequences often control outputs, which usually is not a problem as outputs can be written
to within the sequence. Output management can get complicated when a PLC project
contains more than one sequence that controls the same outputs, or sequences that run
concurrently that use the same outputs.

Figure 15.18 demonstrates an example of this, where three sequences make requests to a
common output:

Sequences — best practices 387

* MNetwork 1: Seguence Output Reguest

Comment

#Sequence_1_ #Sequence_3_
Output_Request Output_Inhibit #0utput
e

#5equence_2_
Output_Request

Figure 15.18 - Request example

This logic allows three different inputs to manage a single output. The three request inputs
come from three different sequences that all run at the same time but need to interact with
a common output.

Sequence 1 and Sequence 2 have the same level of priority. Either can turn on the Output
variable as long as Sequence 3 is not inhibiting the output. This means that Sequence 3
has a higher priority and will always stop the output from being True, no matter what
Sequence 1 and Sequence 2 are requesting.

This approach is managed inside a dedicated function, as shown in Figure 15.19:

WFC2
"Output_Request_Handler”
EM ENO

FALSE TRUE
#Requests. Sequence_1_ .o
Sequence_1_ |Qutput_ Pump_1_| “Fump_One_
Pump_1_Run —-|Request Output |— Output’

TRUE
#Requests. Sequence_2_
Sequence_2_ | Qutput_

Furmp_1_Run Request

FALSE

#Requests.
sequence_3_ |sequence_3_
Purnp_1_Inhibit | output_Inhibit

Figure 15.19 - Output request handler

Output Request Handler is used to accept requests for the Pump 1 Output from
each of the three sequences.

388 Programming Tips and Additional Support

This approach removes the need for using Set coils in sequences, which can become
very difficult to manage once multiple sequences need to manage the same output. This
approach also lends itself to a hierarchical approach; if more sequences are required, they
can all be handled in one place.

Note

This approach can handle more than one output. All outputs that require more
than one point of control can be handled in a single function. This approach
can also apply to general variable updates that originate in a sequence, for
example, updating interlocks and alarms.

Naming conventions and commenting

TIA Portal offers a huge 128 characters per symbolic name for a variable across eight
available nesting depths. This means that variables can have a combined maximum
length of 1,024 characters. To visualize this, the following would be a perfectly acceptable
variable name:

#faaa
2aa
aaaaa . bb
bb
bbbbbbbbbb.cccceccecececcececcceccceccceccccccccccccccccccccccceccceccccece
CCCCCCCCCcCCCCCCCCCCCCCCCcCcCCCCCCcCcCCcCCcCcCcCcCcccccccecccccecececccceccecccece
cccccccccccccecece . dd
dd
dddddddddddddddddddd . eeecececeececeececeececeeceececeeeceeceeeceeeceeeceeee
CEEEEEEEEEEEECEEEEEEEEEEEEEEEEEEEEEEEEECEEEEEEEEeeEEEeeeeEeeeeeee
ceececeececeececeececeececeecceececeee ffffffffffffffffffffffffffffffffffft
fEfffeef

TfffffffffffffffffffffffFfFffff . ggggg9gggggggggggggggggggggggy

99

g9999999999999999999999999999999999ggghhhhhhhhhhhhhhhhhhhhhhhh
hh

hh

This essentially means that there is no real reason why projects developed in TIA Portal
should use abbreviated tags and variable names.

Naming conventions and commenting 389

For example, the PMP1 RASR tag requires the comment Pump 1 Raw Actual Speed
Reference to make sense to any programmer or maintenance technician who doesn't
know what the abbreviation stands for. A better naming convention would involve Pump
1 being declared as its own data block and the Raw_Actual Speed Reference
variable being created within the Pump1 data block. The final variable name would appear
as Pumpl.Raw_Actual Speed Reference, which makes it immediately obvious
what information the variable holds, and what asset it is associated with. This approach
also follows the convention for using UDTs and leaves the comment free for something
meaningful such as Divide by 4,000 instead of the expanded abbreviation.

This approach becomes even easier when multi-level nesting occurs. Let's say you declared
a global variable as follows:

MPF 1 CHDA 2 SYST 2 PMPSET A PMP 3 RNG

You also included the following comment:

Main Pump Floor 1, Chemical Dosing Area 2, System 2, Pumpset A, Pump 3 Running
A better alternative would be a global data block with the following structure created:

Main Pump Foor 1.Chemical Dosing Area 2.System 2.PumpSet A.
Pump 3 .Running

Comments can then be applied at each point of the structure, as shown in Figure 15.20:

Main_Pump_Floor_1

Mame Data type Camment
4 * Static
<] ® » Chemical_Dosing_Area_1 Struct Location C1-DFA233
<40 & * Chemical_Dosing_Area_2 Struct Location C2-UVTAZ33
<0 & b System_1 Struct System 1 - Acid Dosing
<l B ¥ System_2 Struct Systermn 2 - Caustic Dosing
<0 = ¥ PumpSet_A Struct Caustic Delivery Pumpset
<l & b Pump_1 Struct Asset: 123A
<0 = ¢ Pump_2 Struct Asset: 4564
L] 8 ¥ Pump_3 Struct Assetl: 7BOA
-0 s Running Bool
< 5 b PumpZet B Struct Emergency Fumpset

Figure 15.20 — Example of structure with a naming convention

In essence, this naming convention is simply no abbreviations allowed, paired with valid
structured data. When this is followed, finding information is simplified, and keywords
can be searched with a better success rate.

390 Programming Tips and Additional Support

Note

Pressing F1 to search while in a program block, and then FI again will

open the project search. Searching for a keyword in the program, such as
Running, will list all the interfaces and declarations where the word Running
exists. This is easier to keep consistent with good naming practices instead of
abbreviations.

When naming variables, full names are used. Comments are only really required to give
a useful hint as to how the data is supposed to be used. Figure 15.21 gives an example of
this:

0 = Disabled, 1 =
Enabled Forward,
2 = Enabled
Rewverse, 3 = Jog
Forward, 4= Jog
Reverse

#IMDdE #Enabled
- { }
|int |

0 = Disabled, 1=
Enabled Forward,
2 = Enabled
Rewverse, 3 = Jog
Forward, 4= log
Reverse

#Mode

Int

-

Figure 15.21 - Example of commenting

This example demonstrates how the comment attached to the Mode variable clearly
explains what the value within the Mode variable represents. Although comments such as
this can make logic look bulky, they are still worthwhile as they help us to understand the
exact function the variable is being used for.

Comments in SCL

The SCL language has some additional features for commenting due to the fact that it is
a text-based language. In SCL, comments can be added in almost any location of the SCL
program. An example is shown in Figure 15.22:

Naming conventions and commenting 391

1 //Call Timers

3 S/Timer 1

4 H#Timerl (IN:=#Timer_1 In,
5 PT:=T#10=s,

6 O=>#Timer_1 DN):
g f/Timer 2

10 B#Timer2 (IN := #Timer 2 In,

11 PT := T#5=,

12 Q => #Timer_2 DN} ;

14 f/5tart Timer 1

15 #Time:_;_:: := NCT #Time:_E_Dﬂ; SifWhen Timer 2 is not done, run Timer 1

1= #Timer 2 DN;

18 DH; /f/When Timer 1 is done, run Timer 2
19

20

21 NOT #Timer 1 DN;

22 #Timer 1 DN;

w

Figure 15.22 - Example of comments in SCL

This allows for a commenting convention to be easily established, where all comments in
SCL can follow a set pattern. Figure 15.22 shows comments above and to the side of the
SCL code. This is the most common type of commenting found in structured text.

SCL has some additional toolbar buttons for commenting, as shown in Figure 15.23:

- o

Figure 15.23 - Comment buttons

These buttons are used to comment out lines of code in one go (or to uncomment).
Highlighting the area to be commented and pressing the left-hand button will cause TIA
Portal to prefix the line with //, which comments out the line. Using the other button will
remove the // prefix.

Note

Sequential areas of code can also be commented out by using (* *).
Anything between the * symbols will be commented. This can span many lines
and also allows the commented area to be collapsed and hidden.

392 Programming Tips and Additional Support

Figure 15.24 shows an example of using formatted comments. Siemens does not offer a
method by which this can be done within TIA Portal, but a simple Excel spreadsheet or
pre-formatted note file can allow for quick and easy copying/pasting into TIA:

1 ir
2 // || Dwell/Bun Timer Block - V1.2 - LBEE - 10/02/22

30 This block runs a dwell cycle (10s), immediately followed by a run cycle (53)
4 /7 4 cycle complete output is pulsed on a full Dwell and Run cycle
5

o

;

g

' Both the Dwell and the RBun cycles also have an cutput to represent when in those states

i

iF i \
a Al Call Timers Il
w401 [l
11 // |l Calls to the TON Function blocks for the timers Il
12 // || Note - The IN and Q variables are used elsewhere in the code, cross reference if unsure ||
13 /6N /
14
15 o4 +
16 ff | Timer 1 | Dwell Timer |
17 A+ t +
13 i | Called to run when Timer 2 (Run Timer) is not done (Completed) |
14 o+ + :
20 #Timerl {(IN:=$Timer_1_In,
21 PT:=T#l0s,
22 Q=>#Timer_ 1 _DN);
23
24 #Timer 1 In := NOT #Timer 2 DN;
25
28 o4 +
27 ff | Timer 2 | Run Timer |
28 /o + + +
29 i | Called to run when Timer 1 (Dwell Timer) is done (Completed) |
30 o4 + +
31 #Timer2 (IN := #Iimer_2 In,
32 PT := T#5s,
33 Q => #Timer 2 DN);
34
35 #Timer 2 In := #Timer 1 DN;
36
37 M \
3/ 4001 Set Qutputs 11
EEI A [l
40 // || Pass the status of the Timers and if the Cycle has completed to the interface outputs ||
41 /AN /

43 $#Dwell Cycle Zctive := NOT #Timer_1_LN;
44 #Bun Cycle Zctive := #Timer_1 DN;
45 #Cycle_Complete Pulse := #Timer 2 DN;

Figure 15.24 - Example of formatted commenting

These comments are far easier to read, and the different styles quickly associate them
with different types of comments. Indentation is also being used to associate logic under
a header comment with the header comment description. This can be seen between lines
15 and 35 in Figure 15.24. By indenting the code, it helps distinguish the relationship
between logic as the logic is sequentially processed.

Naming conventions and commenting 393

Regions in SCL

SCL also contains regions, which are similar to single-line comments, but associate code
between the region declaration and end of the region to be collapsed. It also allows the
navigation of SCL through a dedicated Regions toolbar, situated to the left of the main
SCL editing window.

== | || e e ron wme o
* @ callTimers - 1
» P SetOutputs i 44 - N
2 /7 | Dwell/Bun Timer Block - V1.2 - LBEE - 10/02/22
3/ This block runs a dwell cycle (l0s), immediately followed by & run cycle (5s)
4 /f A cycle complete ocutput is pulsed on a full Dwell and Run cycle
s/ Both the Dwell and the Bun cvcles alse have an cutput to represent when in those states
[
(0
S EREGION Call Timers
k] A \
10 Iy Call Timers I
11 o] [l
12 /f |l Calls to the TON Function blocks for the timers 11
13 /f || Note — The IN and Q variables are used elsewhere in the code, cross reference if unsure ||
14 AN !
15
1é i
17 /f] Timer 1 | Dwell Timer |
13 i
19 £l | Called to run when Timer 2 (Run Timer) is not done (Completed) |
20 1
L 21 - #Timerl (IN := #Timer 1 In,
"l 22 PT := T#l0s,
L 23 | Q => #Timer 1 DN);
» 24
il 25 #Timer 1 In := NOT #Timer 2 DN;
26
a7 i t
28 /71 Timer 2 | Run Timer I
25 M
30 1 | Called to run when Timer 1 (Dwell Timer) is done (Completed) |
31 i
3zl #Timer2 (IN := #Timer 2_In,
33 PT := T$5s,
34| Q => #Timer 2 DN);
35
38 #Timer_2 In := #Timer_1_DN:
37 | END_REGION
33
3% MREGION Set Outputs

Figure 15.25 — Example of regions in use

When regions are used, all logic between the region declaration and the end is
automatically indented, and a navigation object is automatically placed in the Regions
toolbar to the left of the SCL editing window.

Note

Regions can also be nested, and the Regions toolbar will also show the nesting
of regions using collapsible parent objects, similar to the main project tree.

394 Programming Tips and Additional Support

Languages such as ladder and Function Block Diagram (FBD) have these segregation
methods built-in by the form of networks. With SCL, a similar concept is achievable
through well-designed comments and regions.

Additional Siemens support

Siemens has a wealth of support for programmers using TIA Portal. These come in many
different forms, from internal TIA Portal help to dedicated forums and websites.

These resources can be a great place to find information quickly, and nearly all help topics
have been covered by Siemens or the wider TIA Portal user community.

Using TIA Portal's help system

TIA Portal has an extremely well-documented help system. This is accessible by pressing
F1 or by selecting Help and then Show help. The Information System home screen gives
some suggestions for generic help, as shown in Figure 15.26:

All information at a glance

In the TIA Portal information system, you will find all the background information, step-by-step instructions and examples that you need for working with the TIA Portal.

Click on one of the following topics for a brief introduction:

‘We provide further interesting information relating to the TIA Portal for you in the TIA Portal Information Center. You require an Internet connection to access this Information Center.

Click on the image to start the TIA Portal Information Center:

SIEMENS

=

Application example:

Ordering & Licer Social Media

Figure 15.26 - Information System home screen

Additional Siemens support 395

This is a good place to start for finding items such as generic help, training, and
application examples. Most buttons link to the same version of the home page, but on the
Siemens website, the buttons link to its relative pages.

Note

Clicking the buttons on the screen will launch a Siemens website page for
further drill down for relative help. For example, clicking on Social Media will
provide links to the Forum, Twitter, and other social platforms.

Using Information System is relatively simple and feels very similar to a modern
browser. The system can save favorites (which appear in the navigation panel under the
Favorites tab), move back and forth between pages, create multiple open tabs for viewing
information, and have the ability to print. These tools help make Information System an
easy-to-use tool when in search of supportive documentation.

Note

General usage and remarks on the Information System can be found within
the Information System itself by navigating to Information System |
Introduction to the TIA Portal | Help in the Information system | General
remarks on the Information system.

Alternatively, the question mark can be clicked to the right-hand side of the
screen and General remarks on the Information system can be selected.

Navigation

Information System can be navigated using the Navigation panel to the left-hand side
of the screen. If this panel is collapsed, the word Navigation is written where the panel is
collapsed. Clicking the expand arrow will open the panel.

Information System is well categorized to make information easy to find. For example,
if support information relating to the Library view was needed, this can be found at the
path Information System | Using libraries | Using the library view | Overview of the
library view.

396 Programming Tips and Additional Support

The navigation system contains different symbols prefixing the text in the Navigation
panel. These symbols denote different meanings for the content of the help object, as
shown in Figure 15.27:

M Collapsed Category Folder
[R5 Open Category Folder

&= Factual Information

4 Operating Instructions

[33 Example

7] Reference

Figure 15.27 - Symbol legend for the Information system Navigation panel

These help to identify the type of information before having to open and read the
contents.

Searching help

The search bar is located to the left of the Information System screen, on any page. By
expanding the search bar, the entire TIA Portal help system is available to be searched, as
shown in Figure 15.28:

Searchfor: TON [=] o] [searcn |
Devices: [Displayal |+ OO0 M
Scope: [Displayall — [+] J TON: Generate on-delay (57-12... X |
Results: 54
Tidle TON: Generate on-delay

M Timer operations (57-1200, 57-1500)
W] Timer operations (57-1200, 57-1500)
W Timer operations Q Output BOOL
W Timer operaticns (57-1500)
M IEC timers (57-300, 57-400)
W ECTimers (57-300, 57-400) ET Output TIME
W Timer operations (57-1500)

M Timer cperations (57-300, 57-400)
M IEC Timers (57-300, 57-400)

M Timer operations (57-1200, 57-1500) The following figure shows the pulse timing diagram of the "Generate on-delay” instruction

M) [EC Timers (57-300, 57-400) IN

] TON: Generate on-delay (57-300, 57400}
[7] TON: Generate on-delay (57-300, 57-400)
] TON: Generate ondelay (S7-1200, 57-1500)

7] TON: Generate on-delay (57-300, 57-400)
] TON: Generate on-delay (57-1500)

7] TON: Generate on-delay (57-300, 57-400) BT BT
7] ToN: Generate on-delay (S7-300, 57400}

E

Pulse timing diagram

7] TOM: Generate on-delay (57-1200, 57-1500) = i

7] TON: Generate on-delay (57-1500) LR -
] TOM: Generate on-delay (57-1200, 57-1500) 4=

7] TON: Start on-delay timer (57-1200, 57-1500) ET

] —(TON }— Start on-delay timer (57-1200, 57-15... PT

=] TON: Generate on-delay (STEP 7 Safety V17)

] RESET_TIMER: Reset timer (571200, 57-1500)

E PRESET_TIMER: Load time duration (57-1200, 57-1
] RESET_TIMER: Reset timer (57-1500)

(3 using IEC timers and counters (57-1200, 57-1500)
Pl PRESET_TIMER: Load time duration (57-1500)

Figure 15.28 - Example of searching the Information system for the term "TON"

Additional Siemens support 397

All items that contain the Search for term will be listed and a selection can be made with
a double-click.

Note

Information System may list the same page more than once under different
categories and sub-categories.

Advanced searching

TIA Portal's help system also contains an advanced search system that helps narrow the
search criteria even further. The difference between the normal search and the advanced
search is that the latter allows AND/OR terminology as well as phrase and fuzzy searching.

Note

A fuzzy search returns all results that match part of the criteria searched for.
A good example of this is to search for Boo in the normal Search for bar and
then Boo~ in the Advanced search bar. The normal search returns one result
(which is a misspelling of Boolean) and the advanced returns 1,000 results.

To use Advanced search, click the button immediately after the normal search bar (the
button with three dots). The following window will open:

Advanced search X

Search for: | |V|

Search options: Boolean search:
- Term1 AND Term2 (alternatives: Term1 + Term2 or Term1 && Term2)
- Term1 ORTerm2 (alternative: Term1 || Term2}

- Term1 NOTTerm2 (alternatives: Term1 -Term2 or Term1 ! Term2}

Phrase search:

- *Term1 Term2*

Fuzzy search:

- Term~

Search terms are a maximum of 10 words from each other:
- "Term1 Term2"~10

r oK 1 | Cancel

Figure 15.29 - Advanced search

398 Programming Tips and Additional Support

Siemens has helpfully given examples of the types of searches that can be performed, with
common alternatives that are supported.

Getting to grips with advanced search methods helps find relative support information far
quicker than navigating through the help menus.

Note

It is not actually necessary to open the Advanced search window to perform
an advanced search. Advanced searches can be performed in the normal search
bar too.

Siemens forum

Siemens has an excellent community forum in which users help each other to overcome
problems. This is a free and invaluable tool that can be used to obtain information from
experts with many years of using Siemens' software and hardware.

The forum can be accessed directly from the Information System window by performing
the following actions:
1. Press FI in TIA Portal.

2. When the Information System page loads, click the Social Media button from the
home page (click it again if the same menu opens in a web page).

Click the forum link on the left-hand navigation pane.

4. Select the forum category required from the list.

The forum will open in the default browser.

Note

The forum requires users to be logged in to a Siemens account in order to view
some posts, view images on posts, and reply to a topic or create a new topic.

Signup can be completed by clicking on Register at the top of the forum
window.

The forum is extremely active, with new posts and replies continuously updating. It is always
worth visiting the forum and searching for support on the topic required as it is very likely
that other people have faced similar issues or requested support on the same topic.

Additional Siemens support 399

Siemens documentation archive

Siemens has put together a comprehensive list of documentation resources available
to end users of TIA Portal. These can be found in a similar method to other resources
provided by Siemens:

1.
2.

Press F1 in TIA Portal.

When the Information System page loads, click the Documentation button from
the home page (click it again if the same menu opens in a web page).

Choose a category from the left-hand menu that matches the documentation
category required.

A list of available documentation in the category is displayed. Click the Link button
adjacent to the documentation required.

A new browser window will open and will be directed to the Siemens support site
that contains a download for the relative documentation.

Click on Download on the web page presented and the documentation will
download.

Note

In most cases, a login is not required to download a manual. However, some
pages may ask for a user to log in before the download can commence.

Knowing where to find these resources is half of the battle when searching for
documentation. Search engines are a great way of finding documentation, but more often
than not, direct the users towards paywalls or non-official sites that are attempting to
distribute documentation unofficially.

Accessing documentation by the steps discussed, users can always be sure that the
documentation provided is genuine, unmodified, and from Siemens directly.

Note

In some cases, the documentation provided by the documentation links is

for older versions of the software. If this is the case, it is still likely that the
documentation will offer support, but if the latest version is required, it will
need to be searched for on the Siemens Industry Online Support website. This
can be done by clicking the link provided, and once you're on the Siemens
Industry Online Support website, using the Search in Online Support

search field.

400 Programming Tips and Additional Support

Further support - Liam Bee

Connect with the author of this book via LinkedIn. Liam is open to questions and
discussions on topics of this book and always helps those that want to be helped.

Liam Bee
PLC Automation Professional

Figure 15.30 - Connect with Liam Bee on LinkedIn

Summary

This chapter has ended the book with some additional information regarding
programming tips, some best practices for sequence control, and considerations regarding
commenting and naming conventions.

This book has explored many different aspects of TIA Portal and PLC programming in
general, as well as HMI development. By covering all topics in this book, you should now
have the confidence to apply the learning to projects and help tailor your own personal
development. As TIA Portal and the world of automation improves, many of the learned
aspects covered in this book will still be valid.

TIA Portal is a very powerful development platform, and when a programmer
understands all of the tools that TTA Portal has to offer, almost any automation solution
can be developed directly within TIA Portal itself.

Please continue to use this book as a reference document, returning to chapters and
content when needed. Use the support content from Siemens, such as the information
system and forums, to help learn where required and reach out to connections when
needed. The Siemens community is one that is always willing to help.

Summary 401

Congratulations on completing the content of the book. This book was written with a
single purpose: to help educate others in the world of Siemens, TIA Portal, and good
programming skills. The knowledge contained within this book has hopefully been
transferred well and can be used to advance the careers and opportunities of others.

A

advanced simulation

performing, with standard
control objects 226, 227

alarm control 310

alarm tags 321-323

analog input 42

anonymous structure 65

Array DB 48

asset manager 39

assignments 95

asynchronous data access
considerations 249, 250
correct method 251

AT constructor 374, 375

backup mode 317

base screen 262, 308

best practices, sequences
about 382
constants, using instead of

numerical values 382, 383

managed transitions 383-386
output requests managing 386-388

Index

Boolean array 374
box instructions 21
breakpoints 34
byte

bit, accessing 115

C

call environment 33
call hierarchy 34, 35
call options 248
call path 308
call structure 42
Cause and Effect - (CEM)
about 168
actions 171, 172
causes 174, 175
control scenario walk-through 175
groups 172
instructions 170
intersection columns 173
overview 168, 169
cause and effect matrix (CEM) 98, 99
central processing unit (CPU) 31
code work-memory 189

404 Index

configuration options, global data
retain 53
start value 53
configuration options, instance data
retain 53
start value 53
connections
creating 360-362
Devices & networks 362, 363
parameters 360
consistent downloads
about 339
examples 339, 340
constants 383
control data
accessibility, improving with
UDTs 195, 196
creating 193, 194, 195
example 196-200
controlled navigation 306
Controls 268
control scenario
about 118,119
Human Machine Interface
(HMI), using 123
inlet valve, opening 120, 121
overview 120
stop conditions 122
control scenario walk-through, CEM
about 175
filling operation 178, 179
inlet valve, opening 177
outlet valve position, calculating 179
stop conditions, managing 180, 181
summary 181
system, starting 176

control scenario walk-through, FBD
about 138
aspects 145
filling operation 142
inlet valve, opening 141
outlet valve position,
calculating 143, 144
stop conditions, managing 144, 145
summary 145
system, starting 138, 140
control scenario walk-through, GRAPH
about 160, 161
filling operation 163
inlet valve, opening 162, 163
outlet valve position, calculating 164
parallel stop step 166-168
stop conditions, managing 164-166
system, starting 161, 162
control scenario walk-through, LAD
about 127
filling operation 130, 131
inlet valve, opening 129
outlet valve position,
calculating 132, 133
stop conditions, managing 133, 134
summary 134
system, starting 127-129
control scenario walk-through, SCL
about 149
filling operation 151
inlet valve, opening 150
outlet valve position,
calculating 152, 153
summary 154
system, starting 149, 150
CPU operator panel 33

Index 405

cross-referencing, UDTs/structs
about 86, 87
solution 88

D

data
copying, to instance data 58
managing, through instance
parameters 243
passing, through interfaces 56, 57
referencing 58-60

retaining, in non-optimized blocks 343

retaining, in optimized blocks 343
data blocks 39, 241
data management
about 38
example 39
data, managing through
instance parameters
principle 244, 245
TIA Portal example 245-247
data referencing
about 58-60
InOut data, drawbacks 61
InOut interface variables, using 62
memory advantages 61
data, retaining in instance data
about 344
non-optimized data blocks 346, 347
optimized function blocks 344-346
Details view
about 15,18
uses 18
Download without reinitialization
option 348

drawbacks, UDTs/structs
about 81
cross-referencing 86, 87
lack of open protocol support 86
libraries 81-83
overuse 89
Dword variables
bit, accessing 115
dynamic properties
setting 276, 277
tag dynamization properties 277, 278
tags, assigning 277
Dynamization feature 276

Elements 267
emergency stop (E-Stop) 196
empty box instruction 21
empty folder 27
encryption transfer 369
events
converting, to script 290
creating, in faceplates 301, 302
example 288
handling, in faceplates 301, 302
raising 287, 288
example use case, project structure
dataset 43
data structure 42
input mapping 42
Main (OB1) 40
output mapping 44
process area 42, 43
project tree objects 40

406 Index

F

faceplates
about 292
creating 293, 295
events, creating 301, 302
events, handling 301, 302
interface, creating 296
objects and controls 295
tag interface data, using 298
TIA Portal V17 293
favorite instructions
adding 22
force table
versus watch table 223
free navigation 306
function block 24, 78
function block diagram (FBD)
about 95, 394
instructions 136
overview 135
function block diagram
(FBD) instructions
about 136, 137
box instructions 137, 138
comparators 138
function block interfaces 248
functions 24, 246

G

global data
about 48
accessing 51, 52
configuration options 52
using 49-51

global data block
about 49
structure definition, example 64
global instance data block 49
global library
about 27
creating 28
opening 29
upgrading 30
using 30
GRAPH
about 96,97, 114, 115, 154
control scenario walk-through 160
control summary 168
instructions 156
overview 154, 156
graphical languages
mixing, with textual languages
in LAD/FBD 110, 111
Graphics and Dynamic widgets 268, 269
GRAPH instructions
step actions 157
supervision coils 159
transitions 159
GRAPH language 382
group of data blocks 27
group of function blocks 27
group of mixed objects 27

H

hierarchy 82

HMI alarm classes
configuration 313,314
creating 314, 315

Index 407

HMI alarm controls
about 310
configuration 317, 318
filters, setting on 318-320
HMI alarms
configuration 311-313
logging 315-317
HMI data
creating 201, 202
setpoints/parameters 201, 202
HMI development environment
overview 259
Runtime settings 259, 260
screens 261, 262
HMI navigation
about 306
ChangeScreen event 308, 309
page changes, managing 307
HMI objects
connections 258
HMI tags 258
Runtime settings 258
screens 258
HMI runtime 272
human-machine interface (HMI)
about 201, 249, 360
adding, to TIA Portal project 256, 257
downloading to 364, 365
running, in simulate mode 213
security considerations 369
using 123

inconsistent download
about 340, 341
examples 342

InOut interface 79,227
input mapping 39, 41, 42
input mapping layer
simulated inputs, modifying
with 223-226
instance data
about 48
accessing 51, 52
configuration options 52
using 49-51
instance data block (IDB) 345
instance parameters
data, managing through 243
instructions
about 19, 20
adding, from instructions tab 21
methods 21
interfaces
creating 296
interfaces, simplifying with structs/UDTs
about 74
functions, passing as single
input struct 76, 78
functions, passing as single
output struct 79
InOut data, passing as single struct 79
inputs, passing as single struct 74, 75
outputs, passing as single struct 78
static declarations of UDTs/
structs, creating 80
structures, in static and
temporary memory 79
temporary instances of UDTs/
structs, creating 80
interface types
InOut 57
input 56

408 Index

output 56

property interface 299

static 57

tag interface 296, 297
Internet Protocol (IP) 14

K

key properties
appearance 276
general 276
miscellaneous 275
security 275
size and position 275

L

ladder 394
ladder logic (LAD)
about 13, 94, 95
control scenario walk-through 127
control summary 134
instructions 124
overview 123, 124
Valid networks 113,114
ladder logic (LAD) instructions
about 124, 125
box instruction 126
comparators 127
ladder bit logic operations 125, 126
languages
about 94
cause and effect matrix (CEM) 98, 99
function block diagram (FBD) 95
GRAPH 96, 97
graphical languages 103
ladder logic (LAD) 94, 95
selecting 105

starting with 94
statement list (STL) 98
structured control language
(SCL), structured 96
textual languages 104
types 102, 104
use case 105
use case, examples 106-109
use case, purpose 110
variations 104, 105
languages, program blocks
about 99
function blocks 100, 101
functions 101, 102
languages, TIA Portal
Cause and Effect - (CEM) 168
Function Block Diagram (FBD) 135
GRAPH 154
Ladder logic (LAD) 123
Structured Control Language (SCL) 145
latching circuit 129
libraries
about 19,22
global library 23
project library 22
libraries, UDTs/structs
about 81-83
considerations 86
dependent types, updating manually 84
UDT, releasing with dependent
blocks 84, 85
logic
general layout 203
structuring 202
supportive methods 203, 204
logic tips
AT constructor 374, 375
blocks, consolidating 381

Index 409

delay timers 372, 373

IF statements 375, 376
refactoring 380, 381
Serialize instruction 376-379
simplifying 372

M

manual synchronization 355
master copies

about 27

icons 27

usage 27
memory management 112

N

non-optimized blocks

about 375

data, retaining 343
non-optimized data

about 54

benefits 56

versus optimized data 54-56
non-optimized data blocks 346, 347

O

online testing environment
about 31, 32
breakpoints 34
call environment 33
call hierarchy 34, 35
CPU operator panel 33
Open Platform Communications
(OPC) server 260
optimized blocks
data, retaining 343

optimized data
about 54
benefits 56
integrating, with non-optimized data 56
versus non-optimized data 54-56
optimized function blocks 344-346
organization block (OB) 49
output mapping 39
output mapping layer
about 235
example 236
outputs
safeguarding, in simulation
mode 235, 236
Overview view mode 19

P

panels 16
Parameter instance 248
parent object 239, 248
PLC, download considerations
about 357
data segregation 357, 358
functions, using 358
PLC-driven alarming
about 323-325
alarm texts 327-329
global alarm class colors, setting 330
supervision categories 325, 326
Types of supervision option 326
PLC, load actions
consistent downloads 339, 340
inconsistent downloads 340-342
PLCSIM 214
PLC simulation
performing 214
S7-PLCSIM interface 216, 217

410 Index

support, enabling 214, 215
trustworthy devices 217-219
Portal view
about 4, 6
activity area 7
main menu 7
submenu 7
Profinet/Industrial Ethernet (PN/
IE) connection 278
program blocks
about 81
languages 99
programmable logic controller (PLC)
about 4,277
download, executing to stop 342, 343
downloading to 336, 337
download, initiating to 337, 338
load actions, setting 338, 339
performance, measuring 54
running, in simulate mode 213
uploading from 352-356
project library
about 23
master copies 27
types 24-26
project library, types
consistent 25
default dependent 25
multiple inconsistencies 25
non-default version instantiated 25
project structure
creating 38
Project view
about 4, 8,9
details view 9
devices, adding 12, 13
devices, configuring 14, 15
diagnostics pane 9

info pane 9
main activity area 8
new project, creating 10
project tree 8
project tree, modifying 11
properties pane 9
supportive tools 9
property interface, faceplates
about 296, 299
using 299-301
pump
asset data storage 70
inputs 70
outputs 70
SCADA/HMI exchange 70

R

refactoring process 380
Reference project view
about 15-17
uses 17
region 150
Rising Edge Trigger 139
Runtime settings option
about 259, 260
Alarms 260
Language & font 261
Remote access 261
Services 260
Storage system 261
Tag settings 261
User administration 261

S

S7-1500 PLC 86
S7-PLCSIM interface 216, 217

Index 411

screen 261
screen layout 263
screen objects
about 264
events 265, 266
properties 264, 265
screen toolbox 262, 263
scripts
about 301
compilation errors 286
global scripts 287
interface tags, accessing 301
script files, constructing 284, 285
tags, reading 285
tags, writing 285
using 283
Secure Digital (SD) card 261
sequences
best practices 382
Set coils 388
Siemens
documentation, archiving 399
forum 398
languages 112
support 394
SIMATIC Manager 34
Simple Mail Transfer Protocol
(SMTP) port 260
simulated inputs

advanced simulation, with standard

control objects 226, 227
managing 220
modifying, with input mapping
layer 223,225, 226

modifying, with watch tables 220, 222

simulation HMI

configuring, in TIA portal 229, 231-234

simulation interface
creating 228
simulation HMI, configuring in
TIA portal 229,231-234
snapshots
about 350
data, restoring 351, 352
taking 350, 351
software synchronization 354
special objects
about 266, 267
Controls 268
Elements 267
standard control interfaces
planning 189-192
standard control objects
advanced simulation, performing
with 226, 227
creating, considerations
205, 206, 208-210
standard data
extending 241-243
standard functions
extending 238-240
standard interfaces
InOut variables 186
inputs 185
large variables 187-189
outputs 185, 186
planning 184
standard interfaces 186
variables, defining 184
standard singular objects 27
start screen 262
Statement List (STL) 34, 98
static data 246

412 Index

static properties
key properties 275
setting 272, 273
static value
about 272
types 274
step action parameters, GRAPH
action 157
event 157
interlock 157
qualifier 157
stop conditions 165
structs
about 64, 231
best practices 69
commonalities, finding
between assets 72
composure 65
drawbacks 81
example, in global data blocks 64
interfaces, simplifying with 74
naming conventions 73, 74
nesting 66
non-optimized blocks 65
optimized blocks 65
requirements 69
structure variables, defining 70, 71
variables, accessing 65, 66
Structured Control Language (SCL)
about 34, 145
control scenario walk-through 149
instructions 146, 147
overview 145, 146
Structured Control Language
(SCL) instructions
about 146
bit logic operations 147, 148

box instructions 148
comparators 148
Structured Text (SCL)
about 96, 145, 375
comments 390-392
regions 393, 394
supervisory control and data
acquisition (SCADA) 201, 249

T

tag dynamization properties
conditions, setting 282, 283
HMI and PLC connection, creating 278
tags, assigning 280, 282
tag interface data
using, in faceplate 298
tags
accessing 302-304
temp data 78
TIA Portal Comfort Panel 256
TIA Portal project
HM]I, adding 256, 257
TIA Portal Version 17 (V17)
about 4
bug 264
Comfort Panel HMIs 256
faceplates 293
Timer Off Delay (TOF) 373
Timer On Delay (TON) 372
timers 112,113
Totally Integrated Automation
Portal (TIA Portal)
about 238, 273, 292
Advanced search bar 397, 398
call structure 45, 46
dependency structure 46

Index 413

example 245-247
function block interfaces 248
help system 394, 395
HMI, adding 256, 257
languages 123
naming conventions and
comments 388-390
navigation 395
parent/child hierarchy 45
parent/child relationships 47
search bar 396
simulation HMI, configuring
229,231-234
typed object 297
Types 23
types, modes
in test 24
released 24

U

unified HMI simulation
about 365, 366
accessing 366-369
Universal Serial Bus (USB) card 261
user-defined types (UDTs)
about 24, 64, 66, 240, 297
advantage 67
best practices 69
commonalities, finding
between assets 72
composure 67
creating 67
drawbacks 81
example, in global data block 66

interfaces, simplifying with 74

naming conventions 68, 73, 74

nesting 69

non-optimized block 68

optimized block 68

requirements 70

structure variables, defining 70, 71
User Management Component

(UMC) 261

\'

variables 64

variable speed drive (VSD) 211
virtual private network (VPN) 33
Visual Basic Script (VBS) 283, 284

W

watch tables

simulated inputs, modifying

with 220-222

versus force table 223
windows and panes

about 4,5

Portal view 6

Project view 8
Word

bit, accessing 115

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

« Improve your learning with Skill Plans built especially for you
o Get a free eBook or video every month
o Fully searchable for easy access to vital information

« Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt . com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub . com for more details.

At www . packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

416 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Learning RSLogix
5000 Programming

Second Edition

Learning RSLogix 5000 Programming - Second Edition
Austin Scott

ISBN: 9781789532463

« Gain insights into Rockwell Automation and the evolution of the Logix platform
« Find out the key platform changes in Studio 5000 and Logix Designer
 Explore a variety of ControlLogix and CompactLogix controllers

+ Understand the Rockwell Automation industrial networking fundamentals

« Implement cybersecurity best practices using Rockwell Automation technologies

« Discover the key considerations for engineering a Rockwell Automation solution

https://www.packtpub.com/product/learning-rslogix-5000-programming-second-edition/9781789532463

Other Books You May Enjoy 417

ROS for Rbbotics
Programming

Lentin joseph | Jonathan Cacace

Mastering ROS for Robotics Programming - Third Edition
Lentin Joseph, Jonathan Cacace

ISBN: 9781801071024

o Create a robot model with a 7-DOF robotic arm and a differential wheeled mobile
robot

« Work with Gazebo, CoppeliaSim, and Webots robotic simulators

« Implement autonomous navigation in differential drive robots using SLAM and
AMCL packages

« Interact with and simulate aerial robots using ROS
« Explore ROS pluginlib, ROS nodelets, and Gazebo plugins
o Interface I/O boards such as Arduino, robot sensors, and high-end actuators

« Simulate and perform motion planning for an ABB robot and a universal arm using
ROS-Industrial

« Work with the motion planning features of a 7-DOF arm using Movelt

https://www.packtpub.com/product/mastering-ros-for-robotics-programming-third-edition/9781801071024

418

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.

packtpub. com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts

Now you've finished PLC and HMI Development with Siemens TIA Portal, we'd love to
hear your thoughts! If you purchased the book from Amazon, please click here
to go straight to the Amazon review page for this book and share your
feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801817227
https://packt.link/r/1801817227

	Cover
	Title
	Copyright and Credits
	Table of Contents
	Section 1 –
The TIA Portal – Project Environment
	Chapter 1: Starting a New Project with
TIA Portal
	Windows and panes – layout of the development environment
	Portal view – windows and panes
	Project view – windows and panes

	Getting started with a new project in the Project view
	Starting a new project
	Changes to the project tree
	Adding devices
	Configuration of devices

	The Reference and Details views – tools to aid development
	Reference projects
	Details view
	Overview view mode

	Instructions and libraries
	Instructions
	Libraries
	Project library
	Global library

	Online testing environment
	CPU operator panel
	Call environment
	Breakpoints
	Call hierarchy

	Summary

	Chapter 2: Creating Objects
and How They
Fit Together
	Creating a project's structure
	Data management

	Hierarchy in TIA Portal
	Call structure
	Dependency structure
	Parent/child relationships

	Instance and global data
	Using instance and global data
	Accessing data
	Configuration options

	Interfaces and the effects on running PLCs
	Optimized data/non-optimized data
	Mixing optimized and non-optimized data
	Passing data through interfaces

	Summary

	Chapter 3: Structures and
User-Defined Types
	What are structs and UDTs?
	Structs
	UDTs

	Creating struct/UDTs – best practices
	Understanding what is required
	Defining structure variables
	Finding commonalities between assets
	Naming conventions

	Simplifying interfaces with structs/UDTs
	Passing inputs as a single struct
	Passing outputs as a single struct
	Passing InOut data as a single struct
	Structures in static and temporary memory
	Creating static declarations of UDTs or structs
	Creating temporary instances of UDTs or structs

	Drawbacks of structs and UDTs
	Libraries
	Lack of open protocol support
	Cross-referencing
	Overusing UDTs/structs

	Summary

	Section 2 –
TIA Portal – Languages, Structures, and Configurations
	Chapter 4: PLC Programming and Languages
	Getting started with languages
	Available languages
	Languages in program blocks
	Different language types

	Selecting the best language
	Understanding the use case
	Memory management

	Differences between Siemens and other PLCs
	Timers
	Valid networks in ladder logic
	GRAPH is not SFC
	Bit access in the byte, Word, and Dword variables

	Summary

	Chapter 5: Working with Languages in
TIA Portal
	The control scenario
	Control overview
	Using the HMI

	Languages used in TIA Portal
	Ladder logic
	Function Block Diagram
	Structured Control Language
	GRAPH
	Cause and effect matrix

	Summary

	Chapter 6: Creating Standard Control Objects
	Planning standard interfaces
	Defining variables in an interface
	Large variables in the interface
	Planning standard control interfaces

	Creating control data
	Improving control data accessibility with UDTs
	Example

	Creating HMI data
	Setpoints/parameters

	Structuring logic
	General layout
	Supportive methods

	Considerations that have an impact on usability
	How flexible does the control object need to be?
	How likely is it that the control object will need to be modified?
	What does the control object interact with?

	Summary

	Chapter 7: Simulating Signals
in the PLC
	Running PLC/HMI in simulate mode
	Starting a PLC simulation

	Managing simulated inputs
	Using watch tables to change inputs
	Using an input mapping layer to change inputs

	Creating a simulation interface
	Safeguarding outputs when
in simulation mode
	Summary

	Chapter 8: Options to Consider When Creating
PLC Blocks
	Extending standard functions
	Extending standard data
	Managing data through instance parameters
	Principle to this approach
	TIA Portal example

	Asynchronous data access considerations
	The correct method

	Summary

	Section 3 –
TIA Portal – HMI Development
	Chapter 9: TIA Portal HMI Development Environment
	TIA Portal Comfort Panel
	Adding an HMI to a project
	HMI development environment overview
	Runtime settings
	Screens

	Screen objects
	Special objects
	Elements
	Controls
	Graphics and Dynamic widgets

	Summary

	Chapter 10: Placing Objects, Setting Properties, and Events
	Chpater 11: Structures and
HMI Faceplates
	What are faceplates?
	TIA Portal V17 faceplates

	Creating a faceplate
	Available objects and controls

	Creating interfaces
	Tag interface
	Property interface

	Creating and handling events in faceplates
	Accessing tags

	Summary

	Chapter 12: Managing Navigation and Alarms
	HMI navigation
	Managing page changes

	HMI alarm controls
	Configuration of HMI alarms
	The configuration of classes
	Configuration of alarm controls
	Setting filters on alarm controls

	Alarm tags
	PLC-driven alarming
	Supervision categories
	Types of supervision
	Alarm texts
	Setting global alarm class colors

	Summary

	Section 4 –
TIA Portal –
Deployment and
Best Practices
	Chapter 13: Downloading
to the PLC
	Downloading to a PLC
	Initiating a download
	Setting load actions
	Downloads requiring the PLC to be stopped

	Retaining data in optimized and non-optimized blocks
	Retaining data in instance data
	Downloads without reinitialization
	Snapshots

	Uploading from a PLC
	Considerations
	Data segregation
	Using functions

	Summary

	Chapter 14: Downloading to
the HMI
	Connection parameters
	Creating connections
	Devices and networks

	Downloading to an HMI
	Simulating a unified HMI
	Accessing a unified HMI simulation

	Security considerations
	Summary

	Chapter 15: Programming Tips and Additional Support
	Simplifying logic tips
	Delay timers
	AT constructor
	IF statements
	Serializing
	Refactoring
	Consolidating blocks

	Sequences – best practices
	Using constants instead of numerical values
	Managed transitions
	Managing output requests

	Naming conventions and commenting
	Comments in SCL

	Additional Siemens support
	Using TIA Portal's help system
	Siemens forum
	Siemens documentation archive

	Further support – Liam Bee
	Summary

	Index

