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Foreword 

Robotics is undergoing a major transformation in scope and dimension. From a 
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assist-
ing, serving, and exploring with humans, the emerging robots will increasingly 
touch people and their lives. 

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse  
research areas and scientific disciplines, such as: biomechanics, haptics, neurosci-
ences, virtual simulation, animation, surgery, and sensor networks among others. 
In return, the challenges of the new emerging areas are proving an abundant 
source of stimulation and insights for the field of robotics. It is indeed at the inter-
section of disciplines that the most striking advances happen. 

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the 
research community the latest advances in the robotics field on the basis of their 
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more 
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field. 

The Seventh edition of Field and Service Robotics edited by Andrew Howard, 
Karl Iagnemma and Alonzo Kelly offers in its eleven-chapter volume a collection 
of a broad range of topics spanning: design, perception and control; tracking and 
sensing; localization and mapping; multi-robot cooperation and human-robot in-
teraction; mining, maritime and planetary robotics. The contents of the forty-five 
contributions represent a cross-section of the current state of robotics research 
from one particular aspect: field and service applications, and how they reflect on 
the theoretical basis of subsequent developments.  Pursuing technologies aimed at 
realizing robots operating in complex and dynamic environments, as well as ro-
bots working closely with humans, is the big challenge running throughout this 
focused collection. 

Rich by topics and authoritative contributors, FSR culminates with this unique 
reference on the current developments and new directions in field and service ro-
botics.  A fine addition to the series! 

Naples, Italy 
March 2010 

Bruno Siciliano 
STAR Editor 



Preface

Field and Service Robotics (FSR) is one of the (presently) five major conferences 
founded by the International Federation of Robotics Research (IFRR). As such, 
FSR is the leading single track conference dedicated to research related to devel-
opment of robots that do real work, whether that work is hard labor or the per-
formance of useful services. Field robots are often purpose-built machines that are 
highly adapted to their jobs, and hence their surroundings; they exhibit high mo-
bility and they typically interact forcefully with their environments. By contrast, 
service robots are more adapted to assisting humans and they interact with their 
surroundings with a somewhat lighter touch. 

The FSR conference is held every two years. Dating from 1997 it has followed 
a regular three continent rotation. It has been held in Canberra, Australia (1997), 
Pittsburgh, USA (1999), Helsinki, Finland (2001), Mount Fuji, Japan (2003), Port 
Douglas, Australia (2005), Chamonix, France (2007) and most recently in Cam-
bridge, USA (2009). 

This year we had 80 submissions of which 45 were selected for oral presentations. 
The conference chairs were: 

Alonzo Kelly (CMU), Karl Iagnemma (MIT) and Andrew Howard (Caltech-JPL) 
The conference is overseen by members of the international organizing com-

mittee, who also serve on the program committee: 

Hajime Asama    U Tokyo, Japan 
Raja Chatila   LAAS/CNRS, France 
Henrik Christensen  Georgia Tech, USA 
Peter Corke   CSIRO, Australia 
Aarne Halme   Helsinki U of Tech, Finland 
John Hollerbach   U of Utah, USA 
Andrew Howard   JPL / Cal Tech, USA 
Karl Iagnemma   MIT, USA 
Alonzo Kelly   CMU, USA 
John Leonard   MIT, USA 
Christian Laugier  INRIA, France 
Eduardo Nebot   U Sydney, Australia 
Erwin Prassler   U Applied Science Bonn, Germany 
Jonathan Roberts   CSIRO, Australia 
Daniela Rus   MIT, USA 
Sanjiv Singh   CMU, USA 
Roland Siegwart   ETH Zurich, Switzerland 
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Salah Sukkarieh   U Sydney, Australia 
Chuck Thorpe   CMU, Qatar 
Sebastian Thrun   Stanford, USA 
David Wettergreen  CMU, USA 
Kazuya Yoshida   Tohoku U, Japan 
Alex Zelinsky   CSIRO Australia 

The following researchers also served on the program committee for FSR09. 

Timothy Barfoot   University of Toronto 
Martin Beuller   iRobot Corp. 
Wolfram Burgard  Albert-Ludwigs-Universität Freiburg 
Toshio Fukuda   Nagoya University 
Satoshi Kagami   AIST Digtal Human Research Center 
Simon Lacroix   LAAS-CNRS 
David P Miller   University of Oklahoma 
Paul Newman   Oxford University 
Liam Pedersen   NASA Ames  
Miguel Angel Salichs  Carlos III University of Madrid.  
Gaurav S Sukhatme  University of Southern California 
Satoshi Tadokoro  Tohoku University 
Takashi Tsubouchi  University of Tsukuba 
Arto Visala   Helsinki University of Technology 
Uwe Zimmer   Australian National University 

The conference was sponsored by the US Army Research Office, iRobot Cor-
poration, the US Army TARDEC, and US Army Corps of Engineers ERDC.  

Mihail Pivtoraiko, Colin Green, and Chris Ward gave generously of their time 
to help arrange many aspects of the social and technical program and publicity. 
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Terrain Modeling and Following Using a 
Compliant Manipulator for Humanitarian 
Demining Applications 

Marc Freese, Surya P.N. Singh, William Singhose,  
Edwardo F. Fukushima, and Shigeo Hirose1 

Abstract. Operations with flexible, compliant manipulators over large workspaces 
relative to the manipulator are complicated by noise, vibration, and measurement 
bias.  These difficulties are compounded in unstructured environments, such as 
those encountered in humanitarian demining. By taking advantage of the static 
structure of the terrain and the manipulator’s fundamental mechanical characteris-
tics, a series of adaptive corrections and filters refine noisy topographical meas-
urements. These filters along with a shaped actuation scheme can generate smooth 
and well-controlled trajectories that allow for terrain surface following.  Experi-
mental testing was performed on a field robot with a compliant, 3 m long hybrid 
manipulator and a stereo vision system. The proposed method provides a vertical 
tracking precision of ±5 mm on a variety of ground clearings, with tip scanning 
speeds of up to 0.5 m/s. As such, it can agilely move the attached sensor(s) 
through precise scanning trajectories that are very close to the ground.  This 
method improves overall detection and generation of precise maps of suspected 
mine locations. 

1   Introduction 

While robust manipulation in difficult field conditions is still in its infancy, envi-
ronmental modeling using computer vision has progressed with several applica-
tions, including autonomous Martian mapping [10]. With regards to manipulation,  
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Fig. 1 Photograph of Gryphon in a test humanitarian demining field.  

variation and noise are routinely minimized by stiffening the structure or con-
straining the operation [1, 2]. In humanitarian demining, the increased sensitivity 
needed by the metal detector precludes stiffening through the addition of proximal 
metal content and requires minimal mean and variance in the air gap to the 
ground. In demining, a myriad of sensing technologies have been proposed [7]. 
However, relatively little attention has been directed towards the field manipulation 
requirements for automating the dangerous and tedious ground scanning task.   

An autonomous mobile robot named Gryphon [5] has been developed to assist 
the mine detection process. As shown in Figure 1, the robot is based on an all ter-
rain vehicle (ATV) [4] to which a custom hybrid robotic manipulator [6] is added. 
This lightweight and counter-balanced 3-DOF arm is made from glass-fiber rein-
forced plastic (GFRP) which is compatible with sensitive metal detection (MD) 
operation that requires minimal metal near the sensor [3].  As shown in Figure 2, 
this design has a tip flexure of up to 5 cm (for a 2 m link) due to inertial forces 
only.  While the structure could have been stiffened, the compliance also provides 
some safety in the event of a collision.  Secondary motion from the ATV suspen-
sion is reduced, but not eliminated, through counterbalancing the manipulator.  
Hence, there is uncertainty in sensor location with respect to the ground.  

As illustrated by the control architecture in Figure 3, Gryphon operates by driv-
ing close to a region of interest, then while the ATV is stationary, generates a  
stereo map. As detailed in Section 2, these are iteratively refined to construct a 
geometric terrain model. By iteratively operating using a local model, absolute 
rectification is not required because later processing stages account for aberrations 
through command shaping [5, 11]. This approach adds robustness without the 
need to identify the origin of imprecision. However, its use of linear models 
means its highest accuracy is near regions used to perform the system-level cali-
bration where errors are small, hence defining the zone of effectiveness. From this 
terrain model a desired path for the manipulator endpoint is generated and cor-
rected for the height errors and the travel of a detector body (as opposed to end-
effector frame), as detailed in Section 3. The final path is close to the ground  
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Fig. 2 Schematic of Gryphon and its principal frames of reference.  

 

Fig. 3 Terrain scanning motion generation architecture. (Darker boxes indicate process out-
puts). while maintaining the best possible orientations for the detector.  Experimental tests 
of the manipulator and the control architecture are presented in Section 4. 

2   Terrain Modeling 

In order to plan operations that map the location of suspected mines found by the 
sensor, it is first necessary to form a geometric model of the terrain. 
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The terrain modeling begins by sensing the environment using stereo vision. A 
BumbleBee (model BB-HICOL-60, Point Grey Research) stereo vision camera  
(location shown in Figure 2), acquires several depth maps from different manipu-
lator configurations to cover the region of interest. Compared to laser mapping, 
this generates maps quickly, but more noise, especially in regions lacking texture. 
Map accuracy depends on object range and camera aberrations. Acquired raw 
depth maps (or disparity maps) are checked for consistency by subdividing them 
into coherent patches. Patches that fail to comply with certain criteria (e.g. do not 
represent possible terrain locations) are then discarded. 

2.1   Conditional Planar Filtering 

Due to limitations on camera resolution and calibration, a raw model generated 
from the camera data is significantly degraded by noise. Median filtering  
techniques are primarily effective against the shot noise, but do not remove high-
frequency components. Simply smoothing (i.e., spatial low-pass filtering) is insuf-
ficient as this results in a degradation of features, especially at obstacles bounda-
ries, which could lead to a collision between the end-effector and the terrain. 

Thus, an adaptive filter based on the average region planarity is used to adjust 
filter kernel sizes for both Gaussian smoothing and median filters (i.e., the condi-
tional planar filter [CPF]) [6]. The planarity of the selected region is determined 
by calculating the mean deviation between each point in the region and the re-
gion’s corresponding (least-squares) best-fitting plane.  If the deviation is small, 
the region is assumed to be planar, hence giving a conservative, but rapidly com-
puted terrain classification.  Based on this, the strength of the Gaussian and me-
dian kernels are varied depending on the deviation magnitude.  Applying this to 
the perceived data yields a less noisy, but still potentially offset, or biased, map. 

2.2   Height Map Generation 

To simplify and speed-up terrain data processing, the depth maps are transformed 
to a common height map function. This map represents the terrain as a series of 
height (or z-coordinate) values at point locations specified by a uniform mesh in 
the ground plane of the ground frame. This is done, for instance, via Delauney tri-
angulation methods with increased precision obtained through spatial weighted 
averages of the sensed data. The obtained height map offers the advantage of two 
dimensionally indexed queries on the terrain model and facilitates, by linear inter-
polation, a mechanism to fill holes and patches that may have arisen due to occlu-
sions or lack of texture.  

2.3   Height Map Expansion 

At this stage of the process, the height map is a good approximation of the under-
lying topographical information; however, it is often desired to perform the scan-
ning at a constant distance from the ground (i.e., a scanning gap). For that purpose  
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Fig. 4 Terrain surface expansion.  fenv is an expansion of the terrain map given by fterr. 

we expand the height map via an envelope expansion. That is, we solve for a new 
surface, fenv, whose distance from fterr is given by the scanning gap. This is illus-
trated in Figure 4. Note that the simple approach of shifting the height map verti-
cally would be a bad approximation for highly curved or inclined terrain. 

Considering the continuous case, the desired surface is easily obtained with the 
following parametric equations: 

xyxfxx terrterrterrterrenv ∂∂⋅−= /),(λ                                   (1) 

yyxfyy terrterrterrterrenv ∂∂⋅−= /),(λ                                  (2) 

),(),( envenvenvterrterrterrenv yxfyxfz =+= λ                             (3) 

( ) ( )( ) 2

1
22 1/),(/),(

−

+∂∂+∂∂⋅= yyxfxyxfd terrterrterrterrterrterrλ                    (4) 

3   Path Generation 

The path generation for the manipulator takes as inputs the expanded terrain 
model from the previous section and the manipulator configuration, taking into 
account joint limitations of the wrist mechanism. 

3.1   Scanning Scheme 

Two different linear incrementing scanning schemes are available: in joint space 
(giving a circular profile since the base joint is revolute) or in workspace (giving a 
rectangular profile). The trajectories are smoothly combined at their extremities to 
reduce unnecessary slowdowns during direction changes. Performing this in the 
joint-space of the robot simplifies joint coordination by reducing simultaneous 
motions and velocity variation, and thus is dynamically more stable. This reduces 
power consumption and arm vibration and improves detection performance by re-
ducing sensor location uncertainty.   

3.2   Terrain Sampling 

Either of the above described scanning schemes produce a planar path, where  
only the x-y coordinate components are defined. The z coordinate is obtained by 
sampling the corresponding position on the expanded terrain. Orientation of the 
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detector at this position is calculated using the normal vector to the expanded ter-
rain using the following relationships:  

),( pathpathenvpath yxfz =
                                            

(5) 

[ ]Tpathpathenvpathpathenvpath yyxfxyxfn γγγ ∂∂⋅−∂∂⋅−= /),(/),(                     (6) 

( ) ( )( ) 1
22 2

( , ) / ( , ) / 1env path path env path pathf x y x f x y yγ
−

= ∂ ∂ + ∂ ∂ +
                 

(7) 

3.3   Advanced Terrain Following (ATF) 

The planned path has focused on guarantying that the center of the sensor follows 
the expanded terrain. With the consequence that the rest of the sensor body is still 
free to enter the scanning gap or even to collide with the terrain at positions where 
the curvature is concave, thus, it is important to consider the sensor as an extended 
body attached to the manipulator end point. This is performed by modeling the sen-
sor via a series of control points along its lower surface; where, the number and po-
sition of points has been chosen to best approximate the contour and surface.  

For each sensor position on the trajectory, all control points are tested for pos-
sible collisions with the expanded terrain. For each point under the grid, a small 
correction rotation (e.g., ½°) of the sensor is performed in the order of vertical de-
viation as illustrated in Figure 5a. This is iteratively repeated until an equilibrium 
orientation is reached (cf. Figure 5d). The sensor orientation is then corrected to 
respect configuration-space constraints by limiting wrist joint values to within al-
lowable ranges and the sensor’s z-coordinate is modified so as to have no control 
point in the scanning gap (cf. Figure 5e). Such an approach can lead to large gaps 
between the detector center and the terrain at concave positions, but it guarantees a 
constant minimum distance between the sensor as a whole and the terrain.  

 

Fig. 5 Path correction scheme with the dots indicating control points. 

A reactionary approach, by comparison, would simply lift the sensor without 
changing its orientation and thus is not sufficient as it would lead to non-ideal con-
figurations with large and changing air gaps and potentially excessive motion.  

3.4   Partial Path Correction 

While perception inaccuracies were corrected for the horizontal plane in 
the Terrain Modeling Section, the model only partially accounted for mechanical 
inaccuracies. The type of mechanical inaccuracies corrected for are typically those 

z
(a) (b) (c) (d) (e) 
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arising from mechanical compliances (in the links and base) and calibration errors. 
Within the limitations of the zone of effectiveness, the path’s x and y components 
are modified appropriately. This second part of the system-level calibration con-
sists of applying a radial offset and scaling: 

ρρρρ offsetscaling +⋅=′
                                              

(8) 

and an angular offset: 

ϕϕϕ offset+=′
                                                      

(9) 

The above correction parameters are obtained by measuring the discrepancy be-
tween the real and computer-model manipulator tip position. Orientation of the de-
tector is kept unchanged. The path becomes: 

[ ] [ ]Tenv
T

pathpathpath fzyx )sin,cos(sincos ϕρϕρϕρϕρ ⋅⋅′⋅′′⋅′=                  (10) 

3.5   Final Path Correction 

The last modification of the path, and the final step of the system-level calibration, 
is the correction along the z-axis. Each x-y position is assigned an individual verti-
cal correction factor that is obtained by linear interpolation between values of an 
Overall Calibration Matrix (OCM):  

),( pathpathnZCorrectiopathpath yxfzz +=′
                                 

(11) 

The OCM is obtained by mapping the terrain, generating a non-expanded 
height map, and then manually driving the sensor to touch the terrain at workspace 
corner-points. At each spot, the necessary correction factor is given by the devia-
tion of the computer model of the sensor from the terrain contact. Spots are then 
used to generate a Delaunay triangulated surface whose height at a given position 
gives the amount of correction needed. The OCM is directly extracted from that 
surface at regular grid intervals along the x-y plane in the manipulator frame. 

4   Experiments and Results 

Several experiments were conducted with Gryphon to assess performance of the 
terrain following method described in the previous sections. Precise quantification 
was performed by replacing the detector payload (i.e., metal detectors and ground 
penetrating radar) with a laser rangefinder (SICK DME 2000) to track the scan-
ning gap at the region of maximum detector sensitivity. The effects of command 
shaping, the implementation of which on Gryphon is detailed in [5], were ana-
lyzed by attaching a 3-axis accelerometer to the tip of the manipulator. 

4.1   Filter Performance 

Other operating conditions, where possible, were adjusted to match those of a 
typical payload (e.g., weight was added to the laser rangefinder). A sandy terrain  
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Fig. 6 Scanning pass used during experiments. 

under natural light conditions (i.e., a fair weather day) was used with a circular 
scanning scheme with a scanning rate of 100 mm/s to evaluate the filter perform-
ance, and the effects of the advanced terrain following.  

This set of tests used a 10 cm height map expansion and no ATF. The map fil-
ter was varied between three algorithms: (a) minimal filtering (a control case 
based on a raw depth map with median filtering), (b) Gaussian Smoothing, and (c) 
Conditional Planar Filter (CPF). 

Filter performance was tested on two different terrain profiles: (i) relatively flat 
terrain and (ii) the same terrain with a rather challenging hump (or obstacle). In 
both cases, the scanning procedure comprised several passes.  

The obstacle, shown in Figure 6, represents extreme slopes and contours for 
expected demining conditions. The pass selected for comparison was the most 
challenging and includes a 70° curvature.   

The advantage of the CPF over Gaussian smoothing is visible in Figure 7. The 
Gaussian degrades terrain features, which results in a loss/gain of obstacle height. 
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Fig. 7 Scanning deviations over a 200-mm feature by various filtering methods. 

50 cm 

20 cm 

Scanning pass 
Rough terrain 

obstacle

~70º slope 

Manipulator 

DME 2000 



Terrain Modeling and Following Using a Compliant Manipulator  11
 

4.2   Effects of Command Shaping 

The experiments also validate the use of robust control to address sensing and planning 
aberrations.  In the case of Gryphon, an unshaped trajectory is first calculated by gener-
ating a trapezoidal velocity profile in joint space.  The trajectory is then modified by a 
Zero Vibration and Derivative (ZVD) shaper (cf. ref. [11]).  The sensor loading is large 
enough to that arm compliance is visible.  In particular, measured residual vibration at 
the tip of the arm is approximately ±20 mm. This makes it difficult for a feedback con-
trol system relying on the joint encoders to adequately control the endpoint vibration. 
With command shaping, the residual vibration is approximately ±2 mm. 

Smooth trajectories are of importance for best metal detector sensitivity, espe-
cially for straight-line rectangular motion as this requires coordinated motion of 
the arm joints. As shown in Figure 8, command shaping is significantly smoother. 
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Fig. 8 Endpoint acceleration at the end-effector for a typical scanning pass for a straight 
line scanning pass of 2.4 m with a maximum speed and acceleration of 0.8 m/s and 7.5 m/s2.  

4.3   In-Field Testing 

Gryphon is an integrated, weather-proof system built to be robust against dust, hu-
midity and rain, and resistant to extended temperature ranges. It has been field tested 
for 95 days on flat ground, bumpy terrain, and slopes. This includes operations on 
various test mine fields, including tests conducted under the supervision of the Japan 
Science and Technology Agency (JST) in Japan in early 2005 [8] and early 2006 in 
Croatia [9]. Two Gryphon robots (each with a different detector configuration) also 
took part in extensive trials in Cambodia (in cooperation with by the Cambodian 
Mine Action Center). Operated by Cambodian deminers, the Gryphon machines per-
formed tests for more than 150 hours of semi-autonomous operation. 
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5   Conclusion 

Field operations of long-reach manipulators are complicated by noise, measure-
ment bias and vibration that lead to end-effector positional uncertainty. This dras-
tically reduces the number of field applications that can be performed accurately 
and safely. The architecture described in this paper combines a novel filtering 
method, a decoupled system-level calibration procedure and a vibration reduction 
technique to yield an effective framework for obstacle identification, trajectory 
planning and generation. Experimental testing on Gryphon shows considerable 
deviation reduction when applying the framework. Combined with an advanced 
terrain following technique, it effectively avoids collision with the terrain for a 
successful scanning operation. The methods demonstrated improved automated 
mine detection performance and tracking on the Gryphon robot.  
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Towards Autonomous Wheelchair Systems
in Urban Environments

Chao Gao, Michael Sands, and John R. Spletzer

Abstract. In this paper, we explore the use of synthesized landmark maps for ab-
solute localization of a smart wheelchair system outdoors. In this paradigm, three-
dimensional map data are acquired by an automobile equipped with high precision
inertial/GPS systems, in conjunction with light detection and ranging (LIDAR) sys-
tems, whose range measurements are subsequently registered to a global coordi-
nate frame. The resulting map data are then synthesized a priori to identify robust,
salient features for use as landmarks in localization. By leveraging such maps with
landmark meta-data, robots possessing far lower cost sensor suites gain many of the
benefits obtained from the higher fidelity sensors, but without the cost. We show that
by using such a map-based localization approach, a smart wheelchair system outfit-
ted only with a 2-D LIDAR and encoders was able to maintain accurate, global pose
estimates outdoors over almost 1 km paths.

1 Introduction

We are interested in developing smart wheelchair systems capable of autonomous
navigation in unstructured, outdoor environments. Our primary work to date in this
area has been with the Automated Transport and Retrieval System (ATRS) [1].
ATRS enables independent mobility for drivers in wheelchairs by automating the
stowing and retrieval of the driver’s wheelchair system. While ATRS has been com-
mercialized, and its smart-chair system does in fact navigate autonomously, its au-
tonomy is limited to an area immediately adjacent to the host vehicle. We would
like to build on these results to support a greater range of smart-chair applications.
Key to this objective is a robust means for outdoor localization.

Localization is a fundamental enabling technology for mobile robotics, and as a
result a very active research area. Although the problem in structured, indoor envi-
ronments might be considered solved, robust localization outdoors is still an open
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research problem. While the community has made significant strides recently in
terms of vehicle autonomy outdoors [2], much of this has been achieved through
sensor suites using tightly coupled inertial/GPS navigation systems costing up to
$100K or more. Such a solution is impractical in terms of both size and cost for
applications such as ours. In the absence of reliable GPS measurements, fall-back
strategies are similar to those used indoors and involve extracting strong features
from RADAR, LIDAR, vision sensors, etc., and tracking their relative position and
uncertainty estimates over time [3, 4, 5]. However, such approaches are more fragile
when used outdoors due to the absence of continuous structure and the much larger
problem scale.

Urban environments represent an interesting and important middle-ground as
over 80% of the U.S. population resides in cities and suburbs [6]. The availability
of GPS measurements in these areas for pose estimation can typically be assumed,
but multi-path errors from buildings, trees, etc., can significantly compromise its
accuracy. Fortunately, these same structures can be used as landmark features to
yield accurate relative position estimates. In this paper, we investigate a paradigm
where a smart wheelchair system relying upon lower cost sensors localizes with the
assistance of three-dimensional maps generated by a vehicle equipped with a high
fidelity sensor suite. These maps are synthesized a priori to identify robust, salient
features which can be used as landmarks for robot localization. By leveraging these
maps, the wheelchair gains many benefits obtained with the higher-fidelity sensors
but without the cost.

2 Related Work

Our work relates to research efforts in three-dimensional mapping as well as robot
localization and mapping. Generating three-dimensional maps of urban areas has
been investigated by several groups, so there is significant previous work that can
be leveraged [7, 8, 9, 10, 11, 12]. Unlike most of this work, our focus is generating
and processing three-dimensional maps with respect to a global frame, which will be
reusable and readily extended by any user. With the explosion of data services, we
expect the availability of such maps to be commonplace in the future [13]. Our mo-
tivation is that by leveraging such maps, lower fidelity sensors could be employed.
This has been demonstrated routinely indoors (e.g., MCL with sonar vs. SLAM with
LIDAR), and we believe the analogy will hold outdoors. Many features in urban en-
vironments are viable candidates for landmarks. For example, corner features are
often used in EKF localization and mapping approaches as their position can be
reduced to a single point [14]. Building facades and walls might also be used [8].
Indeed even signage can be detected and recognized [15]. While we are ultimately
interested in integrating aspects of each of these features within our synthesized map
representation, in this paper we limit our focus to pole features as landmarks. In this
context, pole features would correspond to street lamps, trees, parking meters, street
signs, etc. Such features are prevalent in most urban areas.
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The use of poles features as landmarks has been investigated by other researchers.
This includes the work of [16, 17], among others. The primary focus of these efforts
was SLAM with a ground vehicle (i.e., an automobile) where “cylinder” features
were segmented using vision and/or LIDAR systems, and tracked over time. This
technique enabled mobile localization and mapping in outdoor, unstructured envi-
ronments over relatively long distances (e.g., 100s of meters). We propose to build
upon these efforts by first building large-scale three-dimensional maps, synthesizing
these maps to identify strong landmark features, introducing a refinement stage to
improve map consistency, and then leveraging these maps with an ultimate goal of
improving localization performance outdoors.

3 Map Generation

Data Acquisition. Our vehicle for data acquisition was “Little Ben,” which previ-
ously had served as the Ben Franklin Racing Team’s entry in the DARPA Urban
Challenge [18]. Vehicle pose was provided by an Oxford Technical Solutions RT-
3050, which uses a Kalman filter based algorithm to fuse inertial measurements,
GPS updates with differential corrections, and odometry information from the host
vehicle. It provides 6-DoF pose updates at 100 Hz with a stated accuracy of 0.5
meters circular error probable (CEP). Range and bearing measurements from a pair
of roof mounted, vertically scanning Sick LMS291-S14 LIDAR systems were then
registered to the current vehicle pose to generate high-resolution range maps. The
two LIDARs are highlighted (circled red) in Fig. 1 (Left). We used two LIDARs to
improve map reconstruction by reducing scene occlusion and for redundant mea-
surements to reduce noise effects. During data acquisition, Ben was driven at 8-12
km/hr. This corresponded to a LIDAR scan spacing of ≈ 4-6 cm, which allowed
even thin pole features (e.g., street signs, parking meters) to be captured reliably.

LIDAR Calibration. Ultimately, we need to register the acquired range scans to a
common world frame W . This registration requires knowledge of the extrinsic pa-
rameters (rotation R and translation T ) of both the vehicle frame V , and the front

Fig. 1 Development Platforms. (Left) Vehicle used for data acquisition. Ben integrates an
OXTS RT-3050 and a pair of vertically scanning Sick LMS291-S14 LIDARs (circled red).
(Center-Right) Our smart-chair platform integrates LIDAR, vision, GPS, and odometry sen-
sors. Its computer interface and on-board power distribution enable a range of sensors and
accessories to be quickly integrated for prototyping purposes.
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and back LIDAR frames (F,B) versus time with respect to W . The vehicle param-
eters RW

V (t),TW
V (t) are estimated directly by the OXTS RT-3050 at 100 Hz. As the

LIDARs are related to the vehicle frame by a rigid transformation, we need only re-
cover the extrinsic parameters of the LIDARs with respect to the vehicle frame. For
this work, we developed a novel approach to simplify the calibration process. Noting
that points in the world frame and LIDAR frames were related by rigid transforma-
tions, we could recover the LIDAR extrinsic parameters with a sufficient number of
point correspondences between the front and back LIDARs. To facilitate correspon-
dence tracking over time, 6 poles on a ≈ 50×100 meter calibration loop were used
as landmarks. On each pole, two retro-reflective targets were placed 1 meter apart
for a total of 12 target points XT = [x1,y1,z1, . . . ,x12,y12,z12]T in W . These targets
were automatically segmented from the environment by thresholding the LIDAR
remission measurements. A sample landmark pole is shown in Fig. 2 (left).

Point correspondences were obtained by driving multiple cycles around our cal-
ibration loop. Our calibration process then consisted of two stages. The first was
to remove deterministic error between successive calibration loops caused by GPS
jumps. This step was accomplished by using the first loop to generate reference
landmark positions X1 = [x1,1,y1,1,z1,1, . . . ,x12,1,y12,1,z12,1]T , where xi, j denotes the
estimated x-position of the ith target in W during the jth calibration loop. The deter-
ministic shift S j = [sx j,sy j,sz j]T of the jth loop was estimated by

S∗
j = argmin

S
||X1 − Xj − S j×12||2 (1)

where S j×12 ∈ R
36 is the estimated deterministic error S j replicated for each target

point. This minimization problem was solved using a least-squares approach. S j was
then treated as a bias, and the value of Xj for each loop was adjusted accordingly.

The second stage was to remove the influences of random error in the calibration
process. In doing so, we needed to estimate the extrinsic parameters for each LIDAR
(RV

B ,TV
B ,RV

F ,TV
F ), as well as the positions of our 12 targets (XT ) in W . We note that

for the same world point xW ,

RW
VF(RV

F xF + TV
F )+ TW

VF = RW
VB(RV

B xB + TV
B )+ TW

VB (2)

where the VF and VB subscripts are used to denote the vehicle transformation to the
world frame corresponding to the different vehicle poses when xW was observed by
the front and back LIDARs, respectively. Thus, we can solve for both the LIDAR ex-
trinsics as well as the target positions with a minimum of 16 point correspondences
between the front and back LIDARs. Since the vehicle pose varies with each cali-
bration loop, 12 unique correspondences can be obtained from each loop cycle. As a
result, a large number of correspondences can be acquired very quickly. We solved
for (2) using a non-linear minimization solver. However, one final enhancement was
added first to remove measurement outliers. For this, we employed a “constrained”
RANSAC approach [19], where we instantiated each model hypothesis with a small
number (2-4) of correspondences at random from each target. This enhancement
ensured that the error residuals were balanced across the entire calibration loop.
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Fig. 2 (Left) One of six landmark poles used during the LIDAR calibration process. The
retro-reflective targets could be automatically segmented to track correspondences across
multiple calibration loops. Reconstruction results before and after our calibration phase. Im-
provements in data fusion with the front (red) and back (blue) LIDARs from the calibration
phase are clearly visible.

Fig. 2 shows representative results of merging front and back LIDAR data using
the measured extrinsics (center) and those estimated from the calibration process
(right). Improvements in data fusion and scene reconstruction from the calibration
process are clearly visible. The mean absolute error (MAE) for the error residuals
between the two LIDAR reprojections was 12.67 cm. As the performance of the
pose system is 50 cm CEP, these results were considered satisfactory.

Landmark Synthesis. Segmenting pole features was accomplished using a two-
step clustering approach: (1) recursively cluster points within each scan, and (2)
merge clusters in successive scans where appropriate. In both steps, a Euclidean
distance threshold was used as the clustering criterion. For a cluster to be accepted
as a pole feature, validation gates were placed on cluster size. Furthermore, only
strongly vertical clusters were accepted by examining the covariance matrix C of the
associated feature points’ positions. Specifically, the eigenvector associated with the
largest eigenvalue λmax of C should be close to [0,0,1]T . Only after clearing these
validation gates was the cluster accepted as a landmark in the synthesized map.

4 Wheelchair Localization

The smart-chair used in this work is based upon an Invacare M91 Pronto power
wheelchair with Mk5 electronics. It integrates high resolution optical encoders, a
Hokuyo UTM-30LX LIDAR system, a 1024x768 Point Grey digital video camera,
and a Garmin 18 WAAS enabled GPS system. For this work, the UTM-30LX was
the wheelchair’s sole exteroceptive sensor. When compared to the ubiquitous Sick
LMS2xx LIDARs, it is extremely compact. In our current integration, the LIDAR
and camera system are mounted on the opposite arm as the manual joystick con-
troller as shown in Fig. 1 (center). The configuration is comparable in size to the
joystick controller box.

Landmark Detection. In our localization paradigm, the wheelchair employs
LIDAR and odometry sensors in conjunction with the synthesized landmark map.
Implicit in this approach is the assumption that the landmarks can be reliably
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segmented. However, unlike the landmark synthesis phase, the wheelchair LIDAR
must rely entirely upon two-dimensional scan data. To compensate for this, our
landmark detection strategy used two approaches dependent upon pole feature ge-
ometry. The first step in either approach was clustering registered point returns from
the wheelchair LIDAR scan in Euclidean space. Cluster diameters were then used
to discriminate between larger diameter pole features (trees, telephone poles, street
lamps, etc.) and narrower ones (parking meters, traffic sign posts, etc.).

Larger diameter clusters with 5 or more points were fit as circle features. Several
additional validation gates followed based upon circle geometry and residual fitting
error before a feature was accepted as a landmark candidate. We found empirically
that larger diameter landmarks could be reliably detected at ranges ≈ 75× the fea-
ture radius, meaning that a landmark with a radius of 10 cm would typically be de-
tected at a range of about 7.5 meters. Circle fitting was not appropriate for smaller
diameter clusters. As such, these features were tracked over time. If they were per-
sistent and no other clusters were detected within a given distance threshold, they
were accepted as landmark candidates. Using such an approach, smaller diameter
features could reliably be detected at ranges < 5 meters. Candidate landmarks were
passed to the data association module for additional processing.

Data Association. There are inherent limitations in using two-dimensional LIDAR
measurements to segment three-dimensional landmarks. As a result, the landmark
detection process may erroneously validate other environmental features as pole fea-
tures. The impact of these false positives on localization performance was mitigated
through a data association phase.

Several sources of uncertainty exist in the synthesized landmark locations within
our map. These sources include uncertainty introduced by the pose system, errors
in LIDAR extrinsic calibration, LIDAR range errors, and noise associated with the
landmark synthesis process itself to name but a few. Uncertainty in landmark posi-
tion was modeled by associating a covariance matrix Σl with the position of each
landmark while Σw and Σo denoted covariance matrices associated with the uncer-
tainty in wheelchair pose and LIDAR range and bearing observations, respectively.
With these so defined, we used the Mahalanobis distance D between the predicted
and observed sensor measurements as our quality metric for data association, de-
fined as

D =
√

zT (Σo + HwΣwHT
w + HlΣlHT

l )−1z (3)

where, Hw and Hl are the Jacobians of the observation model with respect to
wheelchair pose and landmark location, respectively,

Hw =

[
xw−xl

zr

yw−yl
zr

0
yl−yw

zr2
xw−xl

zr2 −1

]
, Hl =

[
− xw−xl

zr
− yw−yl

zr

− yl−yw
zr2 − xw−xl

zr2

]
(4)

and z = zl − zo is the difference between the predicted and actual range and bearing
measurements for the wheelchair LIDAR. A threshold on D served to filter out po-
tential false positives observed during the landmark detection phase. For the case of
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closely located landmarks where multiple possible detection-landmark associations
might be possible, the association minimizing the total assignment cost was used.

Localization Approach. Extended Kalman Filters (EKFs) have been one of the
most popular techniques for state estimation in mobile robotics [3, 20, 14], and
we took a similar approach for estimating the wheelchair pose x = [xw,yw,θw]T .
In the prediction step, linear and angular velocities (v,ω) were estimated from the
encoders using a differential drive model for the wheelchair. For the correction step,
the observation functions were based upon LIDAR estimates for the range zr and
bearing zα to the segmented landmark at position (xl ,yl)

zr =
√

(xw − xl)2 +(yw − yl)2, zα = arctan

(
yw − yl

xw − xl

)
−θw (5)

and the Kalman gain was calculated as K = PHw
T (HwPHw

T + HlΣlHl
T + Σo)−1

where Hw and Hl were as defined in (4). The process then followed a traditional
EKF implementation with updates of 2-5 Hz dependent upon vehicle velocity.

Landmark Position Refinement. A shortcoming with relying heavily upon GPS
for map generation is that changes in satellite geometry/visibility can lead to
“jumps” in vehicle pose. These discontinuities affect map consistency. One ap-
proach to address this would be to integrate additional sensing onto the data ac-
quisition platform and run SLAM in parallel with the data acquisition phase [12].
We propose an alternate refinement stage where SLAM is actually run by the map
client – in our case the wheelchair – during an initial route traversal akin to a learn-
ing phase. This is something we envision would be done by the wheelchair user’s
care provider prior to enabling completely autonomous operations. An advantage of
this approach is that the landmark refinement would be tuned to the actual sensor ge-
ometries employed by the client vehicle. For our implementation, we extended our
EKF localization using a SLAM approach as in [3, 20] to further refine the landmark
positions. The landmark locations were then updated with the SLAM-refined land-
mark positions and covariance ΣL estimates. While this did not improve the global
map accuracy, it significantly improved the map consistency.

5 Experimental Results

To investigate the viability of the proposed approach, our first experiments were
conducted in the parking lots around Lehigh’s Stabler Arena. Admittedly, this area
was not representative of urban environments. However, it served as a low-traffic
proving ground with sufficient pole features to first validate the concept. Fig. 3 (left)
shows the raw registered range data acquired by driving Ben through the area. These
data were then synthesized as outlined above, and the resulting map with embedded
landmarks is shown at Fig. 3 (right). Validating the fidelity of this reconstruction is
difficult due to the lack of absolute ground truth. However, we measured the dis-
tance between 25 pairs of landmarks using a Bosch DLE50 laser distance measure
and compared these to the distances of corresponding synthesized landmark pairs.
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Fig. 3 Registered raw (left) and synthesized map data (right). The relative distance differ-
ences between synthesized landmark pairs and their real-world counterparts was about 7 cm.

The mean absolute difference between the sets was 7.2 cm. We also reviewed the
reliability of the landmark synthesis approach. All 71 pole features present in the
area surveyed were positively detected and synthesized into the map.

Using the original synthesized map and landmark positions, the wheelchair was
manually driven over a route network 960 meters in length at a fast walking speed
(1.6 m/s). This first loop constituted the landmark refinement stage discussed in
Section 4, and the wheelchair localized using an EKF SLAM approach with the
segmented landmark positions. Using SLAM, the wheelchair was able to accurately
maintain its pose over the entire 960 meter loop. We then repeated this same ex-
periment 3 separate times using map-based localization with the updated landmark
position and uncertainty estimates. All other parameters for data association and lo-
calization remained fixed. Representative results are at Fig. 4 (left). The landmark
positions are denoted by red circles. The wheelchair path as estimated by the map-
based localization approach is denoted by the blue line. The path as estimated by
the wheelchair’s own GPS is also shown for comparison purposes (green line). The
initial pose estimate of the GPS was also used to initialize the pose for map local-
ization. Using the SLAM-refined landmark positions, all 3 trials were successfully
completed. To characterize the localization accuracy, the wheelchair was driven over
6 ground-truth points (shown as “+”) whose positions relative to landmarks were
measured by hand. The average position errors was 20 cm, with 3 < 1σ , 5 < 2σ ,
and all 6 < 3σ based upon the covariance estimates for ΣW and Σl .

To motivate the need for the landmark refinement phase, we also ran these same
trials using map-based localization (not SLAM) with the original landmark posi-
tions. Each of these trials ended in failure. This typically occurred at a portion of

Fig. 4 Localization results using refined (left) and original landmark position estimates
(right). Improving the consistency of landmark positions dramatically improved localization
performance.
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Fig. 5 Map-based localization of the wheelchair (blue line) vs. GPS position estimates (green
line).

the course where the inter-landmark spacing required the wheelchair to rely upon
dead reckoning for over 20 meters of travel. Significant error and uncertainty in
wheelchair pose accumulated during this time, resulting in an incorrect feature as-
sociation. This is shown in Fig. 4 (right). However, the open-loop travel was not
the sole culprit. From a subsequent analysis, we determined that a fairly significant
GPS shift occurred during the data acquisition phase for building the map. As a re-
sult, a fraction of the map exhibited a shift >1 meter with respect to the maps initial
coordinate frame. This shift significantly contributed to the data association failure,
and the correct robot pose could not be recovered by the EKF. As the SLAM algo-
rithm updated the landmark positions on the fly, it was robust to this shift error. The
subsequent landmark refinement stage mitigates the impact of GPS jump.

Our final experiment involved a similar test in South Bethlehem, PA adjacent to
Lehigh’s campus. This was a representative urban environment, with a significantly
higher density of landmarks than seen during the Stabler testing. During this test,
the wheelchair was manually driven approximately 720 meters along the sidewalk at
a velocity of ≈ 1 m/s. Results from this trial using SLAM are shown at Fig. 5, where
the landmarks positions (red circles), the SLAM estimated path (blue line) and GPS
path (green line) are superimposed on a satellite image. While completing the loop
was prevented by ongoing building construction, the end position was consistent
with localization estimates. Again, results compared favorably to the wheelchair’s
WAAS-corrected GPS estimate. We have not been able to repeat this trial using
localization with the SLAM-enhanced map due to seasonal weather conditions, but
expect to in the near future.

6 Discussion

In this paper, we investigated the acquisition, synthesis and application of three-
dimensional maps by a smart wheelchair for map-based localization. Since the maps



22 C. Gao, M. Sands, and J.R. Spletzer

were registered to a global frame, they provide a means for absolute position estima-
tion in urban areas even in the absence of GPS. In our experiments, our wheelchair
system was able to maintain accurate pose estimates after traveling hundreds of me-
ters using such an approach. While we are satisfied with the results to date, we do
realize this is just a first step. Pole features were an obvious first choice for land-
marks, and we are now beginning to synthesize additional features into the map
(e.g., building corners). We are also interested in vision based signage detection, as
these can provide nearly-unique IDs for inferring global position. We also assume
the ability to automatically segment pedestrians from the environment. Our current
implementation fuses results from vision and LIDAR systems. The camera uses the
Haar-like feature based classifier for face detection from OpenCV [21], while the
LIDAR segments candidate clusters based upon geometry constraints. Individually,
both systems have high rates of false positives. However, this can be reduced dra-
matically by only accepting tracks when both sensors report a detection. A downside
is that significant false-negatives remain. We are continuing to refine this approach.
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sistent 3d mapping with scan matching. Journal of Robotics and Autonomous Systems
(JRAS) 56(2), 130–142 (2008)

13. Educating Silicon, Google Street View - Soon in 3D? (April 2008),
http://www.educatingsilicon.com/

14. Altermatt, M., Martinelli, A., Tomatis, N., Siegwart, R.: SLAM with Corner Features
Based on a Relative Map. In: IEEE/RSJ IROS (October 2004)

15. Kingston, T., Laflamme, C.: Automated road sign detection and recognition. Journal of
the International Municipal Signal Association, 46–49 (January/February 2007)

16. Ramos, F., Nieto, J., Durrant-Whyte, H.: Recognising and Modelling Landmarks to
Close Loops in Outdoor SLAM. In: IEEE ICRA (March 2007)

17. Nieto, J., Bailey, T., Nebot, E.: Recursive scan-matching SLAM. Robotics and Au-
tonomous Systems 55, 39–49 (2007)

18. Bohren, J., Derenick, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Satterfield, B.,
Spletzer, J., Stewart, A., Vernaza, P.: Little Ben: The Ben Franklin Racing Team’s Entry
in the 2007 DARPA Urban Challenge. Journal of Field Robotics (2008) (accepted for
publication)

19. Fischler, M., Bolles, R.: Random sample consensus: A paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM
(1981)

20. Thrun, S.: Robotic mapping: A survey. Tech. Rep. CMU-CS-02-111, Carnegie Mellon
University (2002)

21. Intel Corporation, OpenCV, http://sourceforge.net/projects/opencv/

http://www.educatingsilicon.com/
http://sourceforge.net/projects/opencv/


Tethered Detachable Hook for the Spiderman
Locomotion
(Design of the Hook and Its Launching Winch)

Nobukazu Asano, Hideichi Nakamoto, Tetsuo Hagiwara, and Shigeo Hirose

Abstract. This paper introduces a new concept of ”tethered detachable hook (TDH)”
and its launching winch. TDH system is the device which will be mounted on a mo-
bile robot and enhances its traversability over extremely hostile terrain by launching
detachable hook to nearby objects, producing large traction force by the tether and
detaching/recovering the hook to the launcher again. In this paper the authors first of
all introduce several prototype models of the TDH. We then discuss the design of lat-
est model which features pneumatic detaching mechanism, the pneumatic launcher
and the reel mechanism having three motion states; active rotation, free rotation and
braking. Finally, the result of several experiments of constructed TDH model will
be explained.

1 Introduction

Many types of mobile robots have been developed so far to move on off-the-road
terrains, such as modified wheel, track, legs, and snake-like configuration. Even
jumping can be considered as one of the means for high mobility [1]. However,
if long and steep slope or ditch much wider than the size of the robots is on the
way, terrain adaptability of these conventional methods is not enough. In this paper,
we propose a new type of locomotion method which assists the mobility of these
mobile robots. It consists of ”tethered detachable hook” and its launcher and winch
system, which assists the mobile robot as shown in Fig.1(a). Here the mobile robot
is going to climb the steep slope and the ”tethered detachable hook” is launched to
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the branch of a tree. When the hook is connected to the branch, the winch winds the
tether and produces large traction force to assist the robot to go over the steep slope.
After the motion is over, the hook is detached from the branch by changing the shape
of the hook to smooth and linear shape, rewinding the winch, and finally restoring
the hook in the launcher again to prepare for the next launching task. If the mobile
robot has more than two tethered detachable hooks and their launcher-winch system,
it can even lift itself from the ground and move from branch to branch as shown in
Fig.1(b). This is like the motion of long-armed ape in forest or the spiderman flying
from building to building.

Until now several tethered robots were already proposed, such as TITAN VII [2]
or DANTE II [3]. They are supported by tethers which are anchored beforehand
at the top of the slopes. Cliffbot [4] is supported by an anchor robot which stays
at the top of the cliff and connected by the tether. Casting manipulator [5] has the
tether with a gripper at the end and casted to catch an object. Although the objective
of this casting manipulator was for the manipulation of a remotely located object,
the concept can easily be extended to the supporting system for mobile robot. The
automated tether management system [6] is most closely related to our concept. It
used a tether with a gripper which can be remotely operated to lock or detach it
and help the flying motion of a space robot. But as it is designed for the activity in
micro-gravity environment, the system can not directly apply for the application of
field robotics which we are targeting in this paper.

This paper is organized as follows. Section 2 describes the design of former mod-
els of TDH. Section 3 presents design of the latest model of TDH and its launching
winch. Section 4 reports experimental results of the constructed TDH and its launch-
ing winch. Section 5 concludes the results and proposes future works.

2 Former Models of Tethered Detachable Hook

2.1 Model I

As the first model of the ”tethered detachable hook”, the authors developed the
Model I as shown in Fig.2(a). Although we call it as ”tethered detachable hook”, we
did not selected the hook but gripper. As shown in Fig.2(a) and (b), the gripper is
designed to grip an object when the tip end of the rod contact the object and hold

Cast Climb Detach
(a) Slope climbing by using TDH (b) Ditch crossing by using a pair of TDHs

Fig. 1 Concept of tethered locomotion by using tethered detachable hook(TDH)
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its gripping state by the ratchet mechanism. Ability to hold the object tight was the
main reason why we selected gripper configuration for this first model. Release of
the gripping motion is designed to be done by a mechanical memory system. The
mechanical memory system is already used in the ballpoint pen with different colors.
It consists of a cylindrical cam with zigzag grooves (Fig.2(c)) in which the pin fixed
to the external cylinder is inserted. When the tension of the tether connected to the
cylindrical cam changes and drives the cam to make reciprocating motion, the cam
is driven by the pin and starts to rotate in one direction. In the three zigzag grooves,
one of the grooves is made longer, so the ratchet release rod is inserted in the ratchet
trigger to release the ratchet and open the finger every three times of the pulling
motion of the tether.

For this Model I we also made simple launcher and made the experiment to cast
it to the branch. Once it is gripped the branch, it showed strong connection and
release motion was also very smooth. But the problem of this first model was its
difficulty of aiming at the target object (branch). The gripper should be aimed at the
object precisely in position and also in orientation; otherwise the gripper could not
hold the object successfully. This is the big problem if we hope to make automatic
launching system. Another problem of this first model was the shape of the gripper
in open state. It is not streamlined and there is always the danger to be stacked in
narrow gap.

2.2 Model II

To solve the difficulty of precise aiming of the target, we selected hook for the
following models. The Model II of the tethered detachable hook is shown in Fig.3.
As shown in Fig.3, the Model II also adopted the mechanical memory system, and it
could be released by pulling the tether for few times. Repeated traction of the tether
rotate the cylindrical cam and it drives the lock lever, and release the stopper to open
the claws.

Fig. 2 Mechanism of the TDH model I
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The Model II has four claws attached radially at the end of the hook so that the
hook can be anchored to the target object much easier than the gripper. It can be
hooked the target object only by throwing it over the target. The Model II was much
easier to connect to the target objects than former model, however it still remained
several problems. One of them is its weight. As there are four claws, it is heavy and
powerful launcher is needed. The second problem is the shape of the hook in release
state. Although the shape is more streamlined than that of Model I, the shape is still
in wedge like and there remained the possibility to be stack in narrow gap while it is
recovering to the launcher. The third problem is the possibility of mal-operation of
the mechanical memory system, for the tether will always be affected by accidental
pulling and releasing motion and it may be released by chance.

2.3 Model III

To solve the problems mentioned above, we developed Model III. The model III has
three important modifications as follows;

1. reduce the number of claws from four to one
2. change the shape of the hook as a simple rod in the release state
3. introduce active detaching mechanism

Modification 1 is done to reduce the weight of the hook. We selected four claws
configuration for the Model II to secure reliable anchor action in any posture of
the hook. However, we found that even one claw hook can exhibit similar action
only by adding enough length and weight to the claw. Effect of this configuration
is observed in the experiment of Fig.10. In this experiment, when the hook pulled
slowly over a branch (in this case a pipe), the hook will rotate around its stem and
let the claw lower on the branch as the claw is heavy, and thus the claw grips the
branch.

Modification 2 is done to minimize the stack action while the hook is in retract-
ing state. As shown in Fig.4, the hook is designed to change from L-shaped state
to linear-shaped state. Difficulty of realizing this shape was in the joint design of
the claw. As large torque is applied at the joint to support large traction force of
the tether, the joint mechanism has to produce large torque and the joint tends to
be bulky and heavy. To solve this problem, we introduced tether supported joint

StopperClawTether Cylindrical
cam

Lock leverIntermittent
swash plate cam

Pin Set ring

Detach

Reset

Fig. 3 Mechanism of the TDH model II
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mechanism. In this mechanism, the end of the tether is connected to the claw and
joint torque is directly supported by the traction of tether as shown in Fig.4. The
tether is designed to go out of the joint to produce large torque in this hooked state.
In the linear-shaped state, to the contrary, the tether retracts inside the joint and the
joint is made slender.

Modification 3 is done to eliminate the expected malfunction of the release mo-
tion depending upon the accidental pulling action of the tether. The mechanical
memory system was ideal because normal rope can be used as the tether and lock-
and-release mechanism of the hook in Model II, or gripper in Model I could be
made comparatively simple. To make comparative system with high reliability, we
considered electric and pneumatic types of trigger driving mechanisms.

Design of the electric detachable mechanism is shown in Fig.5. A stopper is
connected to the tether and the stopper is locked by a trigger that is fixed by the
rod (Phase 1). In this state, the hook holds L shaped configuration and act as an
anchor. Release motion of the hook is done by rotating the screw by the small motor
and slides the rod fixing the rotation of the trigger. This motion frees the stopper
and the tether automatically slides to open the claw in a release state by the spring
attached around the joint (Phase 2). Required electric current is very small and it
can be supplied by small diameter electric wire inside the tether. As the tether has
to support large traction force, we used a Kevlar® fiber-reinforced wire together
with the fine electric wires. The authors have already used it as the ”Hyper Tether”
system [7] and Anchor climber [8].

A pneumatic detachable mechanism is shown in Fig.6. The tether consists of air
tube and wire, and the end of the tube is connected to a small air bag which is located
inside a stopper. The stopper can slide inside a pipe fixed to the hook and the stopper

Stopper Trigger Wire
Detach

Reset

Fig. 4 Basic structure of the TDH model III

1 2
Trigger Rod Screw Motor

Stopper Wire

Nut

Fig. 5 Electric detach type of the TDH model III
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Table 1 Specifications of the TDH model II & III

Type Mass Total length Length of claw

Model II 840 [g] 435 [mm] 85 [mm]
Model III (Electric) 395 [g] 325 [mm] 150 [mm]
Model III (Pneumatic) 390 [g] 345 [mm] 150 [mm]

is locked by the trigger as shown in Fig.6 (Phase 1). The wire inside the air tube is
connected to the stopper and the end of the wire is connected to the claw. Detaching
motion of the hook can be done by supplying pressurized air in the air tube and
expand the airbag. Expanded airbag pushes out the projection point of the bag and
drive the trigger out of the hole and release the stopper (Phase 2). It enables the
stopper and the wire connected to slide freely and open the claw. Although the gap
between air tube and wire (polyethilene line) is small, we found that the pressurized
air could easily be transmitted along the air tube longer than 10[m] with ease.

We successfully made both types of detachable mechanisms and verified their
motions. Specifications of these types are shown in Table 1 with those of Model II.
Between these types, we selected the pneumatic type, because tether of the pneu-
matic type can be lighter and driving mechanism of the hook can be lighter and
rugged enough to be protected against the shock.

3 Design of Launching Winch for the Tethered Detachable
Hook

A casting device developed for TDH Model III is shown in Fig.7. It consists of a
launcher for the hook and a winch to wind the tether.

First we describe a launcher. Among the spring type and pneumatic cylinder
type, we found that the pneumatic one is better because it can generate powerful
and high speed launching motion with lightweight mechanism. We already adopted
pneumatic hook detachable system and selection of the pneumatic system for the
launcher will have other effect to make the total system simple. One of the most

Air

1 2

Airbag

Trigger

WireAir tube

Stopper

Fiber

Spring

Fig. 6 Pneumatic detach type of the TDH model III
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important parts of the launching system is in its trigger mechanism, and designed
mechanism is shown in Fig.8. At first, a piston is locked by a ball type trigger, and
is pressed by high-pressured air from ”Port A” as shown in Fig.8(a). At this time,
high-pressured air from ”Port B”, that is for the control rod, is also supplied. Launch
motion can be done by decompress the air for ”Port B” and drive the control rod out
of the balls and let the air pressure from ”Port A” drives the piston go right direc-
tion and launch the hook(Fig.8(b)). Compared with the trigger mechanism using
normal valve, introduced mechanism can makes the trigger motion smoothly and as
the pressurized air gives pressure to the hook from the beginning, it can increase the
initial speed of the hook and enable it to cast in longer distance.

Next we explain a winch for the TDH. It is designed to have three modes; drive
mode, free mode and brake mode.

The ”drive mode” is used when it is used as winch, and large traction force should
be generated to support a robot. The ”free mode” is used when the hook is going
to be launched. As the spool have to rotate in high speed, the actuator to produce
large traction force in drive mode should be mechanically disconnected. The ”brake
mode” is needed for two reasons, one of them is to support the suspended robot
without energy loss and the other is to adjust the rotational speed of the winch
when it is in ”free mode” and launching the hook. As the hook is launched by
pneumatic pressure, winch in free mode tends to keep rotating while the hook is
flying. However the speed of the hook decelerates while flying and the tether tends
to excessively goes out of the reel and entangle around the reel. This phenomenon

Fig. 7 Overview of a
launching winch with pneu-
matic TDH model III Launcher

Reel Casting hook

(b) Launch

Port B :
OFF

Port A : ON

(a) Standby

Port A : ON

Port B :
ON

Balls Piston Piston rodControl rodSpring Trigger housing

Air holes

Fig. 8 Pneumatic trigger mechanism of the launcher
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Fig. 9 Mechanism of the winch

is called as ”backrush” among anglers for their fishing reel motion. To prevent the
backrush we need proper braking of the winch in the free mode.

To switch these 3 modes, we adopted a multi-plate clutch mechanism which is in-
stalled inside the spool as shown in Fig.9. Multiple input and output clutch plates are
piled up to increase the braking torque. Maximum torque of this clutch mechanism
Tc can be estimated as follows;

Tc = NpμFpre (1)

where, Np is the number of friction surfaces between clutch plates, μ is the coeffi-
cient of static friction, Fp is a pushing force for clutch plates generated by the motor
thrusting force and re is an effective radius of friction surfaces.

As the winch rotate infinitely and pressurize air have to be supplied to the air tube
to connect the hook, a rotary pneumatic joint is introduced. Air is supplied from a
joint in right section of the figure, and it pass through holes on a hollow shaft. Two
movable O-rings are installed to prevent the leak of the air.

4 Experiment

The authors confirmed motion performance of tethered detachable hook of Model
III. Basic motion to hook the object was examined as shown in Fig.10. As is dis-
cussed before, the claw was automatically lowered and gripped the branch when the
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hook was pulled and located above the object. From this experiment, we confirmed
the validity of introducing the one claw configuration for the TDH.

Next, the authors made a simple experiment of casting the Model III TDH to the
real branch of the tree as shown in Fig.11. From this experiment, the anchoring func-
tion of the hook and its detaching motion was successfully demonstrated. Besides,
smooth collection was achieved because of its straight shape after the detaching
motion.

With the casting device mentioned above, the authors also made the experiments
to verify the effectiveness of the prevention of ”backrush” by the braking. Fig.12(a)
shows the comparison of the tether on the after launching the hook. Left is the result
without braking and right is the result with proper braking. From the comparison
of these results, we know the importance of the braking of the winch in free mode.
Fig.12(b) shows measurement results of outer circumferential velocity of the winch.
They were measured by an encoder connected to the winch. From this figure too, we
can know that proper braking enable to increase the launching speed. In Fig.12(b)
we can observe the speed change of the reel at the time near the 1.2[sec]. It is caused
by the falls of the hook on the ground.

Fig. 10 Sequential motion
to show the self adjustment
of the claw direction to the
target branch 1 2 3

Fig. 11 Real launching
experiment of the TDH
model III to the branch of a
tree 1. Cast

3.5[m]

2.
5[

m
] Object

to anchor

3. Detach

2. Anchor

Fig. 12 Comparison experiment with and without braking control
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5 Conclusions and Future Works

This paper introduces a new concept of ”tethered detachable hook (TDH)” and its
launching winch for use as the locomotion assisting device for mobile robots. This
paper firstly discusses about several prototype models of the TDH and elaborate
latest model, such as pneumatic lock and release mechanism of the hook, pneu-
matic launcher and the reel mechanism which exhibits three motion states; active
rotation, free rotation, and braking of the rotation. Performance of developed TDH
and its launching winch are successfully demonstrated by the constructed mechan-
ical model. Study of the proposing gtethered detachable hook (TDH)h is still at the
starting point, and there remained many interesting research subjects to be studied
on the hook, launcher, and winch mechanisms and their control. We are hoping to
study further on these points and realize the mobile robots having TDH and move
around mountainous area or disaster site by successively casting the tethers around
the environment just like Spiderman does among buildings in near future.
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New Measurement Concept for Forest Harvester
Head

Mikko Miettinen, Jakke Kulovesi, Jouko Kalmari, and Arto Visala

Abstract. A new measurement concept for cut-to-length forest harvesters is pre-
sented in this paper. The cut-to-length method means that the trees are felled, de-
limbed and cut-to-length by the single-grip harvester before logs are transported
to the roadside. The concept includes measurements done to standing trees before
felling to calculate optimal length of logs. The modern forest harvesters use me-
chanical measurements for diameter and length.

In this paper, we will discuss different non-contact methods of measuring a tree
stem before felling and during the cut-to-length process. Standing tree stems are
measured with a 3D scanner and a computer vision systems. Trunk processing is
measured with a computer vision system. Based on these new measurements, tree
cutting pattern could be optimized and harvester automation increased, resulting in
higher resource utilization.

1 Introduction

A long-term vision of the work presented here is that forest harvesters could be
automatized to improve the overall efficiency and quality using advanced measure-
ment technology. The Metrix project is a broad scale effort to realize this vision.
The project studies new measurement technologies for forest harvester heads. The
research goals are to measure and estimate the tree trunk dimensions and other qual-
ity variables with non-contact methods. The estimation is done in real time so that
the optimal cutting pattern can be calculated and more detailed trunk information
can be sent to processing mills. This research focuses on applying signal process-
ing methods to machine vision, laser measurement and other optical measurement
technologies in demanding forest environment.
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A new measurement concept for cut-to-length forest harvesters is presented in
this paper. 3D scanner and machine vision based measurements are combined for
measuring standing tree stems before felling. To help machine vision on the ap-
proach stage, structured light is also studied as a part of the project [6]. Felled tree
trunks are fed through the head and cut to logs at desired lengths. Diameter and
length of the processed logs are measured using machine vision system.

The research is a continuation to the work done in the Forestrix project [5, 8, 9].
The Forestrix project studied forest and tree trunk measurement technologies, signal
processing methods and algorithms for semiautomatic control of forest harvesters.
The main focus was to produce and update an accurate 2D tree map in real time,
with diameter at breast height (DBH) information. In forest thinning operations, the
tree map can support the harvester operator to select the right trees and to achieve
optimal stand density. Semiautomatic harvester operation with tree map information
was tested on a simulator. The collected data improves the verifiability of forest
operations and the data can be used for planning future forest tasks.

This paper consists of the following sections: First, modern harvesters, tree pa-
rameters and measurement platforms are discussed. Second, the results including
tree stem laser measurement, motion vision based structure estimation of the stand-
ing tree stem and machine vision based trunk measurement system for tree process-
ing are presented. Finally, some conclusions about the applicability of the tested
measurement concept are given.

1.1 Modern Forest Harvesters

Modern forest harvesters are already very efficient machines. Harvester heads have
several functions including the felling, delimbing, diameter and length measuring,
cutting to length, color marking and stump treatment. John Deere 745 harvester
heads (Fig. 5 and 1) have been used in real forest tests during this project. Measure-
ment and data gathering are very important in modern tree harvesting. The forest
owner and the harvester contractors are paid according to the harvester measure-
ments. Forest companies use harvester information to plan the subsequent forest
operations.

In modern forest harvesters, the diameter sensors are connected to the feeding
roller arms or the delimbing knifes. The sensors are usually potentiometers. Di-
ameter measurement depends on how wide the feeding arms open. The length of
the tree is measured usually with a 2 channel incremental encoder. During process-
ing, the tree trunk is pressed firmly against a measurement roller disc. see Fig. 1).
Weather conditions influence the measurement accuracy, e.g., measurement roller
spikes penetrate deeper into unfrozen wood than into frozen wood. Calibration is
done regularly to guarantee the measurement quality.

1.2 Tree Parameters

Measurements of standing tree stems should include parameters like height of crown
base, taper, sweep and lean. Calculating these parameters with ground-based laser
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Fig. 1 Timberjack 1070 harvester with John Deere 745 head on test site on the left and
standing tree measurement sensors attached to a 745 head on the right.

scanners for forest inventories have been studied [4, 10, 12]. But the possibility of
measuring tree parameters with a moving forest harvester before felling is a novel
one. Presently, the measurements performed in moder harvester heads are obtained
too late for true cut-to-length pattern optimization. Thus, having measurements of
the tree stem before felling gives valuable information that is not obtainable with
traditional measuring implementations.

1.3 Measurement System

The measurement system consists of different sensors used for measuring standing
tree stems and cut-to-length parameters. The system has been used on different plat-
forms to collect measurement data. Different variations of the measurement systems
have been developed during the project. This section describes the latest system.

The measurement system used in all terrain vehicle (ATV) and harvester head
tests shown in Fig. 2 and in 1. The front box on ATV in Fig. 2 acts as a stand for
the sensors while the box in the back contains a 24 volt battery for system power.
The scanners and the measurement PC operate directly from the battery. The sys-
tem sensors in Fig. 2 consist of 2D and 3D laser range finders, GPS receiver and
MEMS inertial measurement unit (IMU). IMU is used to provide pose information
of the platform and is essential for combining various measurements together. ATV
measurements have been done with different development versions of the forest 3D
scanner system. A stereo camera pair (Fig. 1 and 2) is used to measure standing tree
structure using visual motion [7] and to tree trunk cut-to-length processing (5).

Forest harvester tests are done with the same measurement system as the ATV
tests. Harvester head sensor arrangement for standing tree measurement is shown
in Fig. 1. Harvester head cut-to-length processing measurement system is shown
in Fig. 5. Processing measurements are done with a stereo camera pair. Measure-
ment system sensors are mounted on a specially designed mounting attached to
John Deere 745 harvester head. See Fig. 5 and 1.
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Fig. 2 ATV platform with 3D scanner measurement equipment on the left and stereo camera
pair on the right.

2 Standing Tree Stem Laser Measurement

Robust robot navigation in unstructured and outdoor environments is an unsolved
problem. The absence of simple features leads to the need for more complex per-
ception and modeling. This leads to a big variety of navigation algorithms and map
representations, depending on the kind of environment, the degree of structuring
and the target application. Many different outdoor Simultaneous Localization and
Mapping (SLAM) algorithms have been studied in recent years [2, 13] and [1].

In this case, a scan correlation based method is used for short term sensor-based
dead reckoning. There are numerous different scan correlation methods available to
be used to sensor-based dead reckoning. The Iterative Closest Point (ICP) and Sum
of Gaussian (SoG) methods are among the most popular. Different scan correlation
methods are presented e.g. by Bailey [1].

Scan correlation is not enough to combine rotating 3D scanner measurements into
meaningful tree measurement data. A SLAM based approach to harvester head lo-
calization is used to calculate head movement and combine measurements together.
The method combines 2D laser localization with IMU measured pose information
and height from the 3D scanner system to calculate 6 degrees of freedom (DOF)
movement of the head and measurement data of the tree stem. The research with
laser scanners, scan correlation and SLAM presented here is continuation to the
work done in the Forestrix project [5, 8, 9]. Different filtering methods have been
tested to provide the best possible 6DOF movement but the work is still in progress.

Tree stem 3D scanner measurement is studied to get parameters like height of
crown base, taper, sweep, trunk dimensions, branches and lean. 3D point data mea-
surement count depends on for how long the 6DOF movement estimation is accu-
rate. If the movement can be accurately estimated for the whole movement to the
tree, the point cloud collected is more precise and parameter calculations are easier.
If the movement accuracy is low, the measurement error in the point cloud is too
great for precise parameter calculation. From the measurements taken in movement
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Fig. 3 Estimated 6DoF movement for one approach measurement in well defined pine forest
(ATV) (left). 3D laser scan from movement (center). Darker measurements when the laser is
close to the tree. Calculated tree parameters (right).

shown in Fig. 3 we can see that in this long approach (approximately 7 meter), ac-
curacy of the movement has not been the best possible to combine all measurement
points into one point cloud. The points measured from close do not match the points
measured from a greater distance. In this case, it is better to use shorter 3D mea-
surements and calculate parameter values from each short measurement together to
get better results. 6DOF movement calculated for the same approach is shown in
Fig. 3. The height estimate has the highest variance of the 6Dof because the rough
forest ground and under foliage provide a poor height estimate. The ground height
estimation from 3D scanner system is better if the ground is flat and smooth.

The ground level is searched from the measurement point cloud using RANSAC
algorithm [3]. The ground level detection helps us to find the location the tree stump.
The trunk diameters are calculated in different height segments of the trunk depend-
ing on the point count. The diameter is calculated using cylinder fitting ([4, 10] and
[12]) or simple circle fitting. Taper information is used to estimate the true stem and
extract the branches in the next trunk piece. Crown base height can be estimated
from the trunk diameter calculations. The extracted branches are used to determine
the height of the dry branches and the crown height. The sweep and lean can be
estimated from the tree stem diameter and center points. The branches are excluded
from the diameter calculations and are shown in different color in Fig. 3. The forest
3D scanning system with 90 degree field of view is designed for measuring only
tree stems up to crown height. Goal is to measure tree stem diameters with error
less than 1 cm. The research done so far, indicates that this can be achieved.
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3 Motion Vision Based Structure Estimation in Natural Forest
Environment

Motion vision can be used to determine world structure from a video sequence. A
general research problem in this context is to acquire relevant information through
relative motion of cameras and the environment. Using cameras to sensing the near
surroundings is beneficial due to mass production of camera components (low cost)
and wide availability (good support). In addition, cameras are generally applicable
to various environmental conditions assuming that related research problems are
solved. Forest is a good example of a challenging environment where e.g. occlusion,
varying light conditions and natural uncontrolled conditions provide difficulties for
computer vision tasks and algorithms.

The precise objective of this work was to measure trees from a distance using
a motion vision approach. In addition, the whole visible environment structure is
reconstructed. Monochrome digital video cameras were attached on an ATV and a
video sequence was recorded while the ATV approaches a tree. Data from a single
camera was used but a calibrated stereo camera system was present to gather richer
data for future use. Based on the measurements, tree cutting could be optimized and
harvester automation increased, resulting in higher resource utilization efficiency.
An example of a structure estimate for an instantaneous moment in forest is shown
in Fig. 4.

A broad range of motion vision methods were explored. Based on the findings,
the final solution consists of three sub-components: block matching, motion estima-
tion and triangulation. A consequent pair of images from a video sequence is used
as the source data. The block matching algorithm uses a hierarchical image pyramid
approach with three phases at each level of hierarchy. First, integer pixel precision
solution for a dense optical flow field is computed with a limited range full search.
Second, linear sub-pixel interpolation is used to fine-tune the integer precision re-
sults. Third, the dense optical flow field is filtered adaptively to reduce noise and to
compensate for occlusion errors. Estimating motion from the optical flow is done
by using a selected subset of points for which an optical flow fit error is minimized
using numerical optimization to solve for both the motion parameters and depth for
the selected points simultaneously. Finally, solving for the dense structure from the
motion and optical flow can be formulated as a linear triangulation problem and is
thus easy to calculate. Both block matching and triangulation can be computed in
parallel. Thus, parallel computation power of multiple processor cores or modern
graphics cards can be used in the future to meet the relative high computation cost
of the algorithms.

The results obtained show robustness with respect to environmental challenges
and the main objective of tree segmentation for measurement is achieved. In ad-
dition, overall depth map construction quality is sufficient for a more broad range
of potential applications. In summary, the results prove that motion vision methods
can be applied in uncontrolled forest environment conditions. More detailed expla-
nation on motion vision based structure estimation in natural forest environment can
be found in [7].
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Fig. 4 A structure estimate for an instantaneous moment in a forest. Color brightness indi-
cates the depth; the brighter, the further away.

4 Machine Vision Based Trunk Measurement System

The objective was to develop a system capable of measuring the length and thick-
ness of a processed trunk. Current solutions for measuring the length utilize a cog
wheel that follows the surface of the wood. Accuracy of present systems depends
on the qualities of the wood, e.g., how soft the bark is and how many branches there
are. The measurement error is usually around 1-2 cm. The thickness of the trunk is
measured mechanically with two arms.

Stereo camera pair was used to track both the pose of the harvester head and
the movement of the trunk. The system uses two black and white Foculus FO134S
cameras having a resolution of 640x480. In the test, the capture rate used was 60
frames per second. The cameras were fixed to the upper part of the harvester head.
Calibration of camera and stereo parameters was done in advance. As lighting we
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Fig. 5 Harvester head with stereo camera pairs and lights attached (above). Left and right
stereo images showing selected features, trunk estimate and the tracked chessboard pattern.

used originally halogen lamps and in later test LED lights synchronized with the
cameras. Stereo camera pair in harvester head is shown in Fig. 5.

The basic problem to be solved was that there are usually three different motions
in respect to the cameras that have to be distinguished; harvester heads motion,
trunk’s motions and background’s motion. All of these motions have to be presented
using both rotation and translation.

The basic algorithm begins by selecting some good Harris corners from the trunk.
Then the features were stereo matched and tracked in consecutive frames so that
3D motion for corresponding points could be calculated. To ease the selection and
matching of features, a cylindrical estimate of the trunk was used (Fig. 5). It was
found that the number of false matches between left and right images was reduced
when a priori estimate of the z-coordinates was used.

Lower part of the harvester head rotates around a single axis and for that reason
it is possible to reduce the six parameter pose estimation problem of the harvester
head to a one parameter estimation problem. The pose of the harvester head can be
determined by tracking selected features (e.g. [11]) or by estimating the pose of the
chessboard pattern fixed in the harvester head (Fig. 5.

Two different approaches were used to determine the length of the wood. The
first method tracks harvester head and trunk separately. A single point in the end of
the trunk is selected and its location is estimated from the translation and rotation of
the trunk. The length of the wood is then determined by the distance of the original
point and the estimated end point.
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The second approach is based on the assumption that the trunk’s rotation is nearly
identical to harvester head’s rotation. When the rotation and translation of the har-
vester head is estimated, it is possible to remove it from the trunk’s motion vectors.
When harvester head’s motion is compensated, the translational movement of the
trunk can be extracted and the length of the trunk determined.

Seven trees have been cut to length, estimated and compared to handmade mea-
surements. All the measured trunks were about three meters long. The absolute
differences between estimates and the real lengths with the first approach was in
five cases no more than 1 mm, with largest estimate error being 12 mm. The sec-
ond method gave slightly worse results, but still the error was in most cases 6 mm
or less.

The data measured has been relatively easy and the more challenging data has
not yet been fully analyzed. When the trunk moves faster and harvester head swings
more, estimation of motion becomes harder. Algorithms for estimating the 3D struc-
ture and thickness of the trunks are still under development.

5 Conclusions and Future Work

A new concept to cut-to-length forest harvester remote sensing system was pre-
sented in this paper. The concept includes new non-contact measurements done be-
fore felling and during cut-to-length processing. The research goals are to measure
and estimate the tree stem dimensions and other quality variables affecting the pro-
cessing of the trunk. This research focuses on applying signal processing methods
to machine vision, laser measurement and other optical measurement technologies
in demanding forest environment. Based on the research, tree cutting pattern could
be optimized and harvester automation increased, resulting in higher resource uti-
lization.

The standing tree stem laser measurement, the machine vision based trunk mea-
surement and the motion vision based structure estimation systems were presented.
The current measurement and estimation methods implemented show promise that
the measurement goals set for the project will be met in well defined forests. How-
ever, dense and cluttered forest environment is tough for precision measurements
and will need more research.

The work presented in this paper is a part of an ongoing research project. Har-
vester head tests are ongoing and algorithm development is unfinished. Precision
of the measured parameters is extremely important and research to better compare
forest machine, hand, laser and machine vision measured tree stem parameters is
underway.

Acknowledgements. The authors gratefully acknowledge the contribution of the Finnish
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Expliner – Toward a Practical Robot for  
Inspection of High-Voltage Lines 

Paulo Debenest, Michele Guarnieri, Kenskue Takita, Edwardo F. Fukushima,  
Shigeo Hirose, Kiyoshi Tamura, Akihiro Kimura, Hiroshi Kubokawa,  
Narumi Iwama, Fuminori Shiga, Yukio Morimura, and Youichi Ichioka * 

Abstract. Preventive maintenance of high-voltage transmission power lines is a 
dangerous task, but the obstacles mounted on the lines have so far prevented the 
automation of this task. Expliner aims to overcome such obstacles by controlling 
actively the position of its center of mass, thus changing its configuration as 
needed when moving on the power lines. This work presents the design of Ex-
pliner and results of field experiments performed with very high voltages to prove 
the effectiveness of the proposed concept. 

1   Introduction 

Urban centers and industries rely heavily on electric energy provided by an electric 
grid. This electric energy is needed for safety, transportation, sanitation and other 
essential functions. If there is any problem in the electric grid linking the energy 
generation plants and urban or industrial centers, the supply of energy may have to 
be stopped, affecting in a negative way the lives of millions of people [1]. In order 
to avoid such problems, the preventive maintenance of electric power lines is of vi-
tal importance. However, this is a very dangerous and time-demanding job, requir-
ing specialized people to walk on the lines, suspended several tens of meters above 
the ground in remote areas like mountains and deserts. In addition, usually the en-
ergy supply must be interrupted momentarily for such inspections. 
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There have been proposals to carry on the inspection of power lines in more ef-
ficient ways. One involves the use of helicopters to check visually the conditions 
of the cables [2]. However, even in the case of remotely controlled helicopters [3], 
it may be dangerous to fly close to power lines, and the visual inspection will pro-
vide images of only the upper side of the cables. Another approach is to have peo-
ple working directly on live lines with special gear to insulate them from the very 
high voltages [4]. This method requires good access to the cables from the ground, 
which may not be possible in mountains or other remote locations. In addition, it 
still depends on people moving on the cables, a risky operation. 

In the field of robotics, several researchers have proposed machines for remote 
inspection of power lines. However, the presence of obstacles on the cables (such 
as cable spacers and clamp suspenders connected to the towers) makes the auto-
mation of this task more difficult. Campos et al. have proposed a machine to in-
spect the warning spheres installed on the high-voltage lines [5], but the machine 
is not able to overcome any sort of obstacle. Sawada et al. have proposed a robot 
with several degrees of freedom in order to cross clamp suspenders [6], but this 
resulted in a bulky and heavy machine that is difficult to carry to the field. Tang 
and Zhu have proposed a different machine that moves on the ground line, above 
the high voltage lines and with fewer obstacles [7][8]. However, the inspection 
performed with this machine is similar to the one with a helicopter, since only the 
upper side of the high voltage cables can be inspected with a video camera. Mon-
tambault and Pouliot are developing a very practical machine for inspection of 
single high-voltage lines [9][10], including the defrosting of frozen wires. In Ja-
pan, where the current research is being conducted, the high-voltage lines are 
grouped in bundles of four cables, and this presents different challenges that have 
not been solved in a satisfactory way until now. 

2   Proposal of Automation 

Figure 1 shows Expliner, the machine proposed by the authors to perform remote 
inspection of high-voltage lines. Its mobility is based on pulleys, placed on the 
upper cables, driven by electric motors. The pulley units are connected to a single 
horizontal base. 

The horizontal base also has a vertical element, with a 2-DOF manipulator con-
nected to its lower end. On the tip of the manipulator there is a counter-weight, 
housing batteries and electronics. Therefore, by moving the manipulator, it is pos-
sible to change the position of the center of mass of the machine. Thus, it becomes 
possible to lift one of the two pulley units in order to overcome large obstacles, as 
presented for the first time in [11]. 

If Expliner would move only in a straight line, it would be necessary to have 
only 1 degree of freedom in the manipulator. However, there are times when the 
machine must perform rather complex motions, such as when crossing clamp sus-
penders, or when moving on an inclined loading pipe between the tower and the  
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Fig. 1 Concept of Expliner with main components. 

 

Fig. 2 Loading pipe between tower and cables (left) and clamp suspender (right).  

main cables, as displayed in Figure 2. For such cases, not only the 2 DOFs of the 
manipulator are needed, but also the rotation around the vertical axis of each mo-
tion unit. These motions have already been described in [11]. 

The next sections will focus on the mechanical design of Expliner, and will also 
describe the main differences between the current machine and the first prototype, 
presented in [11]. 
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3   Mechanical Design 

Friction 

In order to dimension the actuators, it was necessary to determine the friction be-
tween the rubber-coated pulleys and the power cables. In spite of the theoretical 
models taking into account the deformation of the rubber around the contact area, 
the lack of friction data made it necessary to determine the friction empirically, by 
applying loads on the pulleys, mounted on the cables, and measuring the force re-
quired to pull them at a constant speed. The experimental setup and the data are 
displayed in Figure 3, and show that the pulling force is linearly proportional to 
the load applied on the pulleys, yielding a coefficient of friction that was used for 
the selection of the actuators. 

Actuators 

All actuators were designed by the authors, so that the motors and transmissions 
be assembled in the most compact and effective way. In addition, the main com-
ponents of Expliner can be assembled by sliding joints, which were also incorpo-
rated in the design of the cases of the actuators. 

Each motion unit is equipped with a 200W brushless motor connected to a train 
of planetary gears with a total reduction ration of 60, maximum continuous torque 
of 40.4Nm and speed of 60.6rpm. With the pulleys of Expliner, this represents a 
linear speed of between 23m/min and 29m/min, depending on the size of the ca-
bles where the machine is moving. 

The vertical axis of each motion units is powered by a 200W brushless motor 
with Harmonic-Drive reduction embedded in its case, resulting in a maximum 
continuous torque of 558.4Nm and 3.6rpm. The same actuator is used to drive the 
first joint of the manipulator (the “shoulder”), while the second joint (the “elbow”) 
is driven by a 200W brushless motor with embedded Harmonic-Drive, and with a 
maximum continuous torque of 349Nm and speed of 5.7rpm. 

The dimensioning of the actuators of the manipulator took into account lifting 
the counter-weight when the manipulator is in a vertical configuration, something 
that does not happen in real applications, but which may happen during tests. 

 

 

Fig. 3 Friction experimental setup (left) and results from experiments (right).  
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Fig. 4 Sliding joint for easy assembly. 

Structure 

The structure of Expliner is composed mainly of CFRP pipes, and they were de-
signed to withstand the extreme postures required when overcoming obstacles.  

In order to make Expliner easy to carry to the inspection sites, it was designed 
to be easily assembled with sliding joints and stopping pins, as shown in Figure 4. 
In places where the wiring might prevent an easy assembly, slide-in connectors 
were also employed. 

Safety Hooks 

Another improvement from the first prototype of Expliner was the introduction of 
the safety hooks, which keep the robot attached to the power lines even in case of 
sudden winds or accidents. The safety hooks must provide enough clearance to 
operate even with large loading pipes, but must be very close to the pulley in its 
engaged position to prevent the cable from sliding at the gap between hook and  
 

 

 

Fig. 5 Safety Hook disengaged (left) and engaged (right).  
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pulley. Therefore, the safety hooks were assembled with a cam mechanism that 
modifies the angle of the hook as it moves from the disengaged position (open) to 
the engaged position (closed), as shown in Figure 5. Each safety hook is driven by 
a worm-gear transmission, so it is self-locking. 

It is necessary to disengage the safety hooks when crossing obstacles such as 
cable spacers or clamp suspenders, but also when moving on the loading pipe. 
Care is taken to insure that at all times at least one safety hook is engaged, so that 
Expliner would not fall from the cables in case of malfunctions or accidents. 

The new version of Expliner is easier to assemble, easier to operate, and also 
lighter that the first prototype (60kg, against 85kg of the first version). 

4   Control Architecture 

The control architecture has been greatly improved since the first prototype pre-
sented in [11]. Each actuator has its motor drive (HiBot TITech Drive Version 1) 
positioned close to it, in a splash-proof assembly. Communication between the 
motor drives and the main micro-controller, positioned in the counter-weight, was 
implemented with CAN bus. 

By installing the motor drives close to the motors, wiring in the joints of the ro-
bot was greatly reduced and simplified. In addition, the entire machine is shielded 
for operation at very high voltages (500kV) and with high electric currents 
(1400A). 

The counter-weight houses not only the main micro-controller (HiBot 
SH2Tiny), but also the wireless communication devices, which connect to a port-
able control station by wireless LAN. The wireless communication diagram is pre-
sented in Figure 6. 

5   Human-Machine Interface 

Expliner is controlled from a portable control case shown in the lower right corner 
of Figure 6. From this control case it is possible to drive all joints independently, 
but this would result in cumbersome and time-demanding operations. Therefore, 
the obstacle-crossing motions were automated, but are always controlled by the 
operator, as described next. 

When crossing a clamp suspender (Figure 7), the operator controls the position 
of the center of mass by moving a joystick forward or backward, while the two 
joints of the manipulator are driven automatically, so that the center of mass is al-
ways positioned between the two upper cables. Once the front motion unit is lifted 
with enough clearance from the cables, the operator starts the next step in the mo-
tion, which consists of rotating the front motion unit and bringing the pulleys out 
from the cables, while at the same time the position of the center of mass is auto-
matically changed to accommodate for this change in posture. These motions are 
also achieved simply by moving a joystick forward or backward. Once this is 
completed, the operator moves the machine forward. When the front unit has 
passed the obstacle, it is brought back to its initial angle by a single joystick  
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Fig. 6 Wireless communication diagram  

 

 

Fig. 7 Sequence of motions for overcoming clamp suspender (first half of motion) 
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Fig. 8 Graphic Interface with data from each actuator and other sensors. 

 
motion. Finally, when the front motion unit is aligned to the cables, the center of 
mass is brought back to the center position, which brings the front pulley unit back 
onto the cables. This process is then repeated to lift the rear motion unit. 

All joints are driven in position control, with data from encoders. All motion 
patterns and limits are pre-defined, in order to make operation as fast and safe as 
possible. Therefore, the joints of Expliner will move until the defined angle, and 
will always go back to the initial postures with an accuracy of 0.1o. 

Similar automated patterns have been implemented for other motions, such as 
moving between the loading pipe and the cables, so that the center of mass is al-
ways kept in a safe position. This automated control is especially useful when Ex-
pliner is moving on the single loading pipe. However, even with this level of 
automation, the presence of a human operator is always required due to the com-
plexity of the environment. 

The operator is always receiving telemetry data from the robot, including the 
temperature of each motor, the current consumption, the voltage level, the angle of 
each joint, and the attitude of the machine, with its spatial configuration. The 
graphical interface presented in Figure 8 makes the control of the machine more 
intuitive and easy to understand. 

6   Field Experiments 

The latest prototype of Expliner has undergone intense field tests with very prom-
ising results. Speed tests performed on horizontal cables indicated an average 
speed of 27m/min, above the requirement of 20m/min. The required speed of 
20m/min was set based on limitations in the sensors used to inspect the cables, 
which will be presented in the near future.  
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Expliner was also tested with all cable spacers used in West Japan (Figure 9), 
where it is supposed to be deployed. Additionally, Expliner was tested on inclined 
cables, with a maximum angle of 30 degrees, and even in such conditions was able 
to perform the obstacle crossing motion, as displayed in Figure 9. 

Overcoming the clamp suspender and crossing to the other side of a tower was 
also verified in field experiments, as shown in Figure 10. The introduction of the 
automated control helped to reduce the time necessary to perform this motion, 
from around 12 minutes to approximately 3 minutes (with a trained operator). 

Finally, the motion on the single loading pipe and the transition motion be-
tween loading pipe and cable were confirmed in real field conditions, as shown in 
Figure 11. All tests were performed repeatedly on test cables and also on live 
wires with 500kV. In the latter case, footage obtained with a ultra-violet camera 
revealed the existence of a corona around the robot, but no malfunction was ob-
served, thus proving the effectiveness of the shielding. 

 

 

Fig. 9 Cable spacers (left) and Expliner crossing obstacle on inclined cable (right).  

 

 

Fig. 10 Expliner lifting the front motion unit (left) and rotating the motion unit after cross-
ing the clamp suspender (right). 
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Fig. 11 Expliner moving on loading pipe (left) and performing an automated motion.  

7   Conclusions 

With the development of Expliner, the automation of inspection of high voltage 
power lines became one step closer to reality. The field tests presented in this pa-
per showed that the concept of changing the position of the center of mass of the 
machine can be employed in dangerous and complex applications such as power 
lines suspended tens of meters above the ground. The developments in human-
machine interface and the automation of complex motions have made the control 
of the machine faster and more reliable. The deployment of sensors to acquire data 
from the power lines is a future step, but the authors are already working on it, and 
plan to present concrete results in the near future. 
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Experimental Study of an Optimal-Control-
Based Framework for Trajectory Planning, 
Threat Assessment, and Semi-Autonomous  
Control of Passenger Vehicles in Hazard  
Avoidance Scenarios 

Sterling J. Anderson, Steven C. Peters, Tom E. Pilutti, and Karl Iagnemma* 

Abstract. This paper describes the design of an optimal-control-based active 
safety framework that performs trajectory planning, threat assessment, and semi-
autonomous control of passenger vehicles in hazard avoidance scenarios. The ve-
hicle navigation problem is formulated as a constrained optimal control problem 
with constraints bounding a navigable region of the road surface. A model predic-
tive controller iteratively plans an optimal vehicle trajectory through the con-
strained corridor. Metrics from this “best-case” scenario establish the minimum 
threat posed to the vehicle given its current state. Based on this threat assessment, 
the level of controller intervention required to prevent departure from the naviga-
ble corridor is calculated and driver/controller inputs are scaled accordingly. This 
approach minimizes controller intervention while ensuring that the vehicle does 
not depart from a navigable corridor of travel. It also allows for multiple actuation 
modes, diverse trajectory-planning objectives, and varying levels of autonomy. 
Experimental results are presented here to demonstrate the framework’s semi-
autonomous performance in hazard avoidance scenarios. 

1   Introduction 

Recent traffic safety reports from the National Highway Traffic and Safety  
Administration show that in 2007 alone, over 41,000 people were killed and an-
other 2.5 million injured in motor vehicle accidents in the United States [1]. The 
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longstanding presence of passive safety systems in motor vehicles, combined with 
the ever-increasing influence of active systems, has contributed to a decline in 
these numbers from previous years. Still, the need for improved collision avoid-
ance technologies remains significant. 

Recent developments in onboard sensing, lane detection, obstacle recognition, 
and drive-by-wire capabilities have facilitated active safety systems that share 
steering and/or braking control with the driver [2,3]. Among existing proposals for 
semi-autonomous vehicle navigation, lane-keeping systems using audible warn-
ings [4], haptic alerts [5], steering torque overlays [6], and various combinations 
of these have been developed [7].  

Many of the navigation systems developed in previous work address only one 
piece of the active safety problem. While some use planning algorithms such as 
rapidly-exploring random trees [3], evolutionary programming [8] or potential 
fields analysis [9] to plan a safe vehicle path, others simply begin with this path 
presumed [10]. The threat posed by a particular path is seldom assessed by the 
controller itself and is often only estimated by a simple threat metric such as lat-
eral vehicle acceleration required to track the path [11]. Finally, hazard avoidance 
is commonly performed using one or more actuation methods without explicitly 
accounting for the effect of driver inputs on the vehicle trajectory. Such control-
lers selectively replace (rather than assist) the driver in performing the driving 
task. Yu addressed this problem in mobility aids for the elderly by designing an 
adaptive shared controller which allocates control authority between the human 
user and a controller in proportion to the user’s current and past performance [12]. 
While sufficient to control low-speed mobility aids, this reactive approach to 
semi-autonomy is not well suited for higher-speed applications with significant in-
ertia effects and no pre-planned trajectory. 

In this paper, a framework for passenger vehicle active safety is developed that 
performs vehicle trajectory planning, threat assessment, and hazard avoidance in a 
unified manner. This framework leverages the predictive and constraint-handling 
capabilities of Model Predictive Control (MPC) to plan trajectories through a pre-
selected corridor, assess the threat this path poses to the vehicle, and regulate 
driver and controller inputs to maintain that threat below a given threshold. The 
next section describes the semi-autonomous control framework and its associated 
trajectory prediction, control law, threat assessment, and intervention law. Ex-
perimental setup and results are then presented, and the paper closes with general 
conclusions and recommendations. 

2   Framework Description 

The navigation framework operates as follows.  First, an objective function is es-
tablished to capture desirable performance characteristics of a safe/“optimal” ve-
hicle path. Boundaries tracing the edges of the drivable road surface are assumed 
to have been derived from forward-looking sensor data and a higher-level corridor 
planner. These boundaries establish constraints on the vehicle’s projected position 
and are used together with a model of the vehicle dynamics to calculate an optimal 
sequence of inputs and the associated vehicle trajectory. The predicted trajectory  
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Fig. 1 Diagram of an active safety system. 

 
is assumed to be a “best-case” scenario that poses the minimum threat to the vehi-
cle given its current state. This threat is then used to calculate the intervention re-
quired to prevent departure from the navigable corridor and driver/controller  
inputs are scaled accordingly. Fig. 1 shows a block diagram of this system.  

In this paper it is assumed that road lane data is available and that road hazards 
have been detected, located, and mapped to form the boundaries of a 2-
dimensional corridor of travel. Radar, LIDAR, and vision-based lane-recognition 
systems [3,13], along with various sensor fusion approaches [14] have been pro-
posed to provide the lane, position, and environmental information needed by this 
framework. Additionally, where multiple corridor options exist, it is assumed that 
a high-level path planner has selected a single corridor through which the vehicle 
should travel. 

2.1   Vehicle Path Planning 

The best-case (or baseline) path through a given region of the state space is estab-
lished by a model predictive controller. Model Predictive Control is a finite-
horizon optimal control scheme that iteratively minimizes a performance objective 
defined for a forward-simulated plant model subject to performance and input 
constraints. At each time step, t, the current plant state is sampled and a cost-
minimizing control sequence spanning from time t to the end of a control horizon 
of n sampling intervals, t+n∆t, is computed subject to inequality constraints. The 
first element in this input sequence is implemented at the current time and the 
process is repeated at subsequent time steps. The basic MPC problem setup is de-
scribed in [15]. 

The vehicle model used in this paper considers the kinematics of a 4-wheeled 
vehicle, along with its lateral and yaw dynamics. Vehicle states include the posi-
tion of its center of gravity [x, y], its yaw angle ψ , yaw rate ψ , and sideslip angle 

β, as illustrated in Fig. 2. Table 1 defines and quantifies this model’s parameters. 
Tire compliance is included in the model by approximating lateral tire force 

(Fy) as the product of wheel cornering stiffness (C) and wheel sideslip (α or β for 
front or rear wheels respectively) as shown in (1). 

 αCFy =                                                       (1) 
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Fig. 2 Vehicle model used in MPC controller. 

 
Table 1 Vehicle model parameters. 

 
 
 

Linearized about a constant speed and assuming small slip angles, the equations of 
motion for this model are (where δ represents the steering angle input) 

 Vx =                                                          (2) 
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where Cf and Cr represent the cornering stiffness of the lumped front wheels and 
the lumped rear wheels, and xf and xr are the longitudinal distances from the c.g. of 
the front and rear wheels, respectively. 

Symbol Description Value [units] 

m Total vehicle mass 2050 [kg] 

Izz Yaw moment of inertia 3344 [kg·m2] 

xf C.g. distance to front wheels 1.43 [m] 

xr C.g. distance to rear wheels 1.47 [m] 

yw Track width 1.44 [m] 

Cf Front cornering stiffness 1433 [N/deg] 

Cr Rear cornering stiffness 1433 [N/deg] 

μ Surface friction coefficient 1 
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2.1.1   Constraint Setup and Objective Function Description 

As mentioned above, this framework assumes that the environment has been de-
lineated previously. The boundaries of the navigable road surface at each timestep 
are then described by the constraint vectors 

 ( ) ( ) ( )[ ]
( ) ( ) ( )[ ]Tyyy

Tyyy

pkykyk

pkykyk
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++=
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By enforcing vehicle position constraints at the boundaries of the navigable  
region of the road surface (i.e. the lane edges on an unobstructed road), the con-
troller forces the MPC-generated path to remain within the constraint-bounded 
corridor whenever dynamically feasible. Coupling this lateral position constraint 
with input constraints umin/max, input rate constraints Δumin/max, and vehicle  
dynamic considerations, the navigable operating corridor delineated by yy

max and 
yy

min translates to a safe operating region within the state space. 
The controller’s projected path through the constraint-imposed tube is shaped 

by the performance objectives established in the MPC cost function. While many 
options exist for characterizing desirable vehicle trajectories, here, the total side-
slip angle at the front wheels (α) was chosen as the trajectory characteristic to be 
minimized in the objective function. This choice was motivated by the strong in-
fluence front wheel sideslip has on the controllability of front-wheel-steered vehi-
cles since cornering friction begins to decrease above critical slip angles. In [16] it 
is shown that limiting tire slip angle to avoid this strongly nonlinear (and possibly 
unstable) region of the tire force curve can significantly enhance vehicle stability 
and performance. Further, the linearized tire compliance model described here 
does not account for this decrease, motivating the suppression of front wheel slip 
angles to reduce controller-plant model mismatch. 

The MPC objective function with weighting matrices R(·) then takes the form 
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where ε represents constraint violation and was included to soften select position 
constraints as maxmaxminmin

jjjjj VyyVy εε +≤≤− . 

2.2   Threat Assessment 

The vehicle path calculated by the MPC controller is assumed to be the best-case 
or safest path through the environment. As such, key metrics from this prediction 
are used to assess instantaneous threat posed to the vehicle. By setting constraint 
violation weights (ρε) significantly higher than the competing minimization weight 
(Rα) on front wheel sideslip, optimal solutions satisfy corridor constraints before 
minimizing front wheel sideslip. When constraints are not active, front wheel 
sideslip – and the corresponding controllability threat – is minimized. When the 
solution is constrained, predicted front wheel sideslip increases with the severity 
of the maneuver required to remain within the navigable corridor. 
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Various approaches are available to reduce the predicted front wheel sideslip 
vector α to a scalar threat metric Φ. In this paper, 

 ( ) ( )Tpkkkk +++=Φ ααα 21max                                   (8) 

was chosen for its good empirical performance when used to regulate controller 
intervention (described in the next section). 

2.3   Hazard Avoidance 

Given a best-case vehicle path through the environment and a corresponding 
threat, desired inputs from the driver and controller are blended and applied to the 
vehicle. This blending is performed based on the threat assessment: a low pre-
dicted threat causes more of the driver’s input and less of the controller’s input to 
be applied to the vehicle, while high threat allows controller input to dominate that 
of the driver. This “scaled intervention” may thereby allow for a smooth transition 
in control authority from driver to controller as threat increases. 

Denoting the current driver input by udr and the current controller input by 
uMPC, the blended input seen by the vehicle, uv , is defined as 

 ( ) ( )( ) drMPCv uKuKu Φ−+Φ= 1                                     (9) 

The intervention function K is used to translate predicted vehicle threat Ф (ob-
tained from the MPC trajectory plan) into a scalar blending gain. This function is 
bounded by 0 and 1 and may be linear, piecewise-linear, or nonlinear. Linear and 
piecewise-linear forms of this function may be described by   
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where Φeng and Φaut represent the threat level at which the controller engages and 
the level at which it is given full control authority and effectively acts as an 
autonomous controller. 

Using predicted threat (Ф) as calculated in (8) with an appropriate cost function 
formulation of the form (7) ensures that 1) the threat metric regulating controller 
intervention is minimized in the path plan (and associated control calculation) and 
2) the controller maintains full control authority when constraints are binding. In-
creasing Φeng widens the “low threat” band in which the driver’s inputs are unaf-
fected by the controller. Increasing the value of Φaut, on the other hand, delays 
complete controller intervention until more severe maneuvers are predicted. The 
friction-limited bounds on the linear region of the tire force curve (1) suggest a 
natural upper limit of Φaut≤ 5 degrees in order to ensure that by the time the pre-
dicted maneuver required to remain within the safe region of the state space 
reaches this level of severity, the controller has full control authority and can – 
unless unforeseen constraints dictate otherwise – guide the vehicle to safety. 
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3   Experimental Setup 

Experimental testing was performed at 14 m/s using a test vehicle and three hu-
man drivers. Driver and actuator steering inputs were coupled via an Active Front 
Steer (AFS) system. An inertial and GPS navigation system was used to measure 
vehicle position, sideslip, yaw angle, and yaw rate while a 1 GHz dSPACE proc-
essor ran controller code and interfaced with steering actuators. 

Three common scenarios were used to analyze system performance. In each 
scenario, obstacles, hazards, and driver targets were represented to the driver by 
cones and lane markings and to the controller by a constrained corridor (with on-
board sensing and constraint mapping assumed to have been performed previously 
by “virtual sensors” and high-level planners respectively). Only results from mul-
tiple-hazard-avoidance tests are shown below.  In these tests (illustrated in Fig. 3), 
both lanes of travel were blocked at different locations, forcing the vehicle to 
change lanes to avoid the first hazard, then change lanes again to avoid the second. 

 

Fig. 3 Multiple hazard avoidance test setup showing hazard cone placement (circles) and 
lane boundaries (dashed). 

 
 

Table 2 Controller parameters. 
 

Symbol Description Value [units] 

p Prediction horizon {35, 40} 

n Control horizon {18, 20} 

Ry

( )) Weight on front wheel slip 0.2657 

Ru Weight on steering input 0.01 

R u Weight on steering input rate (  per t) per t)t) 0.01 

umin/max Steering input constraints ± 10 [deg] 

umin/max steering input rate (per tt) constraints ± .75 [deg]  (15 deg/s) 

yy

min/max Lateral position constraints  Scenario-dependent 

 Weight on constraint violation 1 x 105 

[ eng aut] Thresholds for controller intervention {[0 3], [1 3]} deg 

V Variable constraint relaxation on vehicle position [1.25, ···, 1.25, 0.01] 
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Two types of human driver inputs were tested. Drowsy, inattentive, or other-
wise impaired drivers were represented by a constant driver steer input of zero de-
grees. In these tests, the unassisted driver’s path formed a straight line directly 
through the obstacle(s). To represent active driver steer inputs, the drivers were 
asked to steer either around or into obstacles. 

Controller parameters are described and quantified in Table 2.  

4   Experimental Results 

The semi-autonomous framework proved capable of keeping the vehicle within 
the navigable corridor for each of the maneuvers, using various system/controller 
configurations, and with three different human drivers. Results from multiple haz-
ard avoidance experiments are shown below. 

Fig. 4 compares a semi-autonomous multi-hazard-avoidance maneuver to an 
autonomous maneuver (K=1). 

 

 

Fig. 4 Multiple hazard avoidance tests showing the similarity between semi-autonomous 
(dash-dot) and autonomous (solid) vehicle trajectories. 

 
Notice that the semi-autonomous controller delayed intervention until the 

driver’s inputs put the vehicle at risk of leaving the navigable road surface. When 
the framework did intervene, it allocated enough control authority to the controller 
to avert corridor departure or loss of control. Also notice that even with average 
controller intervention Kave=0.44, the vehicle trajectory obtained using the semi-
autonomous controller very closely resembles the “best case” trajectory taken by 
the autonomous controller.  This results from the selective nature of the semi-
autonomous system – it intervenes only when necessary, then relinquishes control 
to the driver once threat to the vehicle has been reduced. 

Fig. 5 shows experiments in which the driver was instructed to swerve at the 
last minute to avoid hazards. 

Notice that intervention by the semi-autonomous controller slightly preceded an 
otherwise-late driver reaction. The combined effect of both inputs was then suffi-
cient to avoid both road hazards.  
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Fig. 5 Multiple hazard avoidance tests showing the vehicle trajectory with an unassisted 
driver input (dashed) and autonomous controller (solid), and semi-autonomous controller 
(dash-dot). 

 
Finally, in each of the above experimental results, this shared-adaptive control-

ler behaves as a stable closed-loop system. While this was also true of all of the 
other simulated and experimental results conducted to date, no rigorous stability 
proof is presented in this paper. 

5   Conclusions 

This paper presented an optimal-control-based framework that performs trajectory 
planning, threat assessment, and semi-autonomous control of passenger vehicles 
in hazard avoidance. This framework has been proven experimentally capable of 
satisfying position, input, and dynamic vehicle constraints using multiple threat 
metrics and intervention laws. Additionally, this framework has been shown to 
provide significant autonomy to a human driver, intervening only as necessary to 
keep the vehicle under control and within the navigable roadway corridor. Ex-
perimental results have also shown this control framework to be stable even in the 
presence of system-inherent time delays, though a rigorous stability proof is a 
topic of current investigation. 

Finally, while human factors have not been studied in depth here, it is expected 
that with additional investigation, a best-case, or average driver-preferred inter-
vention law may be described and intervention settings tuned accordingly. Further 
work is needed before this research is road-ready. 
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Receding Horizon Model-Predictive Control for
Mobile Robot Navigation of Intricate Paths

Thomas M. Howard, Colin J. Green, and Alonzo Kelly

Abstract. As mobile robots venture into more difficult environments, more complex
state-space paths are required to move safely and efficiently. The difference between
mission success and failure can be determined by a mobile robots capacity to effec-
tively navigate such paths in the presence of disturbances. This paper describes a
technique for mobile robot model predictive control that utilizes the structure of a
regional motion plan to effectively search the local continuum for an improved solu-
tion. The contribution, a receding horizon model-predictive control (RHMPC) tech-
nique, specifically addresses the problem of path following and obstacle avoidance
through geometric singularities and discontinuities such as cusps, turn-in-place, and
multi-point turn maneuvers in environments where terrain shape and vehicle mobil-
ity effects are non-negligible. The technique is formulated as an optimal controller
that utilizes a model-predictive trajectory generator to relax parameterized control
inputs initialized from a regional motion planner to navigate safely through the en-
vironment. Experimental results are presented for a six-wheeled skid-steered field
robot in natural terrain.

1 Introduction

Mobile robot navigation is the challenge of selecting intelligent actions from the
continuum of possible actions that make progress towards achieving some goal un-
der the constraints of limited perceptual information, computational resources, and
planning time of the system. It also often viewed as the problem of balancing path
following and obstacle avoidance in autonomous system architectures. Regional
motion planning is the problem of planning beyond the sensor horizon.

A state-space trajectory is typically defined as a vector valued function of mono-
tonic time (t). There are, however, circumstances where time is replaced by po-
tentially nonmonotonic functions of distance (s) or heading (ψ) to form a path. Path
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Fig. 1 An illustration of a vehicle attempting to to follow a reference trajectory with geomet-
ric singularities.

representations are used to achieve behaviors that allows velocity to remain unspeci-
fied. A cusp is a point in a trajectory where linear velocity changes sign. While cusps
are discontinuous in path curvature, they are not discontinuous in state space trajec-
tories and are perfectly feasible motions. Furthermore, the concept of forward on a
path is not well-defined for cusps (and likewise for point turns) whereas forwards in
time always has meaning. The capacity of a state space trajectory representation to
remove discontinuities and permit a forward horizon to be defined are the basis of
our preference for this representation.

A reference trajectory is the state-space trajectory (x(t)1) provided by a regional
motion planner (or other form of global guidance). The reference actions (u(x,t))
are the inputs which cause the vehicle to follow the path perfectly in the absence
of disturbances. In the presence of disturbances, the reference input signals that
correspond to a disturbance free trajectory must be augmented by corrective actions
to null the following error over some time horizon.

1.1 Motivation

As mobile robots navigate intricate motion plans composed of cusps, turn-in-place,
and multi-turn maneuvers, the geometric singularities and discontinuities of these
inflection points become problematic. Commonly applied techniques cannot gener-
ally reason about actions beyond these problematic points, which can endanger the
system or impede path following performance by limiting the navigation horizon.

Consider the situation illustrated in Figure 1. In this example, the mobile robot
deviates from the reference trajectory from disturbances including errors in model-
ing dynamics, terramechanical properties, and mobility.

The popular class of pursuit algorithms [1] will round path corners, avoid cusps,
and fail for turn-in-place maneuvers where the pursuit point becomes undefined.
In contexts where such intricate maneuvers were generated by a path planner in

1 The state (x) contains the vehicle position, orientation, velocity, or any other quantity of
interest



RHMPC for Mobile Robot Navigation of Intricate Paths 71

order to avoid obstacles, a pursuit planner is inadequate. Sampling-based obstacle
avoidance techniques [6] sometimes fail for intricate path navigation because of the
computational resources required to search the entire input or state space densely
enough to find an acceptable solution.

For effective intricate path navigation, a technique is needed which can exploit
the reference trajectory structure to search in the local continuum for actions which
minimize path deviation and avoid obstacles. This is the process of parametric re-
laxation, the technique of rendering a functional on a few parameters in order to
permit relaxation of a trajectory (for optimization purposes) by searching a small
number of degrees of freedom.

1.2 Related Work

There has been substantial research in the problem of developing effective, efficient
mobile robot navigators. Early path following controllers operate on the assumption
of tracking a single lookahead point and have been greatly extended in the literature
[4]. In [12], effective search spaces for navigation in roads and trails were produced
by generating nudges and swerves to the motion that reacquires the lane center.

An alternative approach involves sampling in the input space of the vehicle. In
[6], navigation search spaces were generated by sampling in the input space of cur-
vature. This approach also estimated the response of each action through a predictive
motion model subject to the initial state constraints to more accurately predict the
consequences of the actions. Egographs [8] represent a technique for generating ex-
pressive navigation search spaces offline by precomputing layered trajectories for a
discrete set of initial states. Precomputed arcs and point turns comprised the control
primitive sets used to autonomously guide planetary rovers for geologic exploration
[2] where convolution on a cost or goodness map determined the selected trajec-
tory. This approach was an extension of Morphin [11], an arc-planner variant where
terrain shape was considered in the trajectory selection process. Another closely
related algorithm is the one presented in [3], where an arc-based search space is
evaluated based on considering risk and interest.

Other techniques such as rapidly-exploring random trees [7] have been effec-
tively used to generate search spaces around the mobile robot to navigate cluttered,
difficult environments and generate sophisticated maneuvers including u-turns. [9]
presents a reactive path following controller for a unicycle type mobile robot built
with a Deformable Virtual Zone to navigate paths without the need for global path
replanning.

1.3 Discriminators

The main contribution of this work is the development of a receding horizon model-
predictive controller (RHMPC) that effectively navigates intricate paths in complex
environments. The algorithm leverages the capacity to generate the reference con-
trols for a given reference trajectory. This capability exists because the sequence of
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reference controls can be generated by a trajectory generator that understands the
association between actions and the corresponding state-space trajectory. Our par-
ticular preference is parameterized controls, but the key issue is that the controls are
known, however represented, which correspond exactly to the reference trajectory.
The corresponding reference trajectory inputs are already available in many regional
motion planner implementations, so this simply requires that this additional infor-
mation is passed to the navigator with the reference trajectory. Field experiments
results demonstrate that the proposed technique can effectively navigate intricate
paths composed of path singularities and discontinuities.

2 Technical Approach

This section describes the issues related to navigation of intricate paths generated by
regional motion planners, the methods by which parameterized controls are gener-
ated, and the trajectory optimization techniques used to generate corrective actions.
The trajectory follower is formulated as an optimal control problem:

minimize: J(x,u, t)
subject to: ẋ = fPMM(x,u, t)

x(tI) = xI

u(x) ∈ U(x), t ∈ [tI, tF ]

(1)

The problem is one of determining actions from a set of functions (U(x, t)) to
represent the control inputs (u(x, t)) which, when subject to the predictive motion
model (fPMM(x,u,t)), minimize a penalty function (J(x,u, t)). An additional re-
quirement for the trajectory follower is that the resulting control must be defined for
a specific period of time or distance. This allows the optimized path to be evaluated
for hazards to ensure vehicle safety.

2.1 Control Parameterization

One of the most difficult problems in motion planning involves reducing the contin-
uum of actions to a manageable space to search. The trajectory following technique
that we present uses a portion of the reference controls, which may be only piece-
wise continuous, as the initial guess. First, the reference trajectory is divided into
the primitives used by the motion planner as shown in Figure 2(a). For each action,
there exists a set of controls that, when applied to the system, produce a path seg-
ment of a certain shape. Parameterized freedom vectors (pi) control the shape of
each set of inputs (u(pi,x,t)) that define the reference trajectory.

The initial guess for the parameterized control inputs (uRHMPC(pRHMPC,x,t))
is defined by the sequence of trajectory segments between the nearest state and
the predefined fixed control horizon (Figure 2(b)). In this example, the free
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(a) Reference trajectory segmentation (b) Horizon-limited action extraction

u(p0,x,t)

u(p1,x,t) u(p2,x, t) u(p3,x,t)

closest point ��

reference trajectory

�

uRHMPC(p1,p2,p3 ,x,t)

�

Fig. 2 An illustration of the parameterized action initialization in the RHMPC technique.

parameters of the receding horizon model-predictive controller (pRHMPC) are de-
fined by a concatenation of free parameters in the control inputs:

pRHMPC =
[

p1 p2 p3
]T

(2)

2.2 Path Deviation Optimal Control

Once the control input parameterization is determined, the next step is to modify the
parameters to compensate for disturbances, approximations, and errors in the motion
model. This technique seeks to minimize a cost function (J(x,u,t)) by modifying a
set of control inputs:

J(x,u,t) =Φ(x(tI),tI ,x(tF),tF)+
∫ tF

tI
L (x(t),u(p,x), t)dt (3)

The initial corrective action is evaluated through the predictive motion model
subject to the initial state constraints to obtain a cost estimate as illustrated in Figure
3. While the gradient of the cost function with respect to the parameterized control
input freedom exceeds a threshold, the algorithm adjusts the control inputs to min-
imize the integrated penalty function (L (x,u, t)). The parameterized freedoms are
modified iteratively through any standard optimization technique, such as gradient
descent, as the cost function gradient is determined entirely numerically:

pRHMPCi = pRHMPCi−1 −α�J(x,u, t), i ≥ 1 (4)

2.3 Integrating Observed Cost Information

There are several situations when a mobile robot should intentionally deviate from
the reference trajectory. Navigating around recently observed static and dynamic
obstacles faster than the replanning rate of the regional motion planner is important
when perceptual information is frequently updated. Another reason for deviation
is the suboptimality of the reference trajectory itself. One solution is to stop and
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(a) Simulation of the initial action (b) Simulation of a corrective action
with optimized parameters

xI +
∫ tF
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fPMM(uRHMPC(p1,p2 ,p3 ,x,t))dt
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�
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�
�
�
��

xI +
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tI
fPMM(uRHMPC(ṕ1, ṕ2 , ṕ3,x,t))dt

�

Fig. 3 An illustration of the parameterized action correction in the RHMPC technique.

request a refined or alternative plan. A potentially better method is to include cost
information into the utility functional optimized by the receding horizon model-
predictive controller to determine the obstacle avoidance maneuver. The presented
technique is naturally suited to deform the current action for local obstacle avoid-
ance and path smoothing. The desired behaviors can be integrated by modifying the
cost function to include a weighted penalty for obstacle cost.

3 Implementation

The regional motion planer used to generate feasible reference trajectories for these
experiments runs A* on a graph composed of regularly arranged discrete nodes in a
state space, similar to [10]. The connectivity between nodes in the discretized graph
was provided by a motion template consisting of forward, reverse, and turn-in-place
trajectories with lengths varying between 3m and 9m. This particular implemen-
tation operated on a 60m x 60m vehicle-centered cost map. Reference trajectory
updates were provided by the regional motion planner at a rate of 2Hz.

The resulting reference trajectory is a series of sequential independent parame-
terized trajectories. Intricate paths composed of multiple cusps and/or turn-in-place
actions often result from the diversity of edges in motion planning graphs and the
complexity of the environment. The model-predictive trajectory generator [5] was
used in both the motion template generation and the path deviation optimal control.
Actions in the motion template were composed of constant linear velocities and ei-
ther second-order spline curvature functions parameterized by distance or constant
angular velocity functions parameterized by heading. Generic spline classes defined
by sequences of individual command profiles parameters were optimized by the re-
ceding horizon model-predictive controller. The corrective actions were generated
by the receding horizon model-predictive controller at a rate of 20Hz.
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4 Experiments

A set of experiments were designed as a comparison between a navigator that used
the presented trajectory follower and one that directly executed the regional motion
plan. Both systems used the same version of a lattice planner that searches dynam-
ically feasible actions which was specifically designed for the test platform. Each
field experiment was required to achieve a series of waypoints in an environment
with updating perceptual information generated by an on-board perception system
combined with limited overhead prior data.

The platform for the field experiments was Crusher (Figure 4(a)), a six-wheeled
skid steered outdoor mobile robot. The multi-kilometer experiments were conducted
at a test site in Pittsburgh, Pennsylvania with variable off-road terrain (Figure 4(b)).

(a) Crusher (b) The field experiment courses

course 1

course 3

course 2

Fig. 4 The mobile robot and test environment for the trajectory follower field experiments.

Integrated path cost was the main metric used to measure success for the field
experiments, which is related to the risk, mobility, and traversability for the vehicles
configuration in the environment. While inherently unitless and scaleless, it provides
the best metric for measuring performance because both the motion planner and the
trajectory follower optimize this quantity.

5 Results

This section presents the results of the three field experiments comparing the per-
formance of the presented trajectory follower to a system directly executing the
regional motion plan. Figure 5 shows several selected examples from the field ex-
periments where the receding horizon model-predictive control was used to navigate
intricate paths in varied, natural terrain. Two different situations are shown involving
geometric singularities and discontinuities including cusps and turn-in-place actions
where the generated RHMPC action is shown as a solid green line.

Figure 5(a) shows the receding horizon model-predictive control determined for
following of a trajectory with an initial turn-in-place action with path following dis-
turbance. The current vehicle state is off the reference trajectory and a corrective
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(a) Planning a control that reasons about a
turn-in-place action and compensates for a
path following disturbance

(b) Planning a control with a constant hori-
zon through a future turn-in-place action

Fig. 5 Selected examples of the RHMPC navigator used in the multi-kilometer field
experiments.
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(b) Course 2 waypoint path cost
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(d) Total path cost

Fig. 6 The waypoint and total path cost for a series of comparison runs on three courses

control is determined which adjusts the length of the angular velocity command and
bends the straight segment to reacquire the path in a feasible manner. The last ex-
ample shown in Figure 5(b) involves planning through a future turn-in-place action
between two nominally straight segments. This example shows the flexibility of the
technique, where the turn-in-place action does not necessarily need to start or end
at a specific point in the receding horizon model-predictive control.

Figure 6 shows the integrated cost of each systems between each waypoint. It is
useful to look at each waypoint-waypoint segment separately because each one can
be considered to be an independent trial. On average, the system using the trajectory
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follower slightly outperformed or achieved a similar level of performance of the
alternative system.

For portions of the course where disturbances relative to the predicted motion
are uncommon or the local cost gradient was small near the disturbances very little
improvement would be expected, with more improvement expected in cases where
small system disturbances can quickly lead to significantly different path cost. Fig-
ure 6(d) shows the total integrated cost for each of the three field experiments. It
is important to note that while the trajectory follower did not outperform the al-
ternative system between every waypoint, it did improve the overall performance
of the system by up to 7.2%. The variability in the results is expected because of
the chaotic nature of outdoor mobile robots were any number of small changes can
cause the robot to select a significantly different path.

6 Conclusions

The receding horizon model-predictive control algorithm enables mobile robots to
navigate intricate paths by utilizing the paths by relaxing parameterized controls that
correspond exactly to the path shape. This technique enables planning through in-
flection points and turn-in-place actions in paths to better reason about the recovery
trajectory. This method makes it possible to intelligently search the local contin-
uum for an action which minimizes path following error and/or avoids obstacles.
It also enables several other important behaviors including the capacity to define a
utility function in situations where pursuit planners fail and the ability to correctly
follow path discontinuities like cusps which are otherwise feasible motions. Several
multi-kilometer field experiments demonstrated that the inclusion of the presented
trajectory follower as a mobile robot navigator improves upon the metric that the
regional motion planner minimizes.
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Posterior Probability Estimation Techniques
Embedded in a Bayes Filter for Vibration-Based
Terrain Classification

Philippe Komma and Andreas Zell

Abstract. Vibration signals acquired during robot traversal provide enough infor-
mation to yield a reliable prediction of the current terrain type. In a recent approach,
we combined a history of terrain class estimates into a final prediction. We there-
fore adopted a Bayes filter taking the posterior probability of each prediction into
account. Posterior probability estimates, however, were derived from support vector
machines only, disregarding the capability of other classification techniques to pro-
vide these estimates. This paper considers other classifiers to be embedded into our
Bayes filter terrain prediction scheme, each featuring different characteristics. We
show that the best classification results are obtained using a combined k-nearest-
neighbor and support vector machine approach which has not been considered for
terrain classification so far. Furthermore, we demonstrate that other classification
techniques also benefit from the temporal filtering of terrain class predictions.

1 Introduction

In outdoor applications such as rescue missions or agricultural assignments the mo-
bile robot navigates over varying ground surfaces, each possessing different char-
acteristics. To ensure a safe traversal in outdoor environments the robot should
adapt its driving style according to the presence of ground surface hazards like slip-
pery or bumpy surfaces. These hazards are denoted as non-geometric hazards [18].
Therefore, most approaches employ a model-based prediction scheme which esti-
mates the current terrain type from sensor readings. In a model generation phase,
the model learns the correct assignment of a labeled terrain class given the respec-
tive observation. In the recall phase, that is, during terrain traversal over unknown
terrain, the robot then uses this model to predict the current ground surface. For
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acquiring input data, a variety of sensors such as vision [11, 1] or ladar sen-
sors [15, 10] can be employed. Recently, several researchers considered vehicle
vibrations for terrain classification as originally proposed in [8]. In this context,
vibration data acquired from accelerometers have been successfully applied to
planetary rovers [3], autonomous ground vehicles [7], and experimental unmanned
vehicles [6]. In [16] a comparison was drawn between different base classifiers
providing the model for vibration-based terrain classification. These techniques,
however, estimate the terrain type using single sensor measurements only, disre-
garding the temporal coherence between consecutive measurements. We addressed
this problem in [9]. There, we applied a Bayes filter to combine the posterior prob-
abilities of several recent terrain class predictions into a final prediction. In our
approach, posterior probability estimation was performed using a support vector
machine (SVM) since this classifier was reported to yield the best classification re-
sults in a single observation-based prediction scheme [16].

To motivate our current research we first note that the performance of a classifier
in the context of Bayes-filtered terrain classification does not depend on the classifi-
cation quality only but also on the quality of the prediction certainty: Since the final
classification is based on the posterior probability of single predictions, it benefits
from a model which performs confident correct predictions and uncertain erroneous
predictions. Classifiers which provide these characteristics result in a better predic-
tion performance when embedded into our Bayes filter approach. This is because
erroneous predictions obtain a lower weight in the filtering process and thus influ-
ence the final prediction less significantly. The quality of various classifiers relating
to the prediction certainty is unclear and is hence investigated in this paper. Sec-
ond, the SVM classifier is not an appropriate choice in all domains, especially for
online learning [17] where an enduring model generation phase is not applicable.
Thus, this paper focuses on the selection of an adequate classifier with regard to
its limiting factors such as training and model selection time, storage requirements,
and the run-time complexity of the recall phase. We further applied the SVM-KNN
classifier introduced in [21] which in our terrain classification task was significantly
superior to all other classifiers considered so far.

The remainder of this paper is organized as follows: Section 2 briefly describes
our terrain classification model, taking both one and several recent observations
into account. The posterior probability estimation techniques of the classifiers to
be embedded in our temporally-filtered classification approach are introduced in
Sect. 3. After summarizing our experimental setup in Sect. 4 we present and discuss
experimental results in Sect. 5. Finally, a conclusion is given in the last section.

2 Terrain Classification Model

This section summarizes our terrain classification technique based on both single
observations and temporal filtering of several recent terrain predictions. A detailed
description is presented in [9].
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The objective of our approach is to estimate the terrain type the robot is currently
traversing. Predictions are model-based, assigning a certain terrain class from a set
of classes to recorded observations. We represent the observations by acceleration
data sampled at a frequency of 100 Hz over a period of 1.28 s. The acceleration
data can be regarded as the vibration which the terrain induces to the body of the
robot. For feature extraction, we applied the Fast Fourier Transform (FFT) to the
raw input signal to determine its FFT amplitude spectrum in a second step. We then
normalized the data by scaling each component of the preprocessed vibration signal
to have a mean of 0 and a standard deviation of 1. The scaled amplitude spectrum
entries constitute the inputs for the terrain classification model.

In the recall phase, the robot predicts the current terrain type, using the terrain
classification model generated during training. Therefore, the same preprocessing
has to be applied to the acquired vibration data. Using the posterior probability esti-
mation techniques presented in the next section, the application of the final feature
vector to the classifier does not only provide a class prediction but also an approx-
imation of the posterior p(x = i|u). This probability distribution denotes the prob-
ability that a preprocessed vibration segment u belongs to terrain class i. Next, we
describe how p(x|u) can be embedded into a Bayes filter framework.

Using a Bayes filter [14], the state of a dynamic system at a time t is represented
by a random variable xt . In our context, xt ∈ [1;k] models the uncertainty with which
the robot navigates over one of the k terrain types. Given t +1 preprocessed vibration
segments u0:t = {u0,u1, . . . ,ut} recorded by accelerometer sensors, the estimated
target distribution is determined by p(xt |u0:t). In [9] we showed that p(xt |u0:t) can
be formally defined as:

p(xi = i|u0:t) = αt p(xt = i|ut)∑
j

p(xt = i|xt−1 = j)p(xt−1 = j|u0:t−1).

Here, p(xt |ut) substitutes the measurement probability p(ut |xt) and represents the
probability that the vibration measurement ut can be observed when navigating over
a certain terrain type xt . p(xt |ut) is derived from the Bayes inversion p(ut |xt) =
p(xt |ut)

p(ut)
p(xt)

assuming that p(xt) is distributed uniformly. Further note that p(ut) is
constant for all i and can thus be included in the normalizing constant αt .

The transition probability p(xt |xt−1) denotes the probability that the robot moves
from terrain type xt−1 = j to xt = i. Bayes filters model the dynamic system by a
first-order Markov process assuming that the information provided by the state xt

suffices to predict future states without considering earlier observations. Our ap-
proach is based on the heuristic that the terrain class most likely does not change
from one measurement to the next. Thus, we assign a relatively large value v to
p(xt = i|xt−1 = i). p(xt = i|xt−1 = j), with i �= j, is derived from the following two
heuristics: First, the probability p(xt = i|xt−1 = j) should increase with the proba-
bility to confuse class i with class j. Second, a transition from state xt−1 = j to state
xt = i should be based on the probability to predict the terrain class at time t cor-
rectly. Both probabilities can directly be estimated from the confusion matrix. For
further details, we refer to [9]. By dynamically changing v, the probability that the



82 P. Komma and A. Zell

system remains in its current state, we obtain an approach being both reactive and
stable enough to detect fast terrain transitions and selective misclassifications. In our
implementation, v is either increased or decreased by a constant factor depending
on whether the current prediction equals the system state at time t − 1. Upper and
lower bounds for v ensure that the probability of a state transition neither becomes
too large nor too small.

For the definition of the initial probability distribution p(x0), we make no as-
sumptions that the robot is placed on a specific terrain type at time t = 0. Hence,
p(x0) is assumed to be uniformly distributed.

3 Posterior Probability Estimation

In this section, we briefly describe all classifiers that have been embedded into our
Bayes filter classification approach. Therefore, we explain how posterior probabil-
ities p(x = i|u) can be predicted for each class i under consideration. Since each
classifier features different characteristics we conclude this section by indicating in
which situations the choice of a certain classifier is appropriate.

k-nearest neighbor classification (KNN) [5] determines the set of k-nearest-
neighbors contained in a training set to a testing instance u. Then, we calculate the
frequency of occurrence of each class in the neighbor set. The class with the largest
frequency becomes the predicted class for the testing instance u. The posterior prob-
ability p(x = i|u) is defined as the ratio between the number of occurrences of class
i in the neighbor set ni and the number of considered neighbors k, p(x = i|u) = ni

k .
The multilayer perceptron (MLP) [2] is an instance of an artificial neural network.

It consists of artificial neurons which are interconnected in a well-defined manner.
These neurons are arranged in three different layers: in an input layer, a hidden layer,
and an output layer. When applying an input u to the network input, the neurons of
the hidden layer perform a weighted sum of the input components: netl = 〈wl ,u〉.
Here, netl denotes the net activation of neuron hl and wl is the weight vector de-
termining the specific contribution of each input component to the final sum. We
then apply an activation function fact , typically chosen as fact = tanh(netl), to each
net activation to obtain the final output for the neurons of the hidden layer. The de-
termination of the net activation of the output neurons is equivalent to the ones of
the hidden layer except that we do not add weighted input coefficients but weighted
activations of the hidden neurons. For classification problems, the activation func-
tion of the output neurons is replaced by the softmax function which takes the form
fact = exp(netm)/∑m′ exp(netm′), where netm is the net activation for output neuron
m. Each output neuron represents a certain class to discriminate. The predicted class
is the one which is represented by the neuron with the maximum activation. It can be
shown [2] that the activations can directly be interpreted as posterior probabilities.

Probabilistic neural networks (PNN) [13] are another instance of artificial neural
networks. In the training phase, scaled training patterns are inserted into a matrix Wc,
c ∈ [1;k], according to the class c they belong to. Each row of Wc represents a single
pattern. The scaling is performed such that the L2 norm of each training instance
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equals to one. In the recall phase, the same scaling is applied to the test vector u.
For each class c, the inner product between each pattern wi of the weight matrix Wc

and the query u is determined yielding the net activation netc,i. The net activations
are non-linearly transformed using the activation function fact(netc,l) = exp((netl −
1)/σ2), where σ is a model parameter defining the size of the Gaussian window.
For each class, the sum over all transformed net activations is determined, sc =
∑l fact(netc,l), and the predicted class becomes the one which maximizes sc. Given
that the probability of each class is distributed uniformly, posterior probabilities
p(x = i|u) can then be defined as p(x = i|u) = (n−1

i si)/(∑ j n−1
j s j), where nc is the

number of training instances for class c.
Given two classes c1 and c2 to discriminate, a support vector machine (SVM) [4]

establishes a separating hyperplane such that each instance of the first class resides
in one subspace and each instance of the other class resides in the other subspace.
To increase generalization we maximize the margin which is the distance from the
hyperplane to the instances closest to it. In the non-separable case, that is, if no hy-
perplane exists which separates the two classes, instances of class c1 are allowed to
reside in the subspace representing class c2 and vice versa. However, a penalty term
is added for each non-separable training point. Problems exist, which are not linearly
separable in the original space spanned by the training data but which become lin-
early separable when mapping the inputs ui into a higher dimensional feature space,
z = φ(u). Using the ”kernel trick” the actual mapping does not have to be performed.
Instead, we exploit the fact that the inner product of basis functions φ(x)Tφ(y) is
replaced by a kernel function K(x,y). In our experiments, we used the radial basis
function kernel defined as K(x,y) = exp

(−‖x − y‖2/σ2
)
. Multi-class classification

using n classes is achieved by establishing n(n − 1)/2 binary classifiers in a one-
versus-one classification scheme. Adopting the technique of [12], a parameterized
sigmoid function is applied to the decision value of each binary classification which
results in posterior probabilities of both classes. Finally, we obtain the posterior for
each class i, p(x = i|u), using the pairwise coupling method of [19].

The SVM-KNN approach [21] combines the characteristics of both the KNN
and the SVM classifiers. It does not require a training phase. Instead, predictions
are performed by first pruning the training set. Therefore, the k-nearest-neighbors
to a given query u are identified. Then, a multi-class SVM is trained online using
the pairwise distances between all entries of the union of the query and the neighbor
set. Prior to the SVM model training, these distances have to be transformed into
a kernel matrix. In our approach, this is realized by applying the function f (di j) =
exp(−d2

i j/σ2) to the pairwise distances di j. As distance function we chose the L2

norm. The posterior probability p(x|u) is then obtained by applying the query u to
the trained SVM.

Classifier selection should be handled with care since each approach has differ-
ent characteristics. KNNs and PNNs belong to the class of lazy learning techniques.
That is, all computations are delayed until a prediction query is requested. On the
one hand, this renders a time-demanding training phase unnecessary which is ad-
vantageous if the underlying phenomenon changes frequently. On the other hand,
all patterns have to be available at run-time which might pose a problem if storage
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Table 1 The respective model parameter(s), the number of considered candidates during
model selection, model selection and training times, prediction complexity, and storage re-
quirements of the proposed classifiers.

KNN MLP PNN SVM SVM-KNN

model param. k = 6 hid. = 96 σ = 0.07 C = 9.05,σ = 0.02 k = 640, C = 9.05, σ = 0.02
model sel. cand. 31 8 64 196 (14×14) k: 30; C,σ : 196

model sel. time (h) 0:52:55 32:34:00 0:07:54 24:55:47 50:09:40
training time (h) - 1:08:43 0:00:01 0:00:54 -
testing time (ms) 13.21 0.02 0.54 1.07 464.9
storage req. (kB) 763.5 52.5 763.5 22.5 763.5

is limited. Given that the acquired training set consists of n samples, storage require-
ments are O(n · d), where d is dimensionality of a training instance. Furthermore,
if the calculating capacity is constrained in the recall phase, the desired prediction
frequency might not be accomplished due to a large set of training patterns. For
example, when using the KNN classifier, a naı̈ve approach involves O(n) distance
calculations to determine the k-nearest-neighbors. Although accelerating data struc-
tures like M-trees [20] exist, high-dimensional nearest-neighbor search is known to
be a non-trivial task suffering from the curse of dimensionality.

MLP and SVM classifiers typically provide compact models, resulting in a fast
prediction performance. Model training, however, is computationally much more
demanding since both methods iteratively try to minimize a given error function.
The time spent on choosing a classifier with a good generalization behavior is signif-
icantly increased by the model selection process which has to consider a sufficiently
large set of candidate model parameter settings.

The SVM-KNN approach is characterized by an involved model selection and
testing phase. Since a class prediction also requires the determination of the k-
nearest-neighbor set to a given query, the training set has to be present at run-time.
We note, however, that this approach still guarantees predictions performed in real-
time. Hence, we included SVM-KNN classification in our investigations.

Table 1 summarizes the key characteristics for the proposed classifiers: the re-
spective model parameter(s) which yielded the best generalization and model selec-
tion times along with the number of tested model candidates. For the respective best
classification model we further present the training time using data contained in one
fold of a 5-fold cross validation scheme, the average testing time for a single query,
and storage requirements (measured in kB). We performed all run-time analyses on
a Pentium D 3.0 GHz desktop PC. For the storage considerations, we represented
each floating point number as double, each 8 bytes in size.

4 Experimental Setup

In our experiments, an Xsens MTi altitude and heading reference system was
mounted on an aluminum plate on top of our RWI ATRV-Jr outdoor robot to measure
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Fig. 1 The employed terrain types: 1: indoor floor, 2: asphalt, 3: gravel, 4: grass, 5: boule
court.

vibration signals in left-right direction at 100 Hz. During data acquisition, the robot
navigated over five different terrains (Fig. 1): indoor PVC floor, asphalt, gravel,
grass, and clay (the surface of a boule court). To not constrain the model to work at
a certain driving speed, we varied the speed between 0.2, 0.4, and 0.6 m/s. In total,
the dataset consists of 7635 patterns, corresponding to approximately 1.5 hours of
robot navigation.

We performed individual terrain classifications using vibration data acquired dur-
ing 1.28 s of robot travel. For two consecutive segments we permit an overlap of 28
samples to achieve a prediction frequency of 1 Hz. The combination of terrain class
predictions was realized by our adaptive Bayes filter approach introduced in Sect. 2.
To quantify the performance of the latter, we applied the following evaluation pro-
cedure: We assembled consecutive vibration segments representing the same terrain
type to give a travel distance of constant length. Then, assembled segments of vary-
ing terrain types were grouped together yielding the final test set. In different ex-
periments, we varied the distance covered by a robot before it reaches a new terrain
class. This distance is denoted as the travel distance d (measured in meters) in the
following. In each experiment, d was chosen from the set d ∈ {0;4;8;12;16}. The
0 m experiment describes the worst case scenario for approaches based on tempo-
ral filtering. Here, single segments of varying terrain classes are concatenated, each
representing data acquired during 1 s of robot travel. Since the robot speed varies
between 0.2, 0.4, and 0.6 m/s, this experiment includes travel distances of 0.2, 0.4,
and 0.6 m. Note that according to the confusion matrix, certain terrain transitions
are easier to detect than other ones. Hence, the results depend on the order in which
assembled terrain segments of varying terrain type are presented. We minimized
this effect by randomly permuting this order and averaging the classification results
determined after 20 reruns of a particular experiment.

As quality measure we used the true positive rate (TPR). It is the ratio (measured
in per cent) of the number of correct predictions for which the predicted class xt

equals the actual class x̂t and the number of instances contained in the test set. We
derived the prediction performance using 5-fold cross validation and averaging the
true positive rate over all five folds.

5 Experimental Results

Table 2 shows the results for the proposed classifiers when using single observations
(SO) and Bayes-filtered posterior probabilities of recent predictions (AB). Note that
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the true positive rate for the single observation-based approach differs between vary-
ing experiments. This is due to the model evaluation procedure introduced in the
previous section which selects a varying test set for each travel distance.

Related to both the SO and the AB approach, the SVM-KNN technique yields
the best prediction performance, followed by SVM, MLP, KNN, and PNN classifi-
cation (Fig. 2(a)). The differences in the true positive rates of the applied classifiers
proved to be statistically significant, using a two-tailed t-test at a significance level of
1%. The combined support vector machine and k-nearest-neighbor approach bene-
fits from the reduced training set resulting in another configuration of the separating
hyperplane. This hyperplane results in a higher generalization as compared to the
one established by the SVM approach which uses all training patters at once. The
classification performance of each classifier is also reflected in the increase of the
true positive rate obtained when using the adaptive Bayes technique in comparison
with the single observation approach (Fig. 2(b)): the larger the true positive rate
for a given classifier, the larger the benefit of using temporally-filtered predictions.
This statement holds for all classifiers but the KNN approach: Here, the adaptive
Bayes technique results in the largest increase of the true positive rate. Investigations

Table 2 Prediction performance (in %) for varying classifiers and travel distances (dist.) us-
ing single observation-based (SO) and adaptive Bayes filter-based (AB) terrain classification.

dist. (m) 0 4 8 12 16
approach SO AB SO AB SO AB SO AB SO AB
SVM-KNN 89.1 89.1 89.8 93.3 89.8 94.8 91.8 96.7 91.8 97.0
SVM 88.5 88.4 89.3 92.4 89.3 94.2 91.0 95.8 90.9 96.1
MLP 86.7 86.7 87.4 90.6 87.4 91.0 89.0 92.4 88.9 92.1
KNN 80.6 79.7 81.2 83.6 81.1 85.0 82.9 88.5 82.7 88.4
PNN 79.2 79.1 80.2 82.4 80.1 82.7 83.7 86.1 82.8 85.3

(a) (b)

Fig. 2 (a) True positive rates for the adaptive Bayes approach and (b) the relative increase
of classification performance for the adaptive Bayes approach related to single observation-
based classification when varying the classifier and the travel distance.
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revealed that in the case of a misclassification the posterior probability of the erro-
neously predicted class pe was rather small on average, pe = 0.64±0.19, in compar-
ison with the ones obtained for a correctly predicted class, pc = 0.87±0.18. Hence,
the transition into another, that is, erroneous system state becomes less likely if the
system previously resided in the correct state, no terrain transition occurred, but the
classifier erroneously estimated the wrong terrain class. We obtained similar results
using SVM and SVM-KNN classifiers: Here, the posterior probability of erroneous
predictions was pe = 0.69±0.18 and pe = 0.66±0.18, respectively. PNN and MLP
classifiers perform wrong predictions with higher confidences: pe = 0.87±0.17 and
pe = 0.84±0.17, respectively. Referring to Fig. 2(b), this is another explanation for
the smaller increase in TPR compared to other classifiers which provide more uncer-
tain erroneous predictions. In addition, we observed that the posterior probabilities
of correct predictions were larger than 0.87 on average for all classifiers.

Fig. 2(b) shows the true positive rates when applying the Bayes filter technique
to the proposed classifiers. It reveals that all classifiers are not influenced by high-
frequent terrain changes in a significant manner when embedded into our Bayes
filter prediction scheme.

6 Conclusion

In this paper, we systematically investigated the applicability of several posterior
probability estimation techniques in the context of terrain classification based on
temporal coherence. We exploited temporal coherence using a Bayes filter approach
which takes several recent terrain class predictions into account. Depending on
the choice of the classifier and the distance, a robot has to navigate over a cer-
tain terrain type before a terrain transition occurs, the classification performance
increased by up to 6.9%. This number denotes the increase of classification perfor-
mance related to a classification approach based on individual observations only.
We showed that the Bayes filtering approach was nearly always superior to the
single-observation approach with the only exception of the KNN classifier at a travel
distance of less than or equal to 0.6 m. The significantly best experimental results
were obtained using a combined support vector machine and k-nearest neighbor
approach which has not been employed in the domain of terrain classification so
far. Further investigation revealed that the various classifiers did not only differ
in classification performance but also in the confidence of erroneous predictions.
In the context of Bayesian filtering this is an important issue since a decrease in
this confidence results in a decreased influence of wrong predictions on the final
classification.

As a further contribution we examined the proposed classifiers with respect to
their limiting factors such as storage requirements, prediction times, model genera-
tion times, and model selection times. The results provide criteria for choosing an
appropriate classifier for a variety of hardware configurations.
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Towards Visual Arctic Terrain Assessment

Stephen Williams and Ayanna M. Howard

Abstract. Many important scientific studies, particularly those involving climate
change, require weather measurements from the ice sheets in Greenland and Antarc-
tica. Due to the harsh and dangerous conditions of such environments, it would be
advantageous to deploy a group of autonomous, mobile weather sensors, rather than
accepting the expense and risk of human presence. For such a sensor network to
be viable, a method of navigating, and thus a method of terrain assessment, must be
developed that is tailored for arctic hazards. An extension to a previous arctic terrain
assessment method is presented, which is able to produce dense terrain slope esti-
mates from a single camera. To validate this methodology, a set of prototype arctic
rovers have been designed, constructed, and fielded on a glacier in Alaska.

1 Introduction

An important aspect of autonomous field robotic navigation is terrain assessment.
When an autonomous agent is deployed in unstructured, natural environments, the
exact condition of the environment cannot be known ahead of time. Instead, the
agent must assess the terrain condition locally, then revise its navigation plan as nec-
essary. Much of the literature in the area of terrain assessment focuses on desert en-
vironments, arising from the needs of NASA’s Mars rovers and the first two DARPA
Grand Challenge events [2, 4, 6].

In contrast, little work has focused on navigating in arctic environments, despite
the scientific importance of such areas. Though many scientists believe the condi-
tion of the giant ice sheets in Greenland and Antarctica are a key to understanding
global climate change, there is still insufficient data to accurately predict the future
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behavior of those ice sheets. While satellites are able to map the ice sheet elevations
with increasing accuracy, data about general weather conditions (i.e. wind speed,
barometric pressure, etc.) must be measured at the surface.

In order to obtain measurements, human expeditions must be sent to these remote
and dangerous areas. Alternatively, a group of autonomous robotic rovers could be
deployed to these same locations, mitigating the cost, effort, and danger of human
presence. For this to be a viable solution, a method for navigating in the arctic,
and thus of assessing arctic terrain, must be developed. This paper extends the work
presented in [10], creating dense slope estimates of the terrain from a single camera.
Sect. 2 briefly describes the types of terrain likely to be encountered in the arctic
regions of Greenland or Antarctica. Sect. 3 details the slope assessment algorithm.
A set of prototype arctic rovers have been designed and constructed. A description
of the units and the field tests conducted is presented in Sect. 4. The slope estimate
results from the field tests are shown in Sect. 5. Finally, conclusions and future work
are discussed in Sect. 6.

2 Environment

Despite being covered by snow, arctic regions present a large assortment of terrain
challenges, a small sample of these are shown in Fig. 1. Large quantities of fresh
surface snow can be present during certain times of the year. This fresh snow is
soft, creating a potential sinking hazard for wheeled vehicles. The soft snow is also
more readily melted, causing a dimpling of the surface, referred to as “sun cups,”
which can span 0.5 meters or more. Over time the winds harden the snow surface
making it more amenable to locomotion. However, these same winds also sculpt the
snow into dune-like structures that can be as large as one meter, again impeding
motion. The underlying ice sheet is also responsible for several types of terrain
hazards. As the ice sheet flows, forces build due to differential velocities of different
ice sections. These forces can cause nearly vertical fractures in the ice known as
crevasses. Crevasses can be as deep as 30 meters and are often covered with snow,
making their detection all the more difficult. A narrow crevasse is shown in Fig.
1(c), which becomes obscured by snow toward the top of the image. In the thinner
regions of the ice sheet, the surface is affected by the underlying mountains, causing
significant local-scale elevation changes. Even on seemingly flat terrain, the actual
snow depth can change drastically, with the ice sheet exposed in some locations,
and covered by several meters of snow in others.

3 Slope Assessment

The slope estimation technique presented in [10] divided the image into large blocks
in which the surface texture was analyzed. A single slope estimate was produced
which was aligned with the predominate surface texture direction. The resulting
estimates, although noisy, were shown to be representative of the actual slope within
a simulated environment, and sufficient input for a slope-avoidance control scheme.
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(a) (b)

(c) (d)

Fig. 1 Images from the top of Mendenhall Glacier, Alaska showing (a) visible sun cups, (b)
a large section of exposed ice sheet, and (c) a small crevasse visible through the snow. (d) An
image from an analogous site on the Arikaree Glacier, Colorado showing the potential steep
slopes in glacial terrain.

Presented below is an improvement upon this algorithm which results in a set of
dense slope estimates for the scene.

In images of arctic terrain, the surface texture has very low contrast. In order
to analyze this texture, the foreground contrast must first be boosted. An adaptive,
nonlinear preprocessing stage has been introduced, originally formulated to enhance
x-ray images and CT scans [9]. Contrast limited adaptive histogram equalization
(CLAHE) separates the image into different contextual regions. Within each region,
a histogram equalization procedure is calculated. To prevent over-enhancement of
local areas, a contrast limit is imposed. In effect, this applies an upper bound to the
slope of the gradient at a specific location, resulting in smoothly varying contrast.

However, the presence of image distractors, such as background mountains, have
an adverse effect on both the contrast enhancement and the subsequent slope es-
timates. A method of histogram thresholding, presented in [10] has been applied
here. It is assumed that the majority of the image is filled with the snowy region.
Consequently, in the histogram of the image, the largest peak should be associated
with the grayscale values of the snow. An adaptive threshold based on the bound-
aries of this peak produces an image mask which can effectively separate the region
of interest from unwanted objects and areas. Fig. 2 shows the results of the mask
and contrast enhancement on a single exemplar glacial image. For the first time, the
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(a) (b) (c)

Fig. 2 (a) An image from Mendenhall Glacier, Alaska, (b) the mask produced by the his-
togram threshold procedure which separates the region of interest from the background ob-
jects, and (c) the results of the CLAHE contrast enhancement of the masked image. For the
first time, the underlying structure of the scene is clearly visible.

underlying scene structure is clearly visible. Although, the image noise has clearly
been amplified as well.

The enhanced snow texture exhibits small-scale directional details, which are vi-
sually similar to those of fingerprints. In the area of fingerprint enhancement, where
it is desired to find and follow the small ridge details of a print, it is common to
create an orientation image to aid in the processing [3, 5]. A least square estimate
procedure for calculating this orientation is presented in [3]. In a similar fashion, the
final slope estimate is produced by finding the least square estimate of the dominant
Fourier spectrum direction in a neighborhood around each pixel.

To calculate the orientation of a given pixel, (i, j), the image gradient within a
neighborhood of that pixel is first calculated. Then the two component vectors, νx
and νy , are generated, as described in Equations 1 and 2. The orientation, θ , is
then defined as the least squares solution to Equation 3. The entire slope calculation
process can be processed in real-time.

νx(i, j) = ∑
neighborhood

2∂x(u,v)∂y(u,v) (1)

νy(i, j) = ∑
neighborhood

∂ 2
x (u,v)− ∂ 2

y (u,v) (2)

θ (i, j) =
1
2

tan−1
(
νy(i, j)
νx(i, j)

)
(3)

4 Field Tests

To validate the slope assessment algorithm, three prototype mobile weather sen-
sor nodes were constructed. The rovers, referred to as “Sno-motes”, were subse-
quently fielded on a frozen lake near Wapakoneta, Ohio and on Mendenhall Glacier
in Juneau, Alaska.
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4.1 Sno-mote Mk1

A 1/10 scale snowmobile chassis was selected for the prototype platform, endow-
ing the rover with an inherent all-terrain drive system. The platform was modified to
include an ARM-based processor running a specialized version of Linux. The moth-
erboard offered several serial standards for communication, in addition to wifi and
bluetooth. A daughterboard provided an ADC unit and PWM outputs for controlling
servos. The drive system was modified to accept PWM motor speed commands, and
the steering control was replaced with a high-torque servo. For ground truth posi-
tion logging, a GPS unit connects to the processor via the bluetooth interface, while
robot state and camera images are sent directly to an external control computer via
the wifi link. To simulate the science objectives of the mobile sensor, a weather-
oriented sensor suite was added to the rover. The deployed instrument suite includes
sensors to measure temperature, barometric pressure, and relative humidity.

4.2 Alaska Test Site

The three “Sno-mote” platforms and related equipment were shipped to Juneau,
Alaska for field testing. Two potential test sites were selected based on the rele-
vance of weather data, the similarity of the terrain to arctic conditions, and logistics.
Site 1, Lemon Creek Glacier, has been the subject of annual mass balance mea-
surements since 1953 as part of the Juneau Icefield Research Program (JIRP) [8],
making weather measurements in this area particularly relevant. The second site,
Mendenhall Glacier, is one of Alaska’s most popular tourist attractions [7]. The cur-
rent public interest of this particular site makes additional information valueable.
Both sites are only accessible via helicopter.

Helicopter travel to glacial areas is heavily dependent on the weather conditions,
particularly low cloud deck heights. This presents a dangerous “white out” situation
for the helicopter pilot in which the snow-covered peaks, the ground of the landing
site, and the sky are all indistinguishably white. During the course of our flight to
Lemon Creek such a situation was determined to exist, forcing the group to abandon
the site for the day. A few images were acquired from this site before departure, a
sample of which is shown in Fig. 3(a).

The weather conditions preventing travel to either of the test site finally lifted on
Day 4, allowing travel to Mendenhall. The site surface is visually flat and covered
with snow, though there are sections of the terrain where the underlying ice sheet is
exposed. Despite the flat appearance, the snow varied in depth from a few centimeters
to over a meter. This snow was deposited recently and was quite soft. Upon arrival
at the site, a test area was explored with ice-axes to ensure it was safe. Cracks in the
underlying ice, called crevasses, are often completely concealed by surface snow.

The rovers were driven manually to assess the mobility performance in the differ-
ent snow conditions present. During these traverses it was discovered that the plat-
form suffered from stability issues. Due to the narrow track footprint in the rear, the
chassis would often roll sideways when attempting to navigate perturbations in the
snow surface. Additionally, the snowmobile would sink in the fresh snow, causing
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(a) (b)

Fig. 3 (a) A sample of images acquired from Lemon Creek Glacier, Alaska before weather
conditions forced the site to be abandoned for the day. Some of the underlying mountain
range is visible though the glacier surface, but the terrain is predominately white, with the
slope characteristics almost invisible. (b) A Sno-motes deployed at Mendenhall Glacier in
Juneau, Alaska.

the DC drive motor to stall from excess torque. Due to the chassis limitations, a set
of short traverses were performed in selected locations. During these traverses, the
local temperature, barometric pressure, relative humidity, GPS location, and camera
images were all logged at 2 Hz and timestamped to ensure proper off-line recon-
struction and analysis. Fig. 1(a) - 1(c) show some sample images acquired at the
Mendenhall test site.

4.3 Sno-mote Mk2

The main reason tracked vehicles are used for snow traversal is the large area of the
track distributes the vehicle weight, allowing it to “float” on the surface. Possibly
the most capable snow vehicle is the “Alpina Sherpa” [1], which was designed with
two tracks to further reduce the applied pressure. Due to the discovered mobility
issues with the original platform, a set of chassis modifications were designed and
implemented, with inspiration taken from the “Sherpa”. The original front suspen-
sion mechanism was replaced by a passive double-wishbone system, increasing the
ski-base over 30%. The rear track system was replaced with a custom, dual-track de-
sign, which both widened the rear footprint and effectively doubled the snow contact
surface area. A 500 W brushless motor and high-current speed controller drive the
new track system. The overall increase in the platform width drastically improved
the platform’s stability and role characteristics. Fig. 4 shows the modified chassis,
as deployed on a frozen lake near Wapakoneta, Ohio.

4.4 Ohio Test Site

A test site near Wapakoneta, Ohio was selected to verify the performance of the new
chassis. The site was blanketed with 8-12 inches of fresh snow next to a frozen lake.
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Fig. 4 The modified chassis
of the second generation
“Sno-mote” deployed near
Wapakoneta, Ohio. Clearly
visible is the new dual-track
drive system.

(a) (b)

(c) (d)

Fig. 5 (a, b) An image taken during the field tests at Mendenhall Glacier, Alaska has been
processed by the original slope estimation procedure and the proposed method. Similarly, (c,
d) an image from the Ohio field tests has been processed by both methods. The proposed
method produces much denser estimates that are better able to capture smaller scale surface
details.

Several long traverses were conducted, which transitioned from land to lake several
times. During these traverses, the GPS location and camera image were logged at
15 Hz and timestamped. The lake bank consisted of irregularly spaced large rocks,
between which large amounts of snow had collected, forming a drivable incline
between 10◦ and 30◦.
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(a) (b)

(c)

(d)

Fig. 6 Images (a) and (c) show an original image from Lemon Creek glacier, and the en-
hanced and processed version, respectively. Despite the surface texture being nearly invisible
in the original image, the slope estimation process is able to produce dense, visually consis-
tent slope measurements. Images (b) and (d) show an image of a large crevasse at Mendenhall
glacier and the resulting slope estimates. The slope profiles in (d) clearly show the elevation
changes at the edge of the crevasse.
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The improved chassis performed well during the tests, never rolling, even when
negotiating a path between rocks up a 20◦ slope. While it was still possible for
the chassis to loose traction, especially in very soft snow or up steep inclines, the
new drive motor was never forced into a stall condition. However, one unexpected
observation from these test was that the control computer, which consisted of a
consumer-grade laptop, ceased to operate when its temperature dropped below 20◦F.
The “Sno-mote” control computer and hardware were unaffected by the cold.

5 Results

The slope estimation algorithm, presented in Sect. 3, has been applied to the images
acquired during the field tests. For comparison, the original slope estimate tech-
nique, presented in [10], has also been calculated. The results of both techniques
are shown in Fig. 5. While both methods show the general regions in front of the
camera to be flat, the denser information of the proposed method is better able to
capture the smaller scale surface trends. This is particularly evident in the lower left
of the images in Fig. 5(a) and 5(b). The proposed method accurately indicates the
slopes around a depression in the snow, whereas the original method provides only
a single, slightly upward slope indication. Also, the new method is able to handle
the ice as well as the snow image textures. The original method provides spurious
measurements in the ice regions that do not reflect the true terrain grade. In the Ohio
images, Fig. 5(c) and 5(d), the original method completely ignores the small dune
structures, whereas the new method does indicate the sloping regions on either side
of both structures.

Examples of processed arctic terrain are provided in Fig. 6. In the first image
set from Lemon Creek Glacier, the terrain grade in the original image is virtually
invisible. Yet, the estimate process is able to provide dense estimates, even in the
areas that originally seemed uniformly white. The second pair of images illustrates
a large crevasse on Mendenhall Glacier. The slope estimation process is able to
handle both the snow and exposed ice textures without modification. The estimates
provided clearly show the snow and ice sloping into the mouth of the crevasse, while
a relatively safe area exists in the far left.

6 Conclusions

When navigating in arctic terrain, the local terrain slope is an important factor when
determining traversabilty. Vehicle limitations may impose terrain grade limits, or
local areas of steep decent may imply hazards. A purely visual slope estimation
technique has been presented which creates dense slope estimates from a single
image, even in the inherently low contrast environment of the arctic.

A set of prototype rovers have been constructed, based upon a snowmobile de-
sign, and fielded on a frozen lake in Ohio, as well as on Mendenhall Glacier in
Juneau, Alaska. A sample of the slope estimation results from these field tests have
been included. Qualitatively, the results appear consistent with human perceived
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slope determinations, and are an improvement over a previously presented method,
both in terms of estimate density and slope misclassification.

In the future, these slope estimates will be developed into a full traversabilty
assessment, were drivable terrain is classified as safe and terrain hazards are labeled.
This would, in turn, be used by the navigation and path planning system to plot safe
trajectories.
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Part III
Tracking and Servoing



Pedestrian Detection and Tracking
Using Three-Dimensional LADAR
Data

Luis E. Navarro-Serment, Christoph Mertz, and Martial Hebert

Abstract. The approach investigated in this work employs three-dimensional
LADAR measurements to detect and track pedestrians over time. The sensor
is employed on a moving vehicle. The algorithm quickly detects the objects
which have the potential of being humans using a subset of these points, and
then classifies each object using statistical pattern recognition techniques.
The algorithm uses geometric and motion features to recognize human sig-
natures. The perceptual capabilities described form the basis for safe and
robust navigation in autonomous vehicles, necessary to safeguard pedestri-
ans operating in the vicinity of a moving robotic vehicle.

1 Introduction

The ability to avoid colliding with other objects is essential in autonomous
vehicles, especially in cases where they operate in close proximity to people.
The timely detection of a pedestrian makes the vehicle aware of a potential
danger in its vicinity, and allows it to modify its course accordingly. There is
a large body of work done using laser line scanners as the primary sensor for
pedestrian detection and tracking. In our group, we have developed detection
and tracking systems using SICKTM laser line scanners; these implementa-
tions work well in situations where the ground is relatively flat [5]. However,
a 3D LADAR (i.e. one who produces a set of 3D points, or point cloud)
captures a more complete representation of the environment and the objects
within it. In [6], we presented an algorithm that detects pedestrians from 3D
data. Its main improvement over the version with 2D data was that it con-
structs a ground elevation map, and uses it to eliminate ground returns. This
allows pedestrian detection even when the surrounding ground is uneven. To
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classify the humans the algorithm uses motion, size, and noise features. Per-
sons are classified well as long as they are moving. However, there are still
too many false positives when classifying stationary humans.

In this paper, we describe a strategy to detect and classify humans using
the full 3D point cloud of the object. This will improve the classification of
both moving and static pedestrians. However, the improvement will be most
significant for static humans. The algorithm quickly detects the objects that
have the potential of being humans using a subset of the point cloud, and
then classifies each object using statistical pattern recognition techniques.
We present experimental results of detection performance using 3D LADAR,
which were obtained from field tests performed on a Demo III XUV [7].

2 Related Work

Some researchers have applied classification techniques to the detection and
tracking problem. The approach reported in [1] applies AdaBoost to train a
strong classifier from simple features of groups of neighboring points. This
work focuses on 2D range measurements. Examples using three-dimensional
data include [4], where 3D scans are automatically clustered into objects
and modeled using a surface density function. A Bhattacharya similarity
measure is optimized to register subsequent views of each object enabling
good discrimination and tracking, and hence detection of moving objects.
In [3], the authors describe a pedestrian detection system which uses stereo
vision to produce a 3D point cloud, and then classifies the cloud according
to the point shape distribution considering the first two central moments of
the 2D projections using a naive Bayes classifier. Motion is also used as a cue
for human detection.

In [8] the authors report an algorithm capable of detecting both stationary
and moving humans. Their approach uses multi-sensor modalities including
3D LADAR and long wave infrared video (LWIR). Similarly, in [9] the same
research group presents a technique for detecting humans that combines the
use of 3D LADAR and visible spectrum imagery. In both efforts the authors
employ a 2D template to extract features from the shape of an object. Among
other differences, as opposed to our work, they extract a shape template from
the projection in only one plane, and compute a measure of how uniformly
distributed the returns are across the template.

3 Algorithm Description

In this section, the algorithm for pedestrian detection and classification is
described. In our approach, since operation in real time is a chief concern,
we do object detection and tracking in a 2D data subset first, and then
use the object’s position and size information to partition the set of 3D
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measurements into smaller groups, for further analysis. We describe these
steps in the following sections.

3.1 Projection into 2D Plane

To reduce the computational cost of processing the entire point cloud, we
initially isolate a 2D virtual slice, which contains only points located at a
certain height above ground. As shown in Fig. 1, a 3D scanner produces a
point cloud, from which a “slice” is projected onto the 2D plane, resulting in
a virtual scan line. This scan line is a vector of range measurements coming
from consecutive bearings, which resembles the kind of data reported directly
by a line scanner such as the SICKTM laser scanner. This is done by collapsing
into the plane all the points residing within the slice, which is defined by its
height above the ground.

Fig. 1 Projection of virtual scan line. (a)
A point cloud is collected from the en-
vironment shown. (b) The points located
within a certain height above ground are
projected into a 2D plane, and processed
as if it were a single scan line. The result-
ing projection is shown in (c), top view

The ground elevation is stored in
a scrolling grid that contains ac-
cumulated LADAR points and is
centered at the vehicle’s current
position. The points are weighted
by age, more recent points have a
heigher weight. The mean and stan-
dard deviation of the heights of all
scan points that are inside each cell
are computed, and the elevation is
then calculated by subtracting one
standard deviation from the aver-
age height of all the points in the
cell. The key properties of this sim-
ple algorithm are that mean and
standard deviations can be calcu-
lated recursively, and that the el-
evation is never below the lowest
point while still having about 80%
of the points above ground.

The system adapts to different
environments by varying the shape of the sensing plane i.e., by adjusting the
height of the slice from which points are projected onto a two-dimensional
plane. Spurious measurements produced by ground returns are avoided by
searching for measurements at a constant height above the ground. Since our
research was done in an open outdoor environment, we did not encounter
overhanging structures like overpaths or ceilings. These might be topics of
future research.
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3.2 Motion Features

After detecting and tracking objects using the virtual scan line we can com-
pute a Motion Score (MS). The MS is a measure of how confident the algo-
rithm is that the detected object is a human, based on four motion-related
variables: the object’s size, the distance it has traveled, and the variations in
the object’s size and velocity. The size test discriminates against large objects
like cars and walls. The distance traveled test discriminates against station-
ary objects like barrels and posts. The variation tests discriminate against
vegetation, since their appearance changes a lot due to their porous and flex-
ible nature. The individual results of these tests are scored, and then used
to calculate the MS. A detailed description of each test and all parameters
involved is presented in [6].

3.3 Geometric Features

To discriminate against static structures, we compute a group of distinguish-
ing geometric features from the set of points belonging to each object being
tracked in 2D, and then feed these features to a classifier, which determines
whether the object is a human or not. This concept is depicted in Fig. 2.

As shown in Fig. 2(a), the process starts when a point cloud is read from
the sensor. We define Zj = {x1,x2, . . . ,xN} as the set of N points contained
in a frame collected at time tj , whose elements are represented by Cartesian
coordinates x = (x, y, z). The points corresponding to one frame are shown,
and are colored according to their height above ground. To avoid the com-
putational cost of processing the entire point cloud, we extract a 2D virtual
slice, as described in Section 3.1 (Fig. 2(b)). For each object being tracked,

Fig. 2 Improved pedestrian detection. Geometric features present in subsets of the
point cloud are used by a classifier to distinguish pedestrians from static objects.



Pedestrian Detection and Tracking Using 3D LADAR Data 107

its position, velocity, and size are estimated using the algorithm described
in [6]. These values are used to compute the MS. The object’s position and
size information are used to isolate, from the original point cloud, only those
points corresponding to potential humans, as shown in Fig. 2(c). In this way,
the three-dimensional information corresponding to each object is recovered
in the form of smaller sets of points. At this point, we have a collection of M
sets {S1, S2, . . . , SM}, where Si∈{1,2,...,M} ⊂ Zj. A feature vector is computed
from each of these sets (Figs. 2(d) - (e)), and then fed to a classifier that de-
termines for each object whether it is a human or not, Fig. 2(f). This decision
is made for each object, and is based on the most recent set of points collected
from the sensor. The classifier also takes into account the information used
to calculate the MS; this is described in a subsequent section.

A set of features is computed with the purpose of extracting the most
informative signatures of a human in an upright posture from the 3D data.
The legs are particularly distinctive of the human figure, so the algorithm
computes statistical descriptions from points located around the legs. Similar
descriptions are computed from the trunk area, representing the upper body.
Additionally, the moment of inertia tensor is used to capture the overall
distribution of all points. Finally, to include the general shape of the human
figure, we compute the normalized 2D histograms on two planes aligned with
the gravity vector.

3.3.1 Feature Extraction

Let Sk = {x1,x2, . . . ,xn} be the set of points belonging to the object k,
whose elements are represented by Cartesian coordinates x = (x, y, z). A set
of suitable features is computed from Sk, as depicted in Fig. 2(d), which
constitutes a profile of the object.

We begin by performing Principal Component Analysis (PCA) using all
the elements of Sk, to identify the statistical patterns in the three-dimensional
data (see Fig. 3). This involves the subtraction of the mean m from each of
the three data dimensions. From this new data set with zero mean, we calcu-
late the covariance matrix Σ ∈ 3×3, and the normalized moment of inertia
tensor M ∈ 3×3, treating all points as unit point masses:
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Fig. 3 A set of geometric features is computed from a the set of points belonging
to an object.

Since both Σ and M are symmetric, we only use 6 elements from each as
features.

Resulting from the PCA are three pairs of eigenvectors and eigenvalues,
sorted according to decreasing eigenvalue. Call these eigenvectors e1, e2, e3,
with their corresponding eigenvalues λ1 > λ2 > λ3. We assume that a pedes-
trian is in an upright position, so the principal component e1 is expected
to be vertically aligned with the person’s body1. Together with the second
largest component e2, it forms the main plane (Fig.3, center top), and also
forms the secondary plane with the smallest component, e3 (Fig.3, center
bottom). We then transform the original data into two representations using
each pair of components e1, e2 and e1, e3, from which we proceed to com-
pute additional features (the third possible representation, i.e. using the two
smallest components e2, e3, is not used).

We focus on the points included in the main plane, to analyze the patterns
that would correspond to the legs and trunk of a pedestrian, as shown in
Fig 3, center top. These zones are the upper half, and the left and right
lower halves. After separating the points into these zones, we calculate the
covariance matrix (in 2D) over the transformed points laying inside each zone.
This results in 9 additional features (3 unique values from each zone).

Finally, we compute the normalized 2D histograms for each of the two
principal planes (Fig. 3, right), to capture the shape of the object. We use
14×7 bins for the main plane, and 9×5 for the secondary plane. Each bin is
used as a feature, so there are 143 features representing the shape. A total of
164 geometric features are determined for each object.
1 Dealing with the violation of this assumption is the focus of current research.
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3.4 Human Detection

A classifier (Fig. 2(f)), composed of two independent Support Vector Ma-
chines (SVM) [2], determines for each object whether it is human or not. The
first classifier is a SVM that receives the vector of 164 geometric features
computed directly from Sk, and scores how closely the set matches a human
shape. We call this the Geometric Score (GS). The GS is particularly effec-
tive for detecting static pedestrians. Similarly, the features used to determine
the MS (i.e. object’s size, the distance it has traveled, and the corresponding
size and motion noises) contain valuable information about the motion of
the target. Together with the GS, these features are fed to a second SVM,
whose output represents the distance to the decision surface of the SVM. The
Strength of Detection (SOD), the total measure of how strongly the algorithm
rates the object as being a human, is calculated as the logistic function of
the distance to the decision surface. This number is reported for each object.
If the GS cannot be computed (e.g. insufficient data from a distant target,
or violation of the upright position assumption), then the MS is reported as
the SOD for that object.

3.4.1 Training

Fig. 4 Simulated target (left), and its corre-
sponding point cloud (right).

We trained the GS classifier us-
ing a combination of simulated
and real examples. Because it is
impossible to collect enough real
data to evaluate perception algo-
rithms in all possible situations,
we have created a simulator
capable of producing synthetic
examples of sensor data. The
simulator uses a ray tracing en-
gine to generate a set of ray inter-
sections between sensor and the
objects in the scene to simulate.
This information is then used to

produce synthetic LADAR measurements according to a set of parameters
for a particular sensor, as shown in Fig. 4. We trained the GS classifier us-
ing over 3500 examples (27.4% humans, 72.6% non-humans). The human set
included 62% of simulated examples. The second classifier was trained using
only real examples, since the motion and size noises used to determine the
MS are of a dynamic nature and consequently harder to simulate efficiently
(over 46000 examples: 6% humans, 94% non-humans).

We trained both SVMs using a five-fold cross validation procedure. We
found that both radial basis function (RBF) and polynomial kernels re-
sulted in similar levels of classification performance. After multiple tests, we
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determined that a RBF kernel was the best for the calculation of the GS,
while a polynomial kernel was preferred for the second classifier.

4 Experimental Results

This section presents the results of several experimental runs. These results
were obtained from field tests performed on a Demo III XUV [7]. The data
comes from 14 different runs, where the variations include static and moving
vehicles, pavement and off-road driving, and pedestrians standing, walking,
or jogging. The data was taken at 17 Hz, and the average duration of each run
was about 1 minute. There were altogether 48 humans and 1075 non-human
objects, where those who came in and out of the field-of-view were counted
twice. The ground truth was produced by labelling the data by hand.

In the upper part of Fig. 5 the ROC curve and the precision-recall curves
are shown. Each human in one cycle is a positive example and each non-
human object in one cycle is a negative example. There are about 6300
positive and 60000 negative examples. These plots illustrate the current per-
formance of our system. The blue traces indicate the MS score, which is our
previous detection algorithm. The red traces indicate the geometric score,
i.e. the classification using the geometric features computed directly from
the object’s set of 3D points, but without any motion clues. As seen in the
plots, neither algorithm by itself outperforms the other throughout the entire
operational range. For low false positive rates the GS is better and at high
false positive rates MS is better. As we mentioned earlier, the MS only works
for static humans at high false positive rates. The synergistic combination of
both results has significantly better performance, as indicated by the black
traces.

An alternative representation of ROC and precision-recall is shown in the
lower part of Fig. 5, where each object is counted per run. The score of an
object is the mean of the score over all cycles, with a minimum of 10 cycles.
As mentioned above, there are 48 humans (= positive examples) and 1075
other objects (negative examples). A noteworthy operating point is where
there are basically no false positives (rate is 10−3) and still the true positive
rate is 0.75.

We identified several cases where performance is decreased. Typically, par-
tial views of a human (e.g. only the upper body and part of the legs are seen
by the sensor) result in false negative detections. Also, false detections occur
when a target is only partially inside the sensor’s field of view. Similarly,
pedestrians in non-upright positions usually result in false negative detec-
tions. This is expected, because of the particular attention paid to legs and
torso when extracting geometric features. An exception to this is the case
of kneeling humans, which we have been able to detect consistently, though
they are usually borderline classified as humans. Solving these problems is
the focus of current research.
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Fig. 5 The plots on the left show the precision-recall and the ones on the right
the ROC curves. Shown are the curves produced by using the geometric score (red
dashed), the motion score (blue dot-dash) and the combined (black solid). For the
upper curves each object in each cycle and in the lower curves each object in the
full run is counted as one example.

5 Conclusion

We described a pedestrian detection and tracking system using only three-
dimensional data. The approach uses geometric and motion features to rec-
ognize human signatures, and clearly improves the detection performance
achieved in our previous work. The set of features used to determine the hu-
man and motion scores was designed to detect humans in upright positions.
To increase the robustness of detection of humans in other postures, in fu-
ture research we will investigate ways of extracting signatures from the point
cloud that are highly invariant to deformations of the human body.
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Towards a Field Deployable Sense and Avoid
System�
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1 Introduction

Unmanned Aerial Vehicles (UAVs) typically fly blind with operators in distant loca-
tions. Most UAVs are too small to carry a traffic collision avoidance system (TCAS)
payload or transponder. Collision avoidance is currently done by flight planning, use
of ground or air based human observers and segregated air spaces. US lawmakers
propose commercial unmanned aerial systems access to national airspace (NAS) by
30th September 2013. UAVs must not degrade the existing safety of the NAS, but
the metrics that determine this have to be fully determined yet. It is still possible to
state functional requirements and determine some performance minimums. For both
manned and unmanned aircraft to fly safely in the same airspace UAVs will need to
detect other aircraft and follow the same rules as human pilots.
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Fig. 1 Selection of 11×11
subwindows showing the
image of the Piper Archer
II which was used as the
intruder aircraft for collect-
ing imagery, at a range of
1.5 miles. The camera and
lens used had 0.41 millira-
dian/pixel resolution and a
field of view of 30◦(H) ×
21◦(V).

Key specifications of the international committee F38 on UAS systems stan-
dard F2411-04 (1) proposed requirements which include a field of regard of 220◦
(horizontal) × 30◦(vertical), minimum detection range of 3 statute miles under vi-
sual flight rules and a required miss distance of 500 ft. Without this capability,
widespread utilization of UAVs will not be possible.

This paper focuses on the sensing of aircraft with passive vision. Small size, low
weight and power requirement make cameras attractive for this application. Multiple
cameras can be used to cover the wide field-of-regard. A typical image of an aircraft
at a range of 3 miles is a few pixels in diameter. Fig.1 shows a 11x11 window around
the image of the intruder aircraft at various ranges. Part of the challenge in detecting
aircraft in such a wide field of regard reliably is the low signal to background ratio.
Active sensors like radar are not feasible because of their prohibitive power and size
requirements (2) for UAVs. Passive vision provides a low cost, low power solution
albeit at the cost of a relatively high false positive rate. Using an approach based
on morphological filters augmented with a trained classifier we have been able to
obtain 98% detection rate out to 5 statute miles and a false positive rate of 1 every
50 frames.

In section 2 the related work in sense and avoid systems is outlined. In section 3
we discuss the details of the vision based aircraft detection algorithm. In section 4
we outline our efforts to collect imagery of flying aircraft and details about the result
of our algorithm on the corpus of real ground truthed imagery of aircraft. Finally in
section 5 we discuss the path forward towards a field deployable sense and avoid
system.

2 Related Work

Utt et al. (20) describe a fielded vision-based sensory and perception system. Mc-
Candless (14) proposes an optical flow method for detecting moving aircraft. The
use of morphological filtering is popular in computer vision based sense and avoid
systems (11; 4). This approach generates a significant number of false positives.
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Fig. 2 The minimum de-
tection distance required to
guarantee collision avoid-
ance for varying intruder
speeds and ownship speeds
of 40, 50 and 60 knots. For
the best case scenario the
minimum detection distance
is 700 meters and for the
worst case scenario the min-
imum detection distance is
2100 m

Petridis et al. use AdaBoost (17) to detect aircraft in low resolution imagery. Track-
Before-Detect (TBD) (9) is an approach used mainly on infrared imagery. Defence
Research Associates have implemented a vision based sense and avoid system on a
Predator UAV system (13).

Efforts to directly model the range of atmospheric conditions under VFR remain
untouched. A field deployable sense and avoid system must be able to operate in a
variety of atmospheric conditions including fog, haze and directly against the glare
of the sun. The operation of the system must not degrade beyond an acceptable level
under all these conditions. We have developed an image formation model which ac-
counts for the various atmospheric conditions. We used this model to predict the
signal to background ratio of the image of the aircraft. The image formation model
is described in detail in (12). The model also allows the determination of the suit-
ability of any sensor combination before using the sensor and also to determine
the minimum derived resolution for achieving a specified performance. The perfor-
mance of the image formation model has been validated by the vast corpus of real
imagery of flying aircraft that we collected during the course of this project.

2.1 Requirements

The range requirements of an aircraft detection system are influenced by two main
factors: regulations developed by the FAA and the maneuvering capabilities of
the UAV.

Duke et al.(6) and Schaeffer et al.(18) outline core competencies needed by a hu-
man equivalent system. The human equivalence mandated by OSD (15) and ACC
(7) require vehicles to avoid non-cooperative vehicles without such systems. Shak-
ernia et al. (19) leverage work of Utt et al. (20) on using maneuvers to reduce the
intrinsic uncertainty about range when using an image based detector.

In order to decide the range requirements of the system we opted for a colli-
sion avoidance system by Frazzoli et al. (10) that enables an UAV to aggressively
maneuver without breaching its envelope. Further details are in (12).
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3 Approach

We experimented with a number of different approaches to detecting small targets
with low signal to background ratios with an emphasis on methods that have both
high detection rates and low computational complexity.

We have developed a multi-stage method that starts with a large number of can-
didates and winnows these down. We start with a morphological filter that looks
for high contrast regions in the image that are most likely to be aircraft. Next we
use a classifier that has been trained on positive and negative examples and finally
we track the candidates over time to remove false positives. Below we discuss each
”stage” of detection in detail.

3.1 Stage 1: Morphological Filtering

In the first stage, we apply a morphological filter that detects deviations from the
background intensity. We use two types, one favors dark targets against lighter back-
grounds (positive), and the other favors light targets against darker backgrounds
(negative). The positive morphological filter takes the form:

M +(x,y) = I (x,y)− max{max
|i|≤w

min
| j|≤w

〉(x + i+ j,y),

max
|i|≤w

min
| j|≤w

I (x,y + i+ j)} (1)

As long as no 2w + 1 sub-window (we used w = 2) contains all target pixels
(higher intensity) and no background pixels (lower intensity), then all sub-windows
will contain at least one (darker) background pixel. Since the background could be

Fig. 3 The image on the left shows part of the image of the Piper Archer II at a range of
2.87 miles. The image on the right shows the result of the morphological operation of the
left image in Stage 1 of the processing pipeline. The dark aircraft image shows up as bright
white spot.
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noisy, the max’s have the effect of finding a conservative greatest lower-bound for
the background intensity. The difference, then, yields an estimate of the difference
between signal and background for the pixel. The negative morphological filter,
M −, swaps min’s for max’s, and negates the expression. From M + we choose
the top n+ pixels above a threshold T+, while suppressing local non-maxima, and
construct a list of detections. We do the same for M −. Fig.3 shows an example
aircraft image and the result of the morphological filtering on the example image.

3.2 Stage 2: Construction of a Shape Descriptor

For each detection we fit a Gaussian function to its (2r + 1)× (2r + 1) sub-window
(we settled on r = 7) and construct a shape descriptor for the detection. Through trial
and error we found a descriptor that was a good discriminator in test sequences.
The descriptor encodes the parameters of the fitted Gaussian, as well as statistics
computed from the residual image. We use an axis-aligned Gaussian, parameterized
as follows:

G (x,y;σx,σy,b,s) = b +
s

2πσxσy
e
− x2

2σ2
x

− y2

2σ2
y (2)

We center the Gaussian at the the pixel with the largest absolute deviation from the
window’s mean intensity. We use gradient descent to minimize the sum of square
errors between the input sub-window and G (·;ξ ), minimizing over ξ = (σx,σy,b,s).
To do this efficiently, we avoid repeated calls to the exponential function by pre-
computing both a set of template G ’s over a range of σx and σy pairs, with (b,s) =
(0,1), and a set of finite difference approximations to the partial derivatives of G
with respect to σx and σy. Fig.4 shows an example aircraft image and the fitted two
dimensional Gaussian window centered on the image of the aircraft.

Fig. 4 The image on the left shows an image of the aircraft at 2.87 miles. The figure on the
right shows the two dimensional Gaussian function fitted on the 15×15 subwindow centered
on the image of the aircraft in the right image in Stage 2 of the processing pipeline.
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Using the best fitting Gaussian G ∗, we compute a shape descriptor from the resid-
ual difference between the input image and G ∗ in upper-left (UL), upper-right (UR),
lower-left (LL), lower-right (LL), and center (C) regions. We construct both positive
and negative half-sign sums. For example:

S+
UL = ∑ 1≤x≤w

1≤y≤w
max [0,G ∗(x,y)−I (x,y) ]

. . .

S−
C = −∑w/2<x<3w/2

w/2<x<3w/2
min [0,G ∗(x,y)−I (x,y) ]

Then, we construct min’s and max’s of positive and negative half-sign sums, e.g.,
S+

max = max
(
S+

UL, . . . ,S+
C

)
, and for each statistic we take its log normalized by the

background intensity b, e.g., s+
max = log(S+

max/b). We also compute the estimated
signal to background ratio:

SBR =
|b|+ |s|/2πσxσy

|b| (3)

Finally, the shape descriptor we use is:

d =
(
b,s,σx,σy,SBR,s+

min,s
+
max,s

−
min,s

−
max,

s+
UL,s+

UR,s+
LL,s+

LR,s+
C ,s−

UL,s−
UR,s−

LL,s−
LR,s−

C

)
We associate this 19-dimensional vector with each detection.

3.3 Stage 3: SVM-Based Classification of Potential Targets

The next stage of the algorithm is to pass the computed descriptor f for each detec-
tion through a support vector machine (SVM) (5). We trained the SVM using shape
descriptors computed for positive and negative examples taken from a sequence of
hand-labeled images. For negative examples we used the false negatives produced
by the morphological filter. We used OpenCV’s (3) implementation of an SVM (3),
and chose to use radial basis functions for the classifier.

OpenCV’s SVM implementation returns a hard classification: positive or nega-
tive depending on the sign of a summation, e.g. y = sign x, where x = ∑i fi(d). We
want to associate a probability with each detection, so as to make them compara-
ble, and so we modified the implementation to use the value of x to estimate the
probability that the detection is from a true target. During training we construct em-
pirical densities of x for positive (p+

x ) and negative (p−
x ) classes using a mixture of

Gaussians, and store a log-likelihood ratio function �(x) = log p+
x /p−

x in a look-up
table keyed on x. We choose the kernel bandwidth just large enough to make the
odds monotonic in x. We keep only those detections whose odds exceed a minimum
value of pmin.
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Fig. 5 A manned aircraft
equipped with a GPS was
flown in a series of flights
such that it was in the field
of view of the ground based
cameras. The circles show
the distance to the cameras
in miles.

3.4 Stage 4: Tracking

The purpose of this stage is to track detections over time, associating detections to a
list of tracked targets. Since many of the false positives are intermittent, we also use
tracking to reduce the false positive rate. We arrived at a simple procedure for target
tracking that provides a full screen tracking system for high definition imagery.

First, we always maintain a list of targets, and in steady state, it is the job of
the tracker to associate to every existing target a detection. With any remaining
detections, it also decides whether to create new targets.

For each existing target we consider a set of candidate detections, which are
chosen from a wide search area around the predicted position of the target. For each
potential matching detection, we evaluate the likelihood that the target and detection
are associated given their respective descriptors.

Then, given a list of the likelihoods for the possible pairings we construct a graph
with a node for each target and each detection, and edges between possible pairings,
where the weights are the log likelihoods of pairings.

We construct a cost matrix, whose rows correspond to targets, columns to detec-
tions, and entries are the log likelihoods of the potential pairing, with −∞ given to
non-candidate pairings. The goal is to choose entries from the matrix, no more than
one from every row and no more than one from every column such that the sum
of probabilities is a maximum. We use the Hungarian algorithm (16) to find this
matching. For the number of targets we typically have, usually less than 200, this
computation can be computed in less than 8 milliseconds.

4 Data Collection and Results

Collaborating with the Penn State Electro-Optics Center (EOC), we collected ground
to air imagery of aircraft with ten different camera/lens combinations. Four different
infra-red cameras were also used to acquire imagery. The EOCs Payload Develop-
ment Center, a comprehensive aerial systems integration lab (located on the field at
the Jimmy Stewart Airport, Indiana, PA), was utilized to provide hardware, testing
and technical support, and flight operations.
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Table 1 Shows the number of false positives per frame for Stage 1 and Stage 3 as a function
of the true positive percentage. Stage 3 reduces the false positive rate by a factor between 6
and 17 times as Stage 1

TP % Stage 1
FP/frame

Stage 3
FP/frame

FP Reduction
Factor

95% 120 20 5.9×
90% 66 3.9 17×
80% 14 1.0 14×
70% 8 0.66 12×
60% 6.2 0.56 11×

We tracked a Piper Archer II flying in the air from the ground with cameras
mounted on pan tilt unit and synchronised with the geolocation of the aircraft so
that it always remained in field of view of the cameras.

In Fig.5 we show the pattern the intruder aircraft flew as we gathered imagery. Till
date we have collected 2.5 terabytes of imagery of which in 2 terabytes the position
of the aircraft has been picked out manually for ground truth purposes. This corpus
of real imagery has been used to analyze the performance of our algorithm.

We evaluated the performance of each stage of the algorithm using receiver oper-
ator characteristic curves (ROC) curves, which measure specificity ( ability to reject
outliers ) and sensitivity ( ability to detect true target ) of a detector on about 2
terabytes of imagery of above the horizon flying aircraft.

Stage 3 improves the false positive rate by a factor between 6 and 17 depending
on the detection rate over Stage 1. Refer Table.1 . We get a vast improvement with
tracking in Stage 4. In the case of both Stage 1 and Stage 3 the variable affecting
rates is a threshold. For Stage 1, the threshold is the value returned by the morpho-
logical filter at the detection. For Stage 3, the threshold is the probability according
to the SVM classifier, that the detection is a target.

Fig.6 on the left shows the ROC curve for Stage 1, Stage 3 and Stage 4 of the
algorithm. Whereas before the value affecting performance was a threshold on the
output of a filter or classifier, in this case the threshold is the number of frames for
which a target has been tracked. It is to be noted that the best overall detection rate
of Stage 4 is higher than the best overall detection rate of Stage 3, even though it
is based on the output of Stage 3. We believe that this is a temporal effect, in that
detections that are intermittently below threshold, are picked up by the tracker. The
detection rate decreases slightly at closer ranges. This is due to the fact that the
algorithms were not optimized for close ranges.

Fig.6 on the right shows the effects of the variance of the minimum number
of frames that a potential target has to be tracked for before being declared as a
target. The points on the curve are the number of frames that a target has to have
been tracked for, for it to be declared a possible target. In our experiments we let
this threshold go up to 30 frames, at which point the false positive rate was 0.014
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Fig. 6 Figure on the left shows the ROC curve for true positive and false positive for the 3
main stages of the algorithm on 4 mp imagery. The curve for Stage 4 shows almost perfect
detection rate with a false positive rate of as low as 0.02 per frame. Figure on the right shows
the effect of varying the minimum number of frames that a potential target has to be tracked
for before being declared as a target in Stage 4. This curve is very flat as most true positives
have long tracks and false positives have short tracks.

FP/frame and detection rate was 92%. It is to be noted that this curve is very flat.
Most of the true positives have long tracks and almost all outliers have short tracks.

Overall there is a significant decrease in the number of false positives per frame.
We add to Table.1 the results of Stage 4 and present them in Table.2. The entries
for detection rates below 95% are not filled in because we chose not to evaluate the
threshold frames beyond 30. If we had, the detection rate would have eventually
fallen. We find that tracking in Stage 4 improves the false positive rate by a factor
of over 500 times over Stage 3.

We found a reasonable compromise in false positive and true positive rate when
we insisted that targets be tracked for at least 10 frames. Then the overall detection
rate was 95%, the false positive rate was 0.05 false positives per frame. The detection
rate is nearly 100% between 2.5 and 3.75 miles.

Table 2 Performance of various stages of the algorithm. Stage 4 achieves a false positive
reduction rate of 571 times over Stage 1

TP % Stage 1
FP/frame

Stage 3
FP/frame

Stage 4 FP/frame FP Reduction
Factor

97% - - 7.3 -
95% 120 20 0.035 571×
90% 66 3.9 - -
80% 14 1.0 - -
70% 8 0.66 - -
60% 6.2 0.56 - -



122 D. Dey et al.

About 80% of the false positives that made it through the tracking of at least
10 frames were items that are of interest to collision avoidance. Most of the false
positives were birds or landmarks on the ground that were not segmented out by the
horizon detector (e.g. an antenna in the distance). These targets are of interest and
could be considered useful.

We have developed and demonstrated a vision based algorithm that achieves a
reasonable true positive rate of approximately 98% out to 5 statute miles and a
false positive rate of 1 in every 50 frames which exceeds the FAA (8) regulatory
requirement of reliable detection out to 3 statute miles.

5 Future Work

Currently, our system detects bearing to targets that must be avoided. An important
extension will be to estimate range to the target so that precise maneuvers can be
planned. We are currently investigating active ranging systems that can be pointed
at potential targets, to estimate range and further reduce false positives.

Fusing infrared imagery with visible spectrum imagery and collecting below
horizon imagery are areas we need to address.

Although the current algorithm takes about 0.8 seconds per 4 mp frame on an
AMD Athlon X2 3800+ processor, most of the computation is image processing and
hence amenable to parallelization. Specialized hardware like Digital Signal Proces-
sors are promising.

All of the above issues affect how a collision detection and warning system
should be designed so as to cover the desired field-of-regard.
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Multiclass Multimodal Detection and Tracking
in Urban Environments�

Luciano Spinello, Rudolph Triebel, and Roland Siegwart

Abstract. This paper presents a novel approach to detect and track pedestrians and
cars based on the combined information retrieved from a camera and a laser range
scanner. Laser data points are classified using boosted Conditional Random Fields
(CRF), while the image based detector uses an extension of the Implicit Shape
Model (ISM), which learns a codebook of local descriptors from a set of hand-
labeled images and uses them to vote for centers of detected objects. Our extensions
to ISM include the learning of object sub-parts and template masks to obtain more
distinctive votes for the particular object classes. The detections from both sen-
sors are then fused and the objects are tracked using an Extended Kalman Filter
with multiple motion models. Experiments conducted in real-world urban scenarios
demonstrate the usefulness of our approach.

1 Introduction

One research area that has turned more and more into the focus of interest during
the last years is the development of driver assistant systems and (semi-)autonomous
cars. In particular, such systems are designed for operation in highly unstructured
and dynamic environments. Especially in city centers, where many different kinds
of transportation systems are encountered (walking, cycling, driving, etc.), the re-
quirements for an autonomous system are very high. One key prerequisite for such
systems is a reliable detection and distinction of dynamic objects, as well as an ac-
curate estimation of their motion direction and speed. In this paper, we address this
problem focusing on the detection and tracking of pedestrians and cars. Our system
is a robotic car equipped with cameras and a 2D laser range scanner. As we will
show, the use of different sensor modalities helps to improve the detection results.
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The system we present here employs a variety of different methods from machine
learning and computer vision, which have been shown to provide good detection
rates. We extend these methods obtaining substantial improvements and combine
them into a complete system of detection, sensor fusion and object tracking. We use
supervised-learning techniques for both kinds of sensor modalities, which extract
relevant information from large hand-labeled training data sets. In particular, the
major contributions of this work are:

• Several extensions to the vision based object detector by Leibe et al. [13] using a
feature based voting scheme denoted as Implicit Shape Models (ISM). Our major
improvements to ISM are the subdivision of objects into sub-parts to obtain a
more differentiated voting, the use of template masks to discard unlikely votes,
and the definition of superfeatures that exhibit a higher evidence of an object’s
occurrence and are more likely to be found.

• The application and combination of boosted Conditional Random Fields (CRF)
for classifying laser scans with the ISM based detector using vision. We use an
Extended Kalman Filter (EKF) with multiple motion models to fuse the sensor
information and to track the objects in the scene.

This paper is organized as follows. The next section describes work that is related
to ours. Sec. 3 gives a brief overview of our overall object detection and tracking
system. In Sec. 4, we introduce the implicit shape model (ISM) and present our
extensions. Sec. 5 describes our classification method of 2D laser range scans based
on boosted Conditional Random Fields. Then, in Sec. 6 we explain our EKF-based
object tracker. Finally, we present experiments in Sec. 7 and conclude the paper.

2 Related Work

Several approaches can be found in the literature to identify a person in 2D laser data
including analysis of local minima [19, 23], geometric rules [24], using maximum-
likelihood estimation to detect dynamic objects [10], using AdaBoost on a set
of geometrical features extracted from segments [1], or from Delaunay neighbor-
hoods [20]. Most similar to our work is that of Douillard et al. [5] who use Condi-
tional Random Fields to classify objects from a collection of laser scans. In the area
of vision-based people detection, there mainly exist two kinds of approaches (see
[9] for a survey). One uses the analysis of a detection window or templates [8, 4],
the other performs a parts-based detection [6, 11]. Leibe et al. [13] present a peo-
ple detector using Implicit Shape Models (ISM) with excellent detection results in
crowded scenes. In earlier works, we showed already extensions of this method with
a better feature selection and an improved nearest neighbor search [21, 22].

Existing people detection methods based on camera and laser data either use hard
constrained approaches or hand tuned thresholding. Zivkovic and Kröse [25] use a
learned leg detector and boosted Haar features from the camera images and employ
a parts-based method. However, both their approach to cluster the laser data using
Canny edge detection and the use of Haar features to detect body parts is hardly
suited for outdoor scenarios due to the highly cluttered data and the larger variation
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of illumination. Schulz [18] uses probabilistic exemplar models learned from train-
ing data of both sensors and applies a Rao-Blackwellized particle filter (RBPF) to
track a person’s appearance in the data. However, in outdoor scenarios illumination
changes often and occlusions are very likely, which is why contour matching is not
appropriate. Also, the RBPF is computationally demanding, especially in crowded
environments. Douillard et al. [5] also use image features to enhance the object de-
tection but they do not consider occlusions and multiple image detection hypotheses.

3 Overview of Our Method

Our system consists of three main components: an appearance based detector that
uses the information from camera images, a 2D-laser based detector providing
structural information, and a tracking module that uses the combined information
from both sensor modalities and provides an estimate of the motion vector for each
tracked object. The laser based detection applies a Conditional Random Field (CRF)
on a boosted set of geometrical and statistical features of 2D scan points. The
image based detector extends the multiclass version of the Implicit Shape Model
(ISM)[13]. It only operates on a region of interest obtained from projecting the
laser detection into the image to constrain the position and scale of the detected
objects. Then, the tracking module applies an Extended Kalman Filter (EKF) with
two different motion models, fusing the information from camera and laser. In the
following, we describe the particular components in detail.

4 Appearance Based Detection

Our vision-based people detector is mostly inspired by the work of Leibe et al. [13]
on scale-invariant Implicit Shape Models (ISM). In summary, an ISM consists in
a set of local region descriptors, called the codebook, and a set of displacements
and scale factors, usually named votes, for each descriptor. The idea is that each
descriptor can be found at different positions inside an object and at different scales.
Thus, a vote points from the position of the descriptor to the center of the object
as it was found in the training data. To obtain an ISM from labeled training data,
all descriptors are clustered, usually using agglomerative clustering, and the votes
are computed by adding the scale and the displacement of the objects’ center to the
descriptors in the codebook. For the detection, new descriptors are computed on a
test image and matched against the descriptors in the codebook. The votes that are
cast by each matched descriptor are collected in a 3D voting space, and a maximum
density estimator is used to find the most likely position and scale of an object.

In the past, we presented already several improvements of the standard ISM ap-
proach (see [21, 22]). Here, we show some more extensions of ISM to further im-
prove the classification results. These extensions concern both the learning and the
detection phase and are described in the following.
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4.1 ISM Extensions in the Learning Phase

Sub-Parts: The aim of this procedure is to enrich the information from the voters
by distinguishing between different object subparts from which the vote was cast.
We achieve this by learning a circular histogram of interest points from the training
data set for each object class. The number of bins of this histogram is determined
automatically by using k-means clustering. The final number of clusters, here de-
noted as q, is obtained using the Bayesian Information Criterion (BIC). Note that
this subpart extraction does not guarantee a semantical subdivision of the object
(i.e.: legs, arms, etc. for pedestrians) but it is interesting to see that it nevertheless
resembles this automatically without manual interaction by the user (see Fig. 1, left
and center).

Template Masks: In the training data, labeled objects are represented using a binary
image named segmentation mask. This mask has the size of the object’s bounding
box and is 1 inside the shape of the object and 0 elsewhere. By overlaying all these
masks for a given object class so that their centers coincide and then averaging over
them, we obtain a template mask of each object class (see Fig. 1, left and center).
This method is more robust against noise than, e.g., Chamfer matching [3], and does
not depend on an accurate detection of the object contours. We use the template
mask later to discard outlier votes cast from unlikely areas.

Superfeatures: The original ISM maintains all features from the training data in the
codebook as potential voters and does not distinguish between stronger and weaker
votes. This has the disadvantage that often too many votes are cast, even if an oc-
curance of the object is not likely given the training data, and leads to many false
positive detections. To overcome this, we propose to extract superfeatures from the
training data, i.e. descriptor vectors that cast a stronger vote than standard features.
We keep these superfeatures in a separate codebook to avoid clutter in the implemen-
tation. A superfeature is defined by a local density maximum in descriptor space,
where only feature vectors are considered that correspond to interest points from a
dense area in the image space (in x, y, and scale). This definition ensures that for
superfeatures a high evidence of the occurrence of the object is combined with a
high probability to encounter an interest point. We compute superfeatures by first
employing mean shift estimation on all interest points found in the training data set
for each class, and then clustering the feature vectors in descriptor space that cor-
respond to the interest points from the found areas of high density. This clustering
is done agglomeratively. In the end, we select the 50% of the cluster centers that
correspond to the biggest clusters. The right part of Fig. 1 shows an example. Note
that the superfeatures inherently reflect the skeleton of the object.

4.2 ISM Extensions in the Inference Phase

Sub-Parts and Template Masks: After collecting all the votes for a given set of ex-
tracted input features from a test image, we first discard the ones that are implausible
by placing the template mask at the potential object centers and removing the votes
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Fig. 1 Left and Center: Sub-parts, depicted in colored slices, and template masks, in white.
They are computed from the training set. Note that even though the subparts are computed
unsupervised, they exhibit some semantic interpretation. Right: Superfeatures are stable fea-
tures in image and descriptor space. This figure shows Shape Context descriptors at Hessian
interest points (in red) for the class ’pedestrian’. The position of the superfeatures are depicted
in green.

that are cast from outside the mask. For the remaining ones we find the maximum
density point m using mean shift and insert all votes for m into a circular histogram
with q bins: one per sub-part of the object. We denote each such histogram as a
hypothesis h = (h1, . . . ,hq) of an object’s position. The strength σ of a hypothesis
is defined as the sum of all bins, i.e. the number of all voters for the object center.
To find the best hypothesis we define a partial order ≺ based on a function Δh:

hi ≺ h j ⇔ Δh(hi,h j) < 0 where Δh(hi,h j) :=
q

∑
k=1

sign(hi
k − h j

k). (1)

Using this, we select the hypothesis with the highest order (in case of ambiguity
we use the one with the highest strength) for each class. Then, we find the best
hypothesis across all classes as described below, remove all its voters and recompute
the ordering. This is done until a minimum hypothesis strength σmin is reached.
Thus, the parameter σmin influences the number of false positive detections.

Superfeatures: Superfeatures and standard features vote for object centers in the
same voting space, but the votes from superfeatures are weighted higher (in our
case by a factor of 2). Thus, the score of a hypothesis is higher if the fraction of
superfeatures voting for it is higher. In some cases where an object’s shape visibility
is low only superfeatures might be used to obtain a very fast detection.

Best Inter-Class Hypothesis: As mentioned above, we need to rate the best object
hypotheses from all classes. To be independent on an over- or under-representation
of a class in the codebooks, we do this by comparing the relative areas covered
by the voters from all class hypotheses. More precisely, we define a square area γ
around each voter that depends on the relative scale of the descriptor, i.e. the ratio
of the test descriptor’s scale and that of the found descriptor in the codebook. The
fraction of the area covered by all voters of a hypothesis and the total area of the
object (computed from the template mask) is then used to quantify the hypothesis.
Care has to be taken in the case of overlapping class hypotheses. Here, we compute
the set intersection of the interest points in the overlapping area and assign their
corresponding γ values alternately to one and the other hypothesis.
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5 Structure Based Detection

For the detection of objects in 2D laser range scans, several approaches have been
presented in the past (see for example [1, 16]). Most of them have the disadvantage
that they disregard the conditional dependence between data points in a close neigh-
borhood. In particular, they can not model the fact that the label li of a given scan
point zi is more likely to be l j if we know that l j is the label of z j and z j and zi are
neighbors. One way to model this conditional independence is to use Conditional
Random Fields (CRFs) [12], as shown by Douillard et al. [5]. CRFs represent the
conditional probability p(y | z) using an undirected cyclic graph, in which each node
is associated with a hidden random variable li and an observation zi. In our case, the
li is a discrete label that ranges over 3 different classes (pedestrian, car and back-
ground) and the observations zi are 2D points in the laser scan. At this point we omit
the mathematical details about CRFs and refer to the literature (e.g. [5, 17]). We only
note that for training the CRF we use the L-BFGS gradient descent method [14] and
for the inference we use max-product loopy belief propagation.

We use a set of statistical and geometrical features fn for the nodes of the CRF,
e.g. height, width, circularity, standard deviation, kurtosis, etc. (for a full list see
[20]). We compute these features in a local neighborhood around each point, which
we determine by jump distance clustering. However, we don’t use this features di-
rectly in the CRF, because, as stated in [17] and also from our own observation,
the CRF is not able to handle non-linear relations between the observations and the
labels. Instead, we apply AdaBoost [7] to the node features and use the outcome as
features for the CRF. For our particular classification problem with multiple classes,
we train one binary AdaBoost classifier for each class against the others. As a re-
sult, we obtain for each class k a set of M weak classifiers ui (decision stumps) and
corresponding weight coefficients αi so that the sum

gk(z) :=
M

∑
i=1
αiui(f(z)) (2)

is positive for observations assigned with the class label k and negative otherwise.
We apply the inverse logit function a(x)= (1+e−x)−1 to gk to obtain a classification
likelihood. Thus, the node features for a scan point zi and a label li are computed as
fn(zi, li) = a(gli(zi)). For the edge features fe we compute two values, namely the
Euclidean distance d between the points zi and z j and a value gi j defined as

gi j(zi,z j) = sign(gi(zi)g j(z j))(|gi(zi)|+ |g j(z j)|). (3)

This feature has a high value if both zi and z j are equally classified (its sign is
positive) and low otherwise. Its absolute value is the sum of distances from the
decision boundary of AdaBoost where g(z) = 0. Thus, we define the edge features as

fe(zi,z j, li, l j) =
{(

a(d(zi,z j)) a(gi, j(zi,z j))
)T

if li = l j

(0 0)T otherwise.
(4)
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The intuition behind Eq. (4) is that edges that connect points with equal labels have
a non-zero feature value and thus yield a higher potential.

6 Object Tracking and Sensor Fusion

To fuse the information from camera and laser and for object tracking we use an Ex-
tended Kalman Filter (EKF) as presented in [21]. In our implementation, we use two
different motion models – Brownian motion and linear velocity – in order to cope
with pedestrian and car movements. The data association is performed in the camera
frame: we project the detected objects from the laser scan into the camera image.
Assuming a fixed minimal object height, we obtain a rectangular search region, in
which we consider all hypotheses from the vision based detector for the particular
object class. Using a previously calibrated distance r0 of an object at scale 1.0 (us-
ing the normalized training height), we can estimate the distance rest of a detected
object in the camera image by multiplying r0 with the scale of the object. Then, rest

is compared to the measured distance rmeas from the laser and both detections are
assigned to each other if |rmeas − rest | is smaller than a threshold τd (in our case 2m).

We track cluster centers of gravity in the 2D laser frame using two system states:

xm1 = 〈(xcog,ycog),(vcog
x ,vcog

y ),(c1, . . . ,cn)〉 and xm2 = 〈(xcog,ycog),(c1, . . . ,cn)〉,

one for each motion model. Here, (vcog
x ,vcog

y ) is the velocity of the cluster centroid
(xcog

x ,ycog
y ) and c1, . . . ,cn are the probabilities of all n classes. We use a static state

model where the observation vector w consists of the position of the cluster and the
class probabilities for each sensor modality:

w = 〈x̂cog, ŷcog,(c1, . . . ,cn)1, . . . ,(c1, . . . ,cn)s〉. (5)

Here, (x̂cog, ŷcog) is a new observation of a cluster center and s denotes the number of
sensors. The matrix H models the mapping from states to the predicted observation
and is defined as H = (PT ST

1 . . .ST
s )T , where P maps to pose observations and the

Si map to class probabilities per sensor. For example, for one laser, one camera and
constant velocity we have

P =
(

1 0 0 0 0 0
0 1 0 0 0 0

)
S1 = S2 =

(
0 0 0 0 1 0
0 0 0 0 0 1

)
. (6)

7 Experimental Results

To acquire the data, we used a car equipped with two CCD cameras and a 2D laser
range finder mounted in front (see Fig. 2, right). The 3D transform between the laser
and the camera coordinate frame was calibrated beforehand. We acquired training
data sets for both sensor modalities. For the camera, we collected images of pedes-
trians and cars that we labeled by hand. The pedestrian data set consists of 400
images of persons with a height of 200 pixels in different poses and with different



132 L. Spinello, R. Triebel, and R. Siegwart

Fig. 2 Left: For car classification, we use codebooks from 7 different views. For training,
mirrored images are included for each view to obtain a wider coverage. Center: For pedes-
trians we use 2 codebooks of side views with mirroring. Lateral views have sufficient infor-
mation to generalize frontal/back views. Right: Setup used for the city data set. Only a small
overlap of the cameras’ field of view is used to cover a larger part of the laser scans. No stereo
vision is used in this work.

clothing and accessories such as backpacks and hand bags in a typical urban en-
vironment. The class ’car’ was learned from 7 different viewpoints as in [13] (see
also Fig. 2, left). Each car data set consists of 100 pictures from urban scenes with
occlusions. Car codebooks are learned using Shape Context (SC) descriptors [2] at
Hessian-Laplace interest points [15]. The pedestrian codebook uses lateral views
and SC descriptors at Hessian-Laplace and Harris-Laplace interest points for more
robustness. Experience shows [13] that lateral views of pedestrians also generalize
well to front/back views. Our laser training data consists of 800 annotated scans
with pedestrians, cars and background. There is no distinction of car views in the
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Fig. 3 Quantitative evaluation. Upper row: pedestrian detection, Lower row: car detection.
From left to right we show the results only using camera, only using laser, and both. As we
can see, our approach outperforms the other methods for both sensor modalities. The image
based detection is compared with standard ISM, our first extension of ISM (ISMe1.0) and
AdaBoost with Haar features. Our CRF-based laser detector is compared with AdaBoost. We
can also see that the combination of both sensors improves the detection result of both single
sensors.
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Fig. 4 Cars and pedestrian detected and tracked under occlusion, clutter and partial views.
In the camera images, upper row, blue boxes indicate car detections, orange boxes pedestrian
detections. The colored circle on the upper left corner of each box is the track identifier.
Tracks are shown in color in the second row and plotted with respect to the robot reference
frame.

laser data as the variation in shape is low. The range data consists in 4 layers where
each has an angular resolution of 0.25◦ and a maximum range of 15m.

To quantify the performance of our detector we acquired two datasets containing
cars and pedestrians. The results of our detection algorithm are shown in Fig. 3.
Our vision based detecion named ISMe2.0 is compared to the standard ISM, our
previous extension ISMe1.0, and for the pedestrian class, with AdaBoost trained on
Haar features (ABH). For the class ’car’, we averaged the results over all different
views. We can see that our method yields the best results with an Equal Error Rate
(EER) of 72.3% for pedestrians and 74% for cars. The improvements are mainly
due to a decreased rate of false positive detections. The results of our laser based
detection are shown in the middle column of Fig. 3. We can see that our approach
using boosted CRFs performs better than standard AdaBoost. The right column of
Fig. 3 depicts the results for the combined detection using laser and vision. These
graphs clearly show that using both sensors the number of false positive detections
decreases and the hit rate increases. Some qualitative results are shown in Fig. 4
where a passing car and a crossing pedestrian are correctly detected and tracked.

In addition, we evaluated our algorithm on a third, more challenging dataset ac-
quired in the city of Zurich. It consists of 4000 images and laser scans. The equal
error rates of this experiment resulted in 64.1% (laser-only), 64.1% (vision-only)
and 68% (combined) for pedestrians, and in (72.2%,73.5%,75.7%) for cars. As
a comparison, we evaluated the state-of-the-art pedestrian detector based on His-
togram of Oriented Gradients [4] and ABH obtained an EER of 36.4 and 8.9.

8 Conclusions

We presented a method to reliably detect and track multiple object classes in out-
door scenarios using vision and 2D laser range data. We showed that the overall
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performance of the system is improved using a multiple-sensor system. We pre-
sented several extensions to the ISM based image detection to cope with multiple
classes. We showed that laser detection based on CRFs performs better than a sim-
pler AdaBoost classifier and presented tracking results on combined data. Finally,
we showed the usefulness of our approach through experimental results on real-
world data.
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Vision-Based Vehicle Trajectory Following with
Constant Time Delay

Hien K. Goi, Timothy D. Barfoot, Bruce A. Francis, and Jared L. Giesbrecht

Abstract. A convoy problem is formulated and solved for two four-wheeled ve-
hicles. The task is for the second vehicle to follow the leader’s trajectory with a
constant time delay. This delayed trajectory can be viewed as the trajectory of a
delayed leader. This novel constant-time-delay concept allows for the estimation
of the delayed leader’s speed and heading using the vehicle kinematics. Decoupled
longitudinal and lateral controllers are developed based on the constant-time-delay
approach. The lateral controller includes a look-ahead feature to compensate for
steering delays. Successful field trials were conducted with full-sized military vehi-
cles on a 1.3-kilometre test track. The tracking errors from differential global posi-
tioning system (DGPS) ground truth covering 13 kilometres are presented.

1 Introduction

Motivating our research is a military scenario in which a vehicle convoy traverses
hostile territory to deliver supplies. Naturally, equipping every vehicle in the con-
voy with armour that will protect its occupants is expensive. To reduce the cost,
autonomous unarmoured supply vehicles may be used, whereby each autonomous
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vehicle would follow the trajectory of the vehicle ahead of it. To follow the vehicle
ahead, an autonomous vehicle can sometimes take advantage of a global positioning
system (GPS), inter-vehicle communications, and/or lane markers/magnets. How-
ever, since the vehicle convoy is in hostile territory, GPS signals may be jammed,
inter-vehicle communications may be intercepted, the roads may be unstructured.

Based on this motivating example, our project goal is to design and test a control
system to allow a convoy of full-sized autonomous vehicles with large inter-vehicle
spacing to follow the lead vehicle’s trajectory without cutting corners on turns. The
control system should use only on-board sensors, avoiding the use of GPS, inter-
vehicle communications, and lane markers/magnets. This paper reports our prelim-
inary experimental results performed on two full-sized vehicles where the leader
vehicle is manually driven and the follower vehicle is autonomously controlled. In
our field trials to date, we do not use lane marker/magnets or radio communications
between vehicles. However, we do use GPS to measure the follower’s position due
to a poor odometry system.

To our knowledge, there have been only a few prior experimental works relevant
to our project goal. The most relevant is Gehrig and Stein [4], who tested a path-
following strategy that, with the addition of autonomous speed control, could poten-
tially follow the leader’s trajectory at large distances without cutting corners. Their
‘Control Using Trajectory’ (CUT) algorithm stores the time history of the leader’s
path and steers towards the leader’s position that is a constant distance ahead of
the follower’s current position. Although Gehrig and Stein’s experiments showed
improvements in tracking the leader’s path over a system without CUT, the experi-
mental data was limited to less than 15 seconds.

Other experimental works that use only on-board sensors include Benhimane et
al. [1], Franke et al. [3], and Kehtarnavaz et al. [6]. Benhimane et al. developed a
vehicle-following system with the objective of tracking a virtual leader a constant
distance behind the leader. However, since the trajectory of the leader is not stored,
the follower may cut corners on turns. Furthermore, their experimental data was
limited to 2 minutes, and the maximum follower speed was 1 m/s. Both Franke et
al. and Kehtarnavaz et al. had vehicle-following systems that were based on the fol-
lower’s range and bearing to the leader. As such, both implemented steering controls
that simply steered toward the leader. Such steering controls are known to deviate
from the leader’s path [4].

Daviet and Parent [2] also performed vehicle-following experiments without us-
ing inter-vehicle communications. Their vehicles travelled up to 10 m/s, but the
corresponding distance separation was only 4.5 metres, and the experimental data
shown was for only 30 seconds. They also used the strategy of simply steering to-
wards the leader, but they do suggest storing the leader’s trajectory in a future imple-
mentation. Although Schneiderman et al. [8] used radio communications, the radio
link was used to interact with the follower’s computer system. They demonstrated
a path-following system with a 33-kilometre traverse at speeds of 13.9 to 20.8 m/s
and at following distances of 5 to 15 metres. However, only the steering was au-
tonomous, and the follower did not store the leader’s path.



Vision-Based Vehicle Trajectory Following with Constant Time Delay 139

1.1 Problem Formulation

To meet our project goal, we take a novel approach to tracking the leader’s trajectory.
Our objective is for the follower to track the planar trajectory of the leader delayed
by a constant time, τ . Specifically, if (x(t),y(t)) is the position of the follower with
respect to an inertial frame and (x0(t),y0(t)) is the position of the leader with re-
spect to the same frame, then we want (x(t),y(t)) to track (x0(t − τ),y0(t − τ)). For
brevity, we define the delayed leader position, (x0(t −τ),y0(t −τ)), as (xd(t),yd(t)).
The leader, delayed leader, and follower are shown in Fig. 1a. It is important to note
that our definition is different from the constant time headway [9] definition. The
tracking error in our definition is with respect to the leader’s delayed position, while
the tracking error in constant time headway is with respect to the leader’s current
position.

x

y

(x(t), y(t))

Leader

Delayed Leader

Follower

(x0(t), y0(t))

(xd(t), yd(t)) := (x0(t − τ ), y0(t − τ ))

Leader

Follower

x

y

ρ

φ

θ

(x, y)

(x0, y0)

b.a.

Fig. 1 (a) Leader, delayed leader, and follower in an inertial frame. (b) The leader’s and
follower’s positions are related by the follower’s heading, θ , and the range, ρ , and bearing,
φ , to the leader.

There are two main advantages to our approach: 1) tracking the delayed leader
provides us with ‘future’ delayed-leader positions since we have measurements up
to the leader’s current position; and 2) the following distance varies based on the
leader’s speed. The first advantage allows us to track the leader’s trajectory without
having to measure the leader’s speed or heading. Instead, the delayed leader’s speed
and heading are estimated using the delayed leader’s future positions. Having future
position measurements also allows our system to use interpolation to handle the oc-
casional data dropout, which is to be expected with a vehicle-following system on
bumpy roads. Due to space limitations, the details of our interpolation technique
are not discussed in this paper. The second advantage naturally causes the follow-
ing distance to be smaller when the leader slows down on difficult portions of the
road, e.g., turns and rough terrain. The smaller following distance allows for more
accurate measurements of the leader’s position, which will help the tracking during
those difficult portions.



140 H.K. Goi et al.

2 System Architecture and Design

Given the problem formulation, the follower requires a means to localize its posi-
tion, (x,y), and heading, θ , relative to an inertial frame. This localization can be
done using GPS or wheel odometry. Since the convoy is to operate in hostile ter-
ritory, our preference is to use wheel odometry. To measure the leader’s relative
position, we use a pan-tilt-zoom monocular camera system with a colour tracker
to servo around a coloured target on the back of the leader [5]. Knowing the off-
sets between the camera and the follower’s rear axle and between the target and the
leader’s rear axle, we can obtain the range, ρ , and bearing, φ , to the leader from the
camera’s output, as shown in Fig. 1b.

A top level diagram of our vehicle control system is shown in Fig. 2. The camera
system outputs the range and bearing to the leader. The odometry measures the fol-
lower’s speed and steering, (v,γ), and provides estimates of the follower’s position
and heading, (x̂, ŷ, θ̂ ). The range, bearing, and odometric estimates are fed into a
nonlinear observer to produce estimates of the delayed leader’s position, heading,
and speed, (x̂d, ŷd, θ̂d, v̂d), along with estimates of a look-ahead point’s position and
heading, (x̂l, ŷl, θ̂l). These estimates are used by the control laws to produce the com-
manded speed and steering, (vc,γc), which are the inputs to the follower. The details
of the vehicle model for the follower, the control laws, and the nonlinear observer
are provided in the following subsections.

⎡⎢⎢⎣
x̂d, x̂l

ŷd, ŷl

θ̂d, θ̂l

v̂d

⎤⎥⎥⎦[
ρ
φ
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]

Odometry

⎡⎣x̂
ŷ

θ̂

⎤⎦
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Observer

⎡⎣x
y
θ

⎤⎦[
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γc

]
Control
Laws Follower
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System

[
v
γ
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Fig. 2 Top level diagram of vehicle control system.

2.1 Follower Vehicle Model

For the vehicle kinematics, we chose the bicycle model, which is given by

ẋ = vcosθ , ẏ = vsinθ , θ̇ =
v
d

tanγ ,

where (x,y) is the position of the rear axle, θ is the vehicle’s heading, d is the dis-
tance between the front and rear axles, v is the vehicle’s speed, and γ is the vehicle’s
steering angle. We derived a local linear model by examining the longitudinal and
lateral tracking errors, (e1,e2), in the follower’s frame. The tracking errors are de-
fined to be [

e1

e2

]
:=

[
cosθ sinθ

−sinθ cosθ

][
xd − x
yd − y

]
.
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Fig. 3 (a) Inner/outer loop architecture for the follower. (b) The outer-loop controller is de-
signed by assuming the inner loop is a unity gain.

Linearizing the tracking errors and the bicycle model along a constant-velocity tra-
jectory, we obtain a local kinematic model for the follower given by

ė1 = vd − v , ė2 = vde3 , ė3 = −vd

d
γ ,

where vd is the speed of the delayed leader and e3 := θd − θ is the heading error.
For the vehicle dynamics, we assume the follower has an inner-loop controller,

Cv,γ , that stabilizes its throttle and steering dynamics1. This assumption creates an
inner/outer loop architecture where Cv,γ stabilizes the vehicle dynamics in the inner
loop and our controller controls the vehicle kinematics in the outer loop, as shown
in Fig. 3.

A common practice with the above architecture is to design the outer-loop con-
troller by treating the inner loop as a unity gain [7]. This assumption works well if
the gains of the outer-loop controller are kept low enough such that the bandwidth
of the outer loop is approximately 5 to 10 times smaller than the bandwidth of the
inner loop. As a result, the kinematic model of the follower is

ė1 = vd − vc , ė2 = vde3 , ė3 = −vd

d
γc . (1)

In our implementation, we validated the bandwidth separation between our inner
and outer loops through simulation and through the actual tuning of the gains in
experimental trials.

2.2 Control Laws

Since the longitudinal and lateral directions of (1) are decoupled, it can be shown
that choosing

1 This was the case for the vehicles that we employed.
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vc = vd + kp,1e1 , kp,1 > 0

γc = kp,2e2 + kp,3e3 , kp,2 , kp,3 > 0

will regulate the tracking errors to zero for the linearized model.
After some initial field trials, we discovered that the follower was turning late,

which caused a large lateral error. We hypothesized that the late turning was caused
by the low gains in our controller and the delays in the vehicle’s steering dynamics.
To compensate, we added a look-ahead feature for the lateral controller. We define
the look-ahead point as

(xl(t),yl(t)) := (x0(t − τ + l),y0(t − τ + l)) , 0 ≤ l ≤ τ ,

where l is a constant look-ahead time. With a look-ahead time defined, the lateral
and heading errors are computed by

e2 = −(xl − x)sinθ +(yl − y)cosθ , e3 = θl − θ ,

where θl is the heading of the look-ahead point.

2.3 Nonlinear Observer

From the control laws, it is obvious that we need estimates of the tracking and
heading errors, (e1,e2,e3), and the delayed leader’s speed, vd. The tracking and
heading errors are calculated from the state of the follower, (x,y,θ ), the state of
the delayed leader, (xd,yd,θd), and the state of the look-ahead point, (xl,yl,θl). The
delayed leader’s speed can be calculated from the delayed leader’s instantaneous
change in position, (ẋd, ẏd).

The follower’s odometry provides an estimate of its state. The delayed leader’s
position is simply the leader’s current position delayed by τ . From Fig. 1b, the
leader’s position can be computed by

x0 = x + ρ cos(φ + θ ) , y0 = y + ρ sin(φ + θ ) .

We use a data buffer to emulate the constant time delay in our implementation. The
position of the look-ahead point is calculated in the same manner.

From the bicycle kinematics, the delayed leader’s speed and heading can by cal-
culated by

vd =
√

ẋ2
d + ẏ2

d , θd = atan2(ẏd, ẋd) .

We obtain an estimate of ẋd by fitting a line to an n-second window of x0 measure-
ments centred around t − τ , where n is configurable and a multiple of the data rate
for x0. A depiction is shown in Fig. 4, where the line is fitted using least squares.
The slope of the line is then used as the estimate of ẋd. The estimate of ẏd is ob-
tained in the same manner, thus allowing us to calculate θ̂d. A similar approach is
used to estimate the look-ahead point’s heading. Plots of the estimated and actual
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Fig. 4 Estimating ẋd using a
line fitting window centred
around t − τ . The window
size is n seconds, where n is
configurable and a multiple
of the data rate for x0. The
line is fitted using least
squares, and the slope of the
line is used as the estimate
of ẋd. (t − τ )

x0

Δt

Δx0

t

ˆ̇xd = Δx0
Δt

Line Fitting Window

delayed leader’s speeds and headings during a field trial are given in the next section
to validate this windowing technique.

3 Field Trials

Field trials were conducted at Defence Research and Development Canada (DRDC)-
Suffield, Alberta, Canada, in November, 2008, with two MultiAgent Tactical Sentry
(MATS) vehicles. A picture of the MATS leader vehicle is shown in Fig. 5. The
coloured target is used by the follower’s camera system to measure the range and
bearing to the leader. Each MATS vehicle is equipped with an on-board computer,
a pan-tilt-zoom monocular camera, a GPS antenna, and a data link to a ground sta-
tion to receive DGPS corrections. The DGPS data serves to provide ground truth
for the trials. Each MATS is also equipped with odometric sensors that provide the
vehicle’s current speed and steering angle.

The test track is a 1.3-kilometre loop shown in Fig. 6. The track is a gravel road
and is approximately 7 metres wide. The most difficult portion of the track is the
60-degree hairpin turn located at the north-west corner of the track.

3.1 Odometry Localization

Tracking the delayed leader using odometry localization proved to be difficult with
the follower’s current odometric sensors. The problem stemmed from an encoder

Fig. 5 The MATS leader
vehicle. The coloured target
is used by the follower’s
camera system to measure
the range and bearing to the
leader. Each MATS vehicle
is equipped with an on-
board computer, a pan-tilt-
zoom monocular camera,
a GPS antenna, and a data
link to a ground station to
receive DGPS corrections.

GPS Antenna

PTZ Camera
On-board Computer

DGPS Corrections Link

Colour Target
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Fig. 6 The 1.3-kilometre
test track used for field
trials. The track is a gravel
road and is approximately
7 metres wide. The most
difficult portions of the
track are the U-turn and the
hairpin turn.

∼ 500 m

Hairpin

N

U-turn

Fig. 7 The follower’s actual
path in comparison with its
path estimated from odo-
metric sensors. A crowned
road caused the odometry to
produce a circular path esti-
mate when the follower was
actually traveling straight.
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located on the steering column used to measure the steering angle. Since there was
significant ‘play’ between the steering wheel and the front wheels, the steering mea-
surement did not accurately represent the angle of the front wheels and was highly
sensitive to road slope. As a result, the follower’s heading estimate was very inaccu-
rate, resulting in poor path estimates. An example is shown in Fig. 7, when tracking
with odometry localization was performed off the test track. In this case, a crowned
road caused the odometry to produce a circular path estimate when the follower was
actually traveling straight.

3.2 DGPS Localization

Using DGPS for localization of its position, the follower was able to successfully
track the delayed leader for 10 laps of the 1.3-kilometre track. A summary of the
test results is shown in Table 1. The constant time delay was set to 8 seconds, and
the look-ahead time was set to 3 seconds. The mean follower speed for the entire
traverse was 2.2 m/s (7.9 km/h), and the mean following distance was 19 metres.

Table 1 Summary of results from 10 laps of 1.3-kilometre track. The constant time delay
was set to 8 seconds, and the look-ahead time was set to 3 seconds. The controller gains
(kp,1, kp,2, kp,3) = (0.08 s−1, 0.04, 0.04). The lateral error, ε2, is calculated in the delayed
leader’s frame, and tf is the finishing time for the entire 13-kilometre traverse.

Description Symbol Value
Mean Follower Speed v 2.2 m/s (7.9 km/h)
Mean Following Distance 19 m
Mean Lateral Error ±Standard Deviation 1

tf

∫ tf
0 ε2(q)dq 0.07 m ±0.46 m

Maximum Absolute Lateral Error max
t

|ε2(t)| 2.73 m
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Fig. 8 The longitudinal and
lateral errors, (ε1,ε2), are in
the delayed leader’s frame,
and the longitudinal and
lateral errors, (e1,e2), are in
the follower’s frame.
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The mean lateral error was 0.07 metres with a standard deviation of 0.46 metres.
The maximum absolute lateral error was 2.73 metres, which occurred during one of
the turns at the hairpin. Since it is more natural to calculate an error with respect
to the reference, the lateral errors here are calculated in the delayed leader’s frame.
The difference between tracking errors in the delayed leader’s frame and tracking
errors in the follower’s frame is shown in Fig. 8.

Plots of DGPS ground truth data for a typical lap around the track are shown
in Fig. 9. Figure 9a shows the leader’s and follower’s paths, while a close-up of
the hairpin turn is shown in Fig. 9b. The longitudinal and lateral errors in the de-
layed leader’s frame are shown in Fig. 9c, along with the delayed leader’s and fol-
lower’s speeds. The simultaneous large error increases around the 50-second and
400-second marks correspond to the U-turn and the hairpin turn, respectively. It
should be noted that the longitudinal error did not get to zero during the 13-kilometre
traverse. We have fixed this issue by adding an integral gain on the longitudinal error
in the control law for the commanded speed. Unfortunately, due to time and weather
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Fig. 9 (a) The leader’s and follower’s paths. (b) A close-up of the paths during the hairpin (c)
The longitudinal and lateral tracking errors, and the delayed leader’s and follower’s speeds.
(d) The delayed leader’s speed and heading compared with their estimates from windowing.
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constraints, we have not been able to properly tune and test the follower with the
improved controller. Since the longitudinal error was always positive and our con-
trol law is vc = vd + kp,1e1, the follower’s speed was always slightly larger than the
delayed leader’s speed. However, because the follower deviated from the leader’s
path, it was never able to catch up to the delayed leader, resulting in its inability to
reduce the longitudinal error to zero. In Fig. 9d, the delayed leader’s actual speed
and heading are compared with their estimates. The similarities of the plots suggest
that windowing around t − τ yields accurate speed and heading estimates.

4 Summary and Future Work

We have introduced the novel concept of tracking the trajectory of a vehicle ahead
delayed by a constant time. This constant time delay forms the basis for our con-
troller design and allows us to use ‘future’ position measurements to estimate the
delayed leader’s speed and heading. Successful field trials were conducted with
two full-sized vehicles over a 13-kilometre traverse in which the follower vehi-
cle achieved a mean lateral error of 0.07 metres with a standard deviation of
0.46 metres.

For future work, we would like to perform vehicle-following experiments with
odometry localization. We are confident that odometry localization will work with
our approach as long as the odometric estimates are reasonably accurate over τ
(the constant time delay) seconds. To fix our poor heading estimate, we plan to
implement a heading gyro on the follower. We would also like to conduct tests with
multiple followers and at higher speeds. Testing multiple followers will provide
us with important data on how tracking errors propagate in our system. To test at
higher speeds, we plan to implement gain scheduling for our lateral controller since
our lateral closed-loop system is dependent on the delayed leader’s speed. These
tests will further validate the feasibility of our approach and will bring us closer to
an operational autonomous convoy.
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Radar Scan Matching SLAM Using the
Fourier-Mellin Transform

Paul Checchin, Franck Gérossier, Christophe Blanc,
Roland Chapuis, and Laurent Trassoudaine

Abstract. This paper is concerned with the Simultaneous Localization And Map-
ping (SLAM) problem using data obtained from a microwave radar sensor. The
radar scanner is based on Frequency Modulated Continuous Wave (FMCW) tech-
nology. In order to meet the needs of radar image analysis complexity, a trajectory-
oriented EKF-SLAM technique using data from a 360◦ field of view radar sensor
has been developed. This process makes no landmark assumptions and avoids the
data association problem. The method of egomotion estimation makes use of the
Fourier-Mellin Transform for registering radar images in a sequence, from which
the rotation and translation of the sensor motion can be estimated. In the context
of the scan-matching SLAM, the use of the Fourier-Mellin Transform is original
and provides an accurate and efficient way of computing the rigid transformation
between consecutive scans. Experimental results on real-world data are presented.

1 Introduction

Environment mapping models have been studied intensively over the past two
decades. In the literature, this problem is often referred to as simultaneous local-
ization and mapping (SLAM). For a broad and quick review of the different ap-
proaches developed to address this problem, one can consult [2], [8], [9] and [25].
Localization and mapping in large outdoor environments are applications related to
the availability of efficient and robust perception sensors, particularly with regard to
the problem of maximum range and the resistance to the environmental conditions.
Most approaches to map learning generate 2D models from range sensor data. Even
though lasers and cameras are well suited sensors for indoor environments, their
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strong sensitivity to atmospheric conditions has created an interest for doing SLAM
with radars and sonars [21]. Microwave radar provides an alternative solution for
environmental imaging and overcomes the shortcomings of laser, video and sonar
sensors. In this paper, a trajectory-oriented SLAM technique is presented using data
from a 360◦ field of view radar sensor. This radar is based on Frequency Modulated
Continuous Wave (FMCW) technology [16].

In Section 2, a review of articles related to our research interests is carried out
in order to position our work in relation to existing methods. Section 3 presents
the microwave radar scanner developed by a Cemagref research team (in the field
of agricultural and environmental engineering research) [22]. The way to obtain
a radar image (i.e. the power spectra with polar coordinates) is briefly presented.
Section 4 gives the SLAM formulation used in this paper. There, the Fourier-Mellin
Transform is applied to register images in a sequence and to estimate the rotation
and translation of the radar system (see Section 5). This process makes no landmark
assumptions, and avoids the data association problem by storing a detailed map
instead of sparse landmarks. Finally Section 6 shows experimental results of this
work, which were implemented (and tested on recorded real data) in Matlab and
C/C++. Section 7 concludes and introduces future work.

2 Related Work

2.1 In the Field of Radar Mapping

In order to perform outdoor SLAM, laser sensors have been widely used [19] [11]
[4]. A recent application with Velodyne HDL-64 3D LIDAR is presented in [13].
To provide localization and map building, the input range data is processed using
geometric feature extraction and scan correlation techniques. Less research exists
using sensors such as underwater sonar [21] and Frequency Modulated Continuous
Wave (FMCW) radar. Interestingly, this last kind of sensor was already used by
Clark in [6] at the end of the last century. In an environment containing a small
number of well separated, highly reflective beacons, experiments were led with this
sensor to provide a solution to the SLAM problem [8] using an extended Kalman
filter framework and a landmark based approach. Finally, in [17], methods were
presented for building a map with sensors that return both range and received signal
power information. An outdoor occupancy grid map related to a 30 m vehicle’s
trajectory is analyzed. So far, there seems to have been no trajectory-oriented SLAM
work based on radar information over important distances. However, vision-based,
large-area SLAM has already been carried out successfully for underwater missions,
using information filters over long distances [10] [15].

2.2 In the Field of Scan Matching SLAM

Since Lu and Milios presented their article [14] in search of a globally consis-
tent solution to the 2D-SLAM problem with three degrees of freedom poses, many
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techniques have been proposed in the literature concerning robotics as well as com-
puter vision. A common method of pose estimation for mobile robots is scan match-
ing. By solving the rigid transformation between consecutive scans from a range
sensor, the robot’s motion in the time period between the scans can be inferred. The
sensor used is most often a scanning laser range finder. One of the most popular
approaches for scan matching is the Iterative Closest Point (ICP) algorithm [3]. In
ICP, the transformation between scans is found iteratively by assuming that every
point in the first scan corresponds to its closest point in the second scan, and by cal-
culating a closed form solution using these correspondences. However, sparse and
noisy data, such as that from an imaging radar, can cause an ICP failure. A single
noisy reading can significantly affect the computed transformation, causing the es-
timated robot pose to drift over time. Other recent trends in SLAM research are to
apply probabilistic methods to 3D mapping. Cole et al. [7] use an extended Kalman
filter on the mapping problem. Olson et al. [18] have presented a novel approach
to solve the graph-based SLAM problem by applying stochastic gradient descent to
minimize the error introduced by constraints.

In its current version, our algorithm is close to the method suggested by Cole et
al. [7]. However, the Fourier-Mellin Transform for registering images in a sequence
is used to estimate the rotation and translation of the radar sensor motion (see Sec-
tion 5). In the context of scan-matching SLAM, the use of the Fourier-Mellin Trans-
form is original and provides an accurate and efficient way of computing the rigid
transformation between consecutive scans. It is a global method that takes into ac-
count the contributions of both range and power information of the radar image.

3 A Microwave Radar Scanner

The exploited radar uses the frequency modulation continuous wave (FMCW) tech-
nique which has been known for several decades [23][16]. Frequency modulation
presents two advantages for mobile robotics application, where distances are hun-
dreds of meters [22]. First, it permits a low transmission power, which is safer for
the user (the mean power determines the range). Second, a transposition of tempo-
ral variables into the frequency domain allows to obtain the measure more easily (a
very short delay time Δ t is switched to a broad variation of frequency Δ f ).

The FMCW radar is called K2Pi (2π for panoramic - in K band). A general
view of the radar is presented in Figure 1 and its main characteristics are listed in
Table 1. The radar is equipped with a rotating antenna in order to achieve a complete
360◦ per second monitoring around the vehicle, with an angular resolution of 3◦, in
the 3-100 m range. The image construction is based on the classical Plan Position
Indicator (PPI) representation, i.e. the power spectra with polar coordinates. An
example of radar images is presented in Figure 1. Variations of shading indicate
variations of amplitude in the power spectra. These images are "radar referenced":
the heading indications are related to the internal encoder of the radar and not to the
earth’s magnetic field.
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Fig. 1 Left side. The K2Pi FMCW radar. All the radar components are implemented in the
same housing: microwave components, electronic devices for emission and reception, and the
data acquisition and signal processing unit. The radar is mono-static: a single antenna, pro-
tected by a radome, is used for both transmitting and receiving. Right side. Two consecutive
radar images ((a) & (b)) that are fairly similar.

Table 1 Characteristics of the K2Pi FMCW radar.

Carrier frequency F0 24 GHz
Transmitter power Pt 20 dBm
Antenna gain G 20 dB
Bandwidth 250 MHz
Angular resolution 3◦
Angular precision 0.1◦
Range Min/Max 3 m/100 m
Distance resolution 0.6 m
Distance precision (canonical target at 100 m) 0.05 m
Size (length-width-height) 27-24-30 cm
Weight 10 kg

4 Problem Formulation

4.1 SLAM Process

The used formulation of the SLAM problem is to estimate the vehicle trajectory

defined by the estimated state xk =
[
xT

vk
,xT

vk−1
, . . . ,xT

v1

]T
. xvi = [xi,yi,φi]

T is the state

vector describing the location and orientation of the vehicle at time i. There is no
explicit map; rather each pose estimate has an associated scan of raw sensed data
that can be next aligned to form a global map.

4.2 Radar Scan Matching SLAM

The developed approach for a SLAM process is based on the following observation:
two consecutive radar images are very similar to the "eye" point of view. For that
reason a matching approach based on cross correlation function was selected [1].
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Scan matching is the process of translating and rotating a radar scan such that a
maximal overlap with another scan emerges. Assuming this alignment is approxi-
mately Gaussian, a new vehicle pose is added to the SLAM map by only adding the
pose to the SLAM state vector. So, as described previously, observations are asso-
ciated to each pose. They are compared and registered to offer potential constraints
on the global map of vehicle poses. This is not only useful for odometry based state
augmentation, but it is also an essential point for loop closing.

The estimator used here is the EKF, but it is not a limitation: algorithms like those
presented in Section 2 could be tested too. Given a noisy control input u(k + 1) at
time k + 1, upon calculation of the new vehicle pose, xvn+1(k + 1|k), and a corres-
ponding covariance matrix, Pvn+1(k + 1|k), the global state vector, x, and corres-
ponding covariance matrix, P, can be augmented as follows:

x(k + 1|k) =
[

x(k|k)
xvn ⊕ u(k + 1)

]
(1)

P(k + 1|k) =

⎡⎣ P(k|k) P(k|k) ∂ (xvn⊕u(k+1))T

∂xvn
∂ (xvn⊕u(k+1))

∂xvn
P(k|k) Pvn+1(k + 1|k)

⎤⎦ . (2)

The operator ⊕ is the well-known displacement composition operator. Pvn+1(k +
1|k) is the covariance of the newly added vehicle state. Let us assume that two scans,
Si, S j , have been registered. So, an observation Ti, j of the rigid transformation be-
tween poses in the state vector exists. Therefore a predicted transformation between
the two poses can be found from the observation model as follows:

Ti, j(k + 1|k) = h(x(k + 1|k)) = �(�xv j(k + 1|k)⊕ xvi(k + 1|k)) (3)

where the operator � is the inverse transformation operator. This is then used as the
initial estimate for our registration algorithm as follows:

Ti, j(k + 1) =ΨΨΨ(Ti, j(k + 1|k),Si,S j) (4)

whereΨΨΨ represents a registration algorithm. The state update equations are then the
classical EKF update equations. The search for a transformation Ti, j is achieved by
maximizing a cross correlation function [1].

5 Fourier-Mellin Transform for Automatic Image Registration

5.1 Principle

The problem of registering two scans in order to determine the relative positions
from which the scans were obtained, has to be solved. The choice of an algorithm is
strongly influenced by the need for real-time operation. A FFT-based algorithm was
chosen to perform scan matching.
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Algorithm 1. Steps of the Fourier-Mellin Transform algorithm applied to FMCW
radar images
1. Get radar images Ik and Ik−1.
2. Apply thresholding filter to eliminate the speckle noise in both images.
3. Apply FFT to images Ik → Îk and Ik−1 → Îk−1.
4. Compute the magnitudes Mk =

∣∣Îk
∣∣ , Mk−1 =

∣∣Îk−1
∣∣

5. Transform the resulting values from rectangular to polar coordinates. M() → MP().
6. Apply the FFT to polar images, a bilinear interpolation is used. MP() → M̂P().
7. Compute Ĉorr(wρ ,wθ ) between M̂Pk(wρ ,wθ ) and M̂Pk−1(wρ ,wθ ) using Eq. 6.

8. Compute the inverse FFT Corr(ρ,θ ) of Ĉorr(wρ ,wθ ).
9. Find the location of the maximum of Corr() and obtain the rotation value.

10. Construct a new image Ir by applying reverse rotation to Ik−1.
11. Apply FFT to image Irk−1.
12. Compute the correlation Ĉorr(wx,wy) using Eq. 6.

13. Take inverse FFT Corr(x,y) of Ĉorr(wx,wy).
14. Obtain the values (Δx,Δy) of the shift.

Fourier-based schemes are able to estimate large rotations, scalings, and transla-
tions. Let us note that the scale factor is irrelevant in our case. Most of the DFT-based
approaches use the shift property [20] [12] [24] of the Fourier transform. To match
two scans which are translated and rotated with respect to each other, the phase cor-
relation method is used, stating that a shift in the coordinate frames of two functions
is transformed in the Fourier domain as a linear phase difference. To deal with the
rotation as a translational displacement, the images are previously transformed into
an uniform polar Fourier representation.

It is known that if two images I1 and I2 differ only by a shift, (Δx,Δy), (i.e.,
I2(x,y) = I1(x −Δx,y −Δy)), then their Fourier transforms are related by:

Î1(wx,wy).e−i(wxΔx+wyΔy) = Î2(wx,wy). (5)

Hence the normalized cross power spectrum is given by

Ĉorr(wx,wy) =
Î2(wx,wy)
Î1(wx,wy)

=
Î2(wx,wy)Î1(wx,wy)∗∣∣Î1(wx,wy)Î1(wx,wy)∗

∣∣ = e−i(wxΔx+wyΔy) (6)

where ∗ indicates the complex conjugate. Taking the inverse Fourier transform
Corr(x,y) = F−1(Ĉorr(wx,wy)) = δ (x −Δx,y −Δy), which means that Corr(x,y)
is nonzero only at (Δx,Δy) = argmax(x,y){Corr(x,y)}. If the two images differ by
rotational movement (θ0) with translation (Δx,Δy), then

I2(x,y) = I1(xcosθ0 + ysinθ0 −Δx,−xsinθ0 + ycosθ0 −Δy). (7)

Converting from rectangular coordinates to polar coordinates makes it possible to
represent rotation as shift: The Fourier Transform in polar coordinates is Î2(ρ ,θ ) =
e−i(wxΔx+wyΔy)Î1(ρ ,θ − θ0). Let M1 and M2 denote the magnitudes of Î1 and Î2
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(M1 =
∣∣Î1
∣∣, M2 =

∣∣Î2
∣∣). So, M1 and M2 are related by M1(ρ ,θ ) = M2(ρ ,θ − θ0).

The shift between the two images can now be resolved using Eq. 6.

5.2 Scan Registration

In order to perform a scan registration algorithm, the Fourier-Mellin Transform
(FMT) has been chosen [5] [20]. The FMT is a global method that takes the con-
tributions from all points in the images into account in order to provide a way to
recover all rigid transformation parameters, i.e. rotation, translation. It is an effi-
cient and accurate method to process a couple of images that are fairly similar (see
Fig. 1). The steps of the scan registration algorithm are described in Alg. 1.

6 Experimental Results

This section provides experimental results of the Scan SLAM application using the
radar sensor previously described. The radar and the proprioceptive sensors were
mounted on a utility car moving at a speed ranging from 0 to 25 km/h. Here, two ex-
perimental runs are presented. They were performed in an outdoor field, Blaise Pas-
cal University campus, with a complex environment (buildings, cars, trees, roads,
road signs, etc.). The radar was on top of the vehicle, 3 meters above the ground.
The estimated trajectories obtained with the Scan SLAM process are presented in
Figures 2 and 5. The successive positions of the radar are separated by an interval
of one second. The photograph (see Fig. 2) is an aerial image of the experimental
zone. The trajectory of the vehicle simultaneously measured with a centimetrically-
precise GPS is overlayed. For these experiments, all data acquisitions have been
realized in real time but SLAM processing has been realized off-line. One step of
the process (scan registration, prediction and update) is achieved in less than one

Fig. 2 Overlay of the estimated trajectory and the aerial image of Blaise Pascal University
campus. The total traveled distance is around 1,135 m. The thin red line shows the trajectory
of the vehicle measured with a centimetrically-precise GPS. The vehicle estimates are in thick
white dashes.
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Fig. 3 Error and standard deviation (lower and upper bounds) related to the trajectory de-
picted in Fig. 2. Near sample 300, there is a GPS loss.

Fig. 4 Global map related to the trajectory depicted in Fig. 2.

Fig. 5 The total traveled distance is around 700 m. The thin red line shows the trajectory of
the vehicle measured with a centimetrically-precise GPS. The vehicle estimates after the loop
closing are in thick white dashes.

second with Matlab on a dual-core 2 GHz laptop. A quantitative evaluation of the
localization performances of the implemented process has been achieved. The po-
sition errors are calculated using the estimates and GPS data, assumed to be the
ground truth (see Fig. 3 and Fig. 6). The first experiment was made on a distance
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Fig. 6 Standard deviation along the north (x) and west (y) axes between pose estimation and
GPS and influence of the loop closing.

of 1,135 m without loop closing. Figure 2 shows the trajectory of the vehicle. In
Figure 3, error and standard deviation (lower and upper bounds) are presented. The
global map that is obtained is shown in Figure 4. The second experiment was made
on a distance of 700 m with loop closing (a circular trajectory around the campus
sports-ground). In Figure 5, the corrected trajectory after loop closing is presented.
In Figure 6, error and standard deviation (lower and upper bound) are presented.

7 Conclusion and Future Work

This paper presented results of SLAM using a microwave radar sensor. Due to
the complexity of radar target detection, identification, tracking and association,
a trajectory-oriented SLAM process based on the Fourier-Mellin Transform was
developed; in this way, target assumptions about their position and nature were
avoided.

Currently, this work considers only a static environment, assuming that there are
no mobile elements around the radar. However, in order to develop a perception
solution for high velocity robotics applications, future work will be devoted to the
enhancement of the global map using methods such as the one described in [18].
Once the sensor delivers the measurement of Doppler frequency to take the relative
velocity of mobile targets into account, integration of SLAM with Mobile Object
Tracking (SLAMMOT) will be considered [25].
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An Automated Asset Locating System (AALS)
with Applications to Inventory Management

Thomas H. Miller, David A. Stolfo, and John R. Spletzer

Abstract. In this work, we present a proof-of-concept Automated Asset Locating
System (AALS) for enhancing inventory management. AALS integrates LIDAR
and RFID sensor measurements into a Rao-Blackwellized particle filter for simul-
taneously localizing its pose with the positions of assets in the environment. We
present significant experimental results where the proof-of-concept system success-
fully traveled a total distance of 1.4 km autonomously, while detecting and mapping
all 143 available assets in real-time, and with a mean position error of < 80 cm.

1 Introduction

Radio Frequency Identification (RFID) systems use radio frequency to identify, lo-
cate and track features of interest. The technology sees widespread use in commer-
cial applications to include baggage handling, passport readers, and toll collection
to name but a few [1]. There are several RFID variants: passive, semi-passive, and
active. In this work, we limit our discussion to the former. A passive RFID system is
composed of three primary components: a reader (RF transmitter/receiver), a passive
tag, and a host computer. The tag is composed of an antenna coil and an integrated
circuit that contains both modulation circuitry and non-volatile memory. The tag is
energized by the RF carrier signal transmitted by the reader. Using this scavenged
energy, the information stored on the tag – to include a unique identifier for that tag
instance – can be transmitted back to the reader [2]. The strength of RFID is that
it explicitly solves the data association problem. As each tag is associated with a
unique identifier, false correspondences across tag detections are eliminated.

In this work, we investigate the potential for applying RFID and robotics tech-
nologies to inventory management tasks. Manual intervention in material tracking
systems is labor intensive, costly, and error-prone [3]. Furthermore, low-frequency
“scheduled scanning” approaches cannot ensure that inventory remains up-to-date.
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The ability to automate the material tracking task can dramatically enhance as-
set visibility. To this end, we demonstrate an Automated Asset Locating System
(AALS) that integrates LIDAR and RFID sensing on a mobile robot base for en-
hanced inventory management. The RFID system’s role is dual purpose. First, the
tags serve to identify assets to be tracked. Second, they are integrated into the envi-
ronment as correspondence-free landmarks. In this role, they effectively introduce
dramatic, artificial asymmetries into the environment. This enables reliable robot
localization indoors even in largely symmetric environments, and where the scale of
the environment was large compared to the range of the robot’s sensors – conditions
which could be problematic for traditional SLAM and localization approaches. The
RFID tag’s extremely compact size (≈10-30 cm2 stickers) and low cost ($0.1-1.0)
allows them to be discretely integrated into the environment. The net result is an
automated system capable of reliably locating assets in the environment.

2 Related Work

Several researchers have investigated the convergence of robotics and RFID tech-
nologies. Most related to our work is that of Hähnel et al [4], where a Pioneer 2
Robot equipped with a Sick LMS200 and an RFID reader was manually steered
through the environment. Using a map generated a priori, the authors employed
Monte-Carlo localization (MCL) to estimate the position of RFID tags in the envi-
ronment. Formal results on tag localization accuracy were not provided. However,
they demonstrated that using these same tags as landmarks, robot localization could
be achieved using only RFID measurements (although not to the same level of ac-
curacy as when the LIDAR system was used). Schneegans et al [5] built on this
to demonstrate a system for robot localization using a more sophisticated sensor
model, and whereby an RFID snapshot was associated with a database of learned
features. They compared their approach with those from [4], and found comparable
accuracy in the end position estimate of the robot, but a significantly faster filter
convergence rate. This work was also done off-line.

There is also significant work that has emphasized using RFID to assist in local-
ization tasks. Kulyukin et al incorporated RFID into a robotic assistant for the visu-
ally impaired [6]. Tsukiyama demonstrated a limited implementation where RFID
tags served as topological landmarks enabling the robot to correctly follow a path
[7]. Mapping the position of assets was not considered. Chae and Han used a topo-
logical approach with RFID and a vision sensor [8]. Experimental results were again
off-line. Miah and Gueaieb examined using tag received power (TRP) to estimate
the distance from the robot to the tag [9]. However, their implementation was lim-
ited to simulations. Milella et al developed an RFID-assisted mobile robot system
for mapping and surveillance using fuzzy inference methods [10]. In terms of as-
set tracking task, Ehrenberg et al investigated the use of a LibBot to locate books
in a library environment [11]. They localized densely packed, short range tags by
again employing a probabilistic RFID antenna model. The actual implementation
was rather limited however, with experiments only over a single library shelf.
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Our work differs from these efforts in several ways. First, we employ a Rao-
Blackwellized particle filter for the simultaneous localization of the robot pose and
mapping of asset positions in the environment. Second and more significantly, un-
like these efforts we provide significant experimental results with AALS operating
on-line. In our experiments, AALS is completely responsible for its own navigation
as it self-localizes and maps the positions of assets in the environment. These results
show that AALS is capable of reliably detecting and mapping the position of assets
in the environment in real-time.

3 The Development Platform

The AALS proof-of-concept system was built upon an iRobot Create robotics devel-
opment platform. The Create is an excellent low-cost research platform, combining
a robust mobile chassis with a higher level motor control interface through RS-232
communication, odometry feedback, limited sensing, and 5V DC power output. The
other primary components of AALS are:

Computing. With the exception of motor control which ran on the Create’s embed-
ded computer, all computing was done on a Lenovo X200 laptop with a 2.4 GHz
Core 2 Duo processor and 2 GB memory.

LIDAR. The primary exteroceptive sensor for AALS was a Hokuyo URG-04LX
LIDAR. The URG-04LX provides a 240◦ field of view with an angular resolution
of 0.36◦ . It offers an advertised range of up to 5.6 meters, although in this applica-
tion we found a more accurate estimate to be <4.5 meters.

RFID. The RFID transceiver used in this work was a Skyetek M9 operating at 862-
955 MHz. We deliberately chose an UHF module to maximize range. The reader
was multiplexed to a pair of antennae oriented to maximize detection coverage to
the front and sides of the robot. To date, all development has been done using the
Alien Technology ALN-9534 Gen 2 tag. In an evaluation of available Gen 2 tags,
this model provided acceptable detection ranges (up to 4.0 meters) while exhibiting
fairly good omnidirectional performance in a compact footprint. Images of AALS,

Fig. 1 Top and side profiles of AALS showing the integration of Hokuyo URG-04LX LI-
DAR, RFID reader, and on-board computing.
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showing the integration of on-board computing, the URG-04LX, the M9, multi-
plexer, and antennae are at Figure 1.

4 Robot Localization and Asset Tracking

For robot localization and asset tracking, we employed a Rao-Blackwellized Particle
Filter (RBPF). Such approaches were first introduced to the robotics community by
Doucet et al [12], who observed that the simultaneous localization and mapping
(SLAM) problem could be factored into two sub-problems

p(x1..t , l1..m|z1..t ,u1..t−1) = p(x1..t |z1..t ,u1..t−1)
m

∏
i=1

p(li|x1..t ,z1..t) (1)

where x1..t denotes the robot pose over time, l1..m the m landmark positions, z the
sensor measurements, and u the control inputs. The left term on the right side of (1)
corresponds to the robot localization problem, and the right term to estimating the
position of m conditionally independent landmarks in the map. This partitioning en-
abled the robot localization problem to be solved using a traditional particle filtering
approach, while allowing the mapping problem to be estimated through analytical
methods. The significance of this factorization was that it mitigated the otherwise
exponential increase of particle samples with increases in state space dimension
(i.e., the number of landmarks). This result was leveraged by Montemerlo et al in
developing FastSLAM [13], where mapping was accomplished by associating m
Extended Kalman Filters (EKFs) with each particle to independently track the m
landmarks l1..m. We employed a similar approach, using Monte-Carlo Localization
(MCL) to estimate the robot pose, and Kalman Filters for asset tracking.

4.1 Sensor Model Development

The LIDAR Sensor Model. AALS relies heavily upon the Hokuyo URG-04LX
for localization. The URG-04LX is extremely compact and lightweight compared
to the ubiquitous Sick LMS2xx series LIDARs, which made it well suited for our
proof-of-concept. However, they are also myopic, demonstrating an effective range
of <4.5 meters in our experiments. Such limited range can be a challenge for
MCL approaches, which solves a data association problem relating the robot pose
[x(t),y(t),θ (t)]T vs. time through asymmetries in the environment. Our develop-
ment site consisted of two building wings connected by a corridor ≈ 40 meters in
length with little asymmetry. To mitigate the potential for the filter converging too
quickly (and likely incorrectly), the conditional density functions which model the
uncertainty in LIDAR measurements (and are used to weight the individual parti-
cles) were dramatically smoothed. As a result, even a relatively improbable mea-
surement was unlikely to penalize a particle dramatically. We found that such a
PDF would ensure that the robot’s pose would eventually converge to the correct
position/orientation even without input from the RFID sensors and regardless of the
initial robot pose.
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Fig. 2 (Left) Weighting function for landmark tags used in the robot localization process.
(Right) PDF for asset tag detection generated empirically.

The RFID Sensor Model. Two different models were used for the RFID sensor de-
pending upon its given role. The primary purpose of landmark tags (with positions
known a priori) was to provide a low-cost mechanism for enhancing localization ro-
bustness, as there was no potential for data association errors. We considered their
ability to assist in pose estimates and improve filter convergence as demonstrated
in [4] of secondary importance. Therefore, we assumed no relative orientation in-
formation was available and a symmetric scaling function S was used to reflect the
likelihood of landmark detection by the robot. To model this, we defined a critical
radius r∗ around each landmark where detection was expected based upon empirical
results. With r∗ so defined, the weight function used was

S(i) =
[
(d(i) < r∗)+ (d(i) > r∗)

r∗

d(i)2

]
(2)

where d(i) = ||(x,y)T − (xi,yi)T || was the Euclidean distance from the robot to the
ith landmark. When used in conjunction with the MCL process, particles within the
critical radius of a detected landmark are unaffected, while the weights of those out-
side are scaled inversely proportional to the squared distance to the landmark. This
is illustrated at Figure 2 (left). The motivation for the quadratic model is the Friis
Transmission Equation, which shows that the power ratio between receiving and
transmitting antennae are inversely proportional to their distance squared [14]. The
placement of only several landmark tags in the environment dramatically acceler-
ated particle filter convergence during our experiments.

For asset detection, we assumed that the estimated robot pose was approximately
correct. As such, the sensor model was directional to reflect the relative robot/asset
tag orientation. We initially generated a discrete PDF model empirically by collect-
ing detection data as a function of tag position, orientation, and height as in [5]. The
resulting two-dimensional PDF estimate in the antenna frame is shown at Figure 2
(right). The PDF is highly non-Gaussian, and does not lend itself to a Kalman filter
implementation. However, in reality this model – as well as those typically used
in related work – is ad-hoc. Antenna performance is strongly environment specific.
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Signal is strongly tied to reflections from the floor, walls, ceiling, obstacles, signal
absorption, the amount of metal in the environment, tag line-of-sight, the object to
which the tag is affixed, etc.. In fact, in preliminary testing we compared a voting
approach based upon our discrete PDF model with a pure Kalman filter using an
overly conservative approximation of this PDF. The latter demonstrated equal or
better performance, and as such we ultimately employed such an approach.

4.2 Robot Localization and Asset Position Estimation

For the most part, robot localization was accomplished using a traditional MCL
approach [15]. The time update phase corresponded to the transformation of the
particles’ poses using a unicycle model for robot motion. Measurement updates
using the LIDAR were also straightforward. However, an additional measurement
update stage was integrated for whenever a landmark tag was detected. In this event,
samples were re-weighted based upon wk+1(i) = S( j)wk(i) where wk(i) denotes the
current weight of the ith particle at time-step k, and S( j) the scaling function defined
by (2). After re-weighting, the particle set was re-sampled. The net effect was that
particles far away from landmark j were quickly killed off.

With the ability to reliably localize the robot, we turn to the case of map-
ping assets. To this end, each particle pi, i = 1 . . .n , in our RBPF maintains a
Kalman filter that propagates an estimate for the position and positional covariance
{x(i, j), Σ(i, j)}, j = 1 . . .m, for each of the m assets detected. Note that RFID asset
detections are not used to refine the robot pose estimate, so the asset position esti-
mates remain uncorrelated. As a result, only n of the mn total Kalman filters need
be updated for a given asset detection.

We model each RFID asset detection as a direct estimate of the asset’s position,
i.e., z = W TAxA where xA is the tag position estimate in the antenna frame, and W TA

maps points from the antenna frame to world frame. The associated measurement
covariance is then ΣR = R(θR +θA)ΣAR(θR +θA)T where ΣA denotes the estimated
uncertainty in the antenna frame, and R is a 2-D rotation matrix associated with the
robot θR and antenna θA orientations in the world and robot frames, respectively. The
measurement update is then textbook Kalman Filter, and since the asset position is
assumed static there is no process update.

5 Experimental Results

5.1 Component Level Testing

As part of the proof-of-concept, we performed component level testing to deter-
mine the robustness of tag detection as a function of tag density. Of concern was
the potential for message collisions if multiple irradiated tags attempted to trans-
mit at the same time. To this end, we examined both linear arrays of 5-15 tags, and
grid arrays of 12 tags (3 × 4) with inter-tag spacings ranging from 0-45 cm. This
also included different heights above the ground plane. A representative linear array
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Fig. 3 (Left-Center) Sample RFID linear array used during component level testing. All con-
figurations demonstrated at least a 93% success rate. (Right) Sample asset configuration dur-
ing system level testing.

configuration with 10 cm spacing is shown at Figure 3 (left). For each test geometry,
AALS was driven multiple times past the tag array at standoff distances consistent
with an expected detection based upon the sensor model derived in Section 4.1. A
tag was considered detected if it was successfully identified at least one time while
AALS traversed the array. Summary statistics are shown at Figure 3 (center).

There were 908 true positives, 17 false negatives, and 0 false positives. Sixteen of
the 17 false negatives were with grid arrays with inter-tag spacing of 5 cm (14) and
15 cm (2). These corresponded to tag densities of 100 and 30 tags/m2, and detection
rates were 93% and 96%, respectively. These results indicate that the anti-collision
protocols employed by the system worked very well for the range of geometries
tested even under very high tag densities.

5.2 System Level Testing

To demonstrate the system level proof-of-concept, we conducted a series of exper-
iments using the fourth floor of Packard Laboratory at Lehigh University as the
development site. This constituted a region ≈ 48 × 14 meters. Our map M repre-
sentation was an occupancy grid with a cell resolution of 10 cm, and was provided
to AALS a priori. The map was constructed from digital blue prints. While nomi-
nally correct, there were significant inconsistencies between this map and the actual
floorplan. Only the most serious of these were corrected. One final alteration to M
included the introduction of 4 landmark tags with positions also known a priori by
the robot. These were spaced approximately every 15 meters in our corridor set.
Finally, 10-15 assets (i.e., card board boxes and plastic bins with tags affixed) were
placed in random locations throughout the environment. A representative configu-
ration is at Figure 3 (right).

For global path planning, AALS was provided a route network graph G(V,E)
that delineated in continuous space the intended paths for navigation. Waypoints in
the route network corresponded to vertices vi ∈V of G, and the edge set E⊂G corre-
sponded to path segments where each ei j ∈ E connected a pair of waypoints (vi,v j).
The desired path for a given mission was then specified via a waypoint sequence
(vi,v j, . . . ,vn). For motion planning, AALS relied upon 2 modes: obstacle avoid-
ance, and path following. Prior to particle filter convergence or in the event that the
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Fig. 4 Mission results showing the actual (blue “*”) and estimated (red “numbers”) asset
locations. The mean position error in this trial was 54 cm.

specified route segment was blocked, AALS would operate in obstacle avoidance
mode. For path-following, a PD controller was used where the normal distance to
the current route segment was employed as an error metric. The typical mission for
AALS entailed a complete circuit of the test area. This corresponded to a mission
length of ≈ 125 meters.

After preliminary testing to characterize the system, a total of 12 missions were
conducted. During these trials, the starting point was varied, as were the position
and orientation of assets. This ensured that asset detection and mapping was pos-
sible with tag orientations parallel and orthogonal to the robot path. The geometry
changes were also done to ensure that the sensor model for the Kalman filter was not
deliberately biased. For each mission, AALS drove at a nominal linear velocity of
0.3 m/s. At the initiation of each trial, 10,000 particles were used to instantiate the
prior for the robot pose. This number was reduced dynamically to as few as several
hundred particles using the second-order statistics to infer convergence of the parti-
cle set. To further support real-time computation, LIDAR range measurements were
sub-sampled to an angular resolution of 1.08◦ . The target update rate for AALS was
2 Hz. At the conclusion of a given mission, the estimate for the position of assets
was determined from [

x
y

]
i
=

n

∑
j=1

w( j)
[

x
y

]
i j

, i = 1 . . .m (3)

where [x,y]Ti denotes the position of the ith landmark, [x,y]Ti j the ith landmark posi-

tion as estimated by the Kalman filter of the jth particle, and wj is the corresponding
sample weight at mission completion. Results from a representative mission are at
Figure 4. This shows the route network (green lines), the path as estimated by the
robot (red dashed lines), the position of landmark tags (yellow circles), and the ac-
tual (blue “*”) and estimated (red “numbers”) positions of assets.

Of the 12 missions, 11 were completed successfully. The one failure occurred
when an asset was deliberately placed across the path. The motion planner incor-
rectly determined the path was not traversable, and aborted the mission. The motion
planner was subsequently modified, and this same configuration was successfully
re-tested. The 11 completed missions constitute a total distance traveled of 1.4 km.
During this time, all 143 assets that were placed in the environment were detected.
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Table 1 Mean Position Error (MPE) for detected assets as a function of geometry.

Asset Configuration Number Samples Number Detected MPE (cm) σ (cm)

All 143 143 79.2 49.5
Border 130 130 79.4 49.8
Interior 13 13 77.1 48.3

Parallel to path 91 91 86.8 55.5
Normal to path 52 52 65.8 33.3

The estimated asset positions were then compared with hand-measured ground-truth
values. Statistics for the different configurations are shown at Table 1. Border and
interior configurations discriminate as to whether the asset was located on the map
border or in the interior. Parallel/normal to path refers to the antenna orientation
with respect to the robot’s primary direction of travel.

From these, we see that the average position error was <80 cm. There was little
difference between assets that were located within the interior or along the border of
the map (we should note that no optimizations were done to asset location estimates
that were outside the boundary of the map, which would have improved results). We
do note a fairly significant difference between tag orientations that were normal vs.
parallel to the robot’s direction of travel. This appears to be attributed to the normal
antennae being detected at longer standoff distances, and the associated Kalman
filters seeing a larger number of measurement updates. However, further analysis is
needed to support this hypothesis. We should note that in a warehouse or similar
environment where such a system would be used, tag orientation would typically be
parallel to the direction of travel and as such these errors are more representative.

For portions of three trials, we also estimated robot position using a Sick LMS291-
S14 to track a retro-reflector affixed to the robot. Using this as ground truth, the mean
absolute position error of the robot localization system was 53.3 cm (σx = 49.3 cm,
σy=19.1 cm). The bias was not surprising due to the strong symmetry and limited
configuration space in the x and y directions, respectively. Taking these findings into
consideration, a more accurate estimate of tag localization performance would be a
MAE of ≈60 cm.

6 Discussion

In this work, we demonstrated a proof-of-concept Automated Asset Locating Sys-
tem (AALS) that integrates LIDAR and RFID sensing on a mobile robot base. The
RFID system’s role was dual purpose in this application – identifying both asset
and landmarks tags in close proximity to the robot platform. These measurements
enabled the position of asset tags in the environment to be estimated with a mean
error of <80 cm. Furthermore, they were able to augment the limited range of the
Hokuyo URG-04LX by not only accelerating the filter’s convergence rate, but also
ensuring against divergence in areas of low feature asymmetry. A natural question
regarding this approach is the use of MCL vs. SLAM. This decision was made so
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that landmark tags with known “absolute” positions in the map could readily be in-
tegrated to protect against localization failures (e.g., incorrect loop closures). We are
currently investigating a hybrid approach which integrates both aspects, and work-
ing with members of the NSF Center for Engineering Logistics and Distribution to
evaluate AALS in a larger scale, representative environment.
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Active SLAM and Loop Prediction with the
Segmented Map Using Simplified Models

Nathaniel Fairfield and David Wettergreen

Abstract. We previously introduced the SegSLAM algorithm, an approach to the
simultaneous localization and mapping (SLAM) problem that divides the environ-
ment up into segments, or submaps, using heuristic methods. We investigate a real-
time method for Active SLAM with SegSLAM, in which actions are selected in
order to reduce uncertainty in both the local metric submap and the global topolog-
ical map. Recent work in the area of Active SLAM has been built on the theoretical
basis of information entropy. Due to the complexity of the SegSLAM belief state,
as encoded in the SegMap representation, it is not feasible to estimate the expected
entropy of the full belief state. Instead, we use a simplified model to heuristically
select entropy-reducing actions without explicitly evaluating the full belief state. We
discuss the relation of this heuristic method to the full entropy estimation method,
and present results from applying our planning method in real-time onboard a mo-
bile robot.

1 Introduction

The tasks of mapping, localization, and planning lie at the core of mobile robotics,
and to a large degree have been solved for small, two dimensional, structured envi-
ronments. To make robots useful in the broader world, they need to move beyond
such simple environments into large, 3D, unstructured environments.

In response, there has been recent work in the SLAM field in two areas: submap
SLAM and active SLAM. Most submap SLAM methods use a combination of
metric and topological maps, in which the relationships between submaps are
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Fig. 1 This figure illustrates the process of segmentation, map sample generation, and match-
ing. The segmented map stores the particle submaps (shown as different arrows) for each
color-coded segment. The segmented map also stores the relationships between segments,
loosely illustrated here by the segment placements relative to each other. Note that after
matching, the breadth-first map sampling algorithm does not enforce global consistency be-
tween the red and turquoise segments.

represented by the edges of a graph, and the nodes of the graph represent the
submaps. The submap segmentation is usually designed such that their scale is well
within the capabilities of a SLAM approach. Thus the scaling problem is addressed,
but the submap algorithm must manage the graph of submaps, deciding when to cre-
ate a new submap, when to re-enter an old submap, and how to represent different
hypotheses about the topological relationships between submaps. In prior work, we
have presented a robust, real-time, submap-based approach called SegSLAM [6]. In
our SegSLAM algorithm, individual submaps are accurate 3D metric evidence grid-
based maps. Using an extension of the Rao-Blackwellized Particle Filter (RBPF)
formulation [5], SegSLAM maintains a stochastic graph of the transformations be-
tween submaps, called the segmented map or SegMap (Figure 1). The particles of
a regular RBPF are a discrete approximation to the distribution over poses and the
metric maps; the particles of SegSLAM are a discrete approximation to the distri-
bution over poses and submaps, where the poses are in the local coordinate frame of
the submaps. Since each SegSLAM particle has its own copy of each submap, we
use the noun segment to refer to the collection of particle submaps that are tempo-
rally compatible: unlike RBPF particles, SegSLAM particles do not encode a com-
plete trajectory hypothesis, instead the trajectory must be reconstructed by stitching
together compatible segments.

Active SLAM determines the robot’s actions by planning based on the SLAM un-
certainty. Uncertainty, which can be quantified as information entropy, depends on
the route that the robot uses to explore the environment. A well-known approach for
balancing the need to explore new regions against the need to localize is to estimate
the expected information gain in the SLAM state distribution resulting from differ-
ent actions [8, 2, 3]. However, it is rarely possible to perform the estimates in closed
form, so computationally expensive Monte-Carlo simulations are used.Rather than
attempting to estimate the expected information gain of the full SLAM state, we
show how a simplified sensor model can be used to probe the SLAM belief state,
and how the results of these probes can be then used to select plans that reduce the
SLAM uncertainty.



Active SLAM and Loop Prediction with the Segmented Map 175

A goal of Active SLAM is to detect and close loops: when the robot returns to
a place that it has previously mapped and recognizes that it is back in that place,
it can correct for all of the error that has accumulated since it left. For example,
[14] perform active loop closure by searching for discrepancies between the met-
ric distance (which is short near a loop closure) and topological distance (which is
long just before a loop closure). However, active loop closure doesn’t necessarily
predict loops, it just takes advantage of them once the robot has already observed
a possible loop. Our approach extends to true loop prediction, attempting to exploit
the local structure of the environment by using the submaps of SegSLAM’s seg-
mented map (SegMap) as a predictive model. This is related to the work of [11],
who use “hallucination” to fill in gaps in a sparse map to assist in estimating path
costs for navigation over large-scale terrains. Also related is the work of [4], which
relies heavily on repetitive structure in the environment to match snippets from the
current map to partially observed areas, with the idea of not exploring regions that
can be predicted or of using the prediction for localization, a questionable strategy.
Although not used for prediction, [9] have the most robust approach to building a
model of the world, learning a Dirichlet prior over structural models from a library
of previously explored environments, and using samples from this distribution for
estimating the probability that the robot is inside or outside the known map.

We begin with a description of the information entropy formulation for Active
SLAM, as well as some of the difficulties of explicitly reasoning about information
gain. We then describe our method for using simplified models to probe the SegMap
to find actions than reduce entropy, including the use of the segmented map as a
predictive model for generating routes that extend into unknown regions. Finally, we
demonstrate Active SLAM with predictive loop closure in a real world experiment.

2 Information Gain-Based Active SLAM

Information entropy methods for Active SLAM involves several steps. To select
an action, an information gain planner evaluates different possible actions based
on their expected information gain. For SLAM, this information gain is over the
SLAM belief distribution, p(x,θ ), which includes both the pose x and map θ . The
RBPF SLAM belief distribution is represented by a set of particles, each particle
representing both a map and a position within that map. As a result, the RBPF
SLAM entropy can be factorized as

H[p(X ,Θ)] = H(p(X))+ EX [H(p(Θ |X))]

To estimate EX [H[p(Θ |X)]], we take the average entropy of all the particle maps.
We use an efficient 3D evidence grid data-structure called the Deferred Reference
Count Octree [7], and under the independence assumptions of evidence grids, the
information entropy H of of a map θ is the sum of the entropies of each voxel
θ [x,y,z],
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H(θ ) = ∑
∀x,y,z

−ρ log(ρ)− (1 −ρ) log(1 −ρ),

where ρ = p(θ [x,y,z]). Since the octrees are sparsely populated, ignoring unknown
regions changes from a requirement to a computational advantage. A further speed
improvement arises because the octree can represent homogeneous regions at a va-
riety of leaf node scales.

Computing the entropy of the particle poses is approximated with heuristics. The
method described by [13] approximates the cloud with a multivariate normal dis-
tribution, and then computes the differential entropy of the distribution. This ap-
proximation is only accurate in cases in which the pose cloud is nearly unimodal,
although it will usefully report high entropy for multi-modal distributions. [12] and
[13] refine this heuristic by computing its average value over multiple points in time,
though [1] describes how even this improved metric can become undefined after
closing a loop. This is also more complicated for SegSLAM, because particles may
be distributed over different segments, each of which has its own coordinate frame.
A more mundane problem is that the entropy of the maps dominates the entropy of
the poses, meaning that a small amount of exploration will result in a greater change
in entropy than a convergence in the particle poses.

A reasonable simplification is to restrict the problem to finding the best of a set
of candidate actions rather than finding the best of all possible actions. The set of
candidate actions can be generated to have the actions differ significantly and be
distributed evenly over the space of all possible actions. Unfortunately, even when
only considering a few candidate actions, this process is computationally intractable
for a RBPF with hundreds of particles and complex map structures. For example,
the expected entropy estimation process is further complicated for SegSLAM, since
the average is computed over map samples, and there are many more possible map
samples than particles.

Further, a fundamental limitation of this process is that measurements can’t be
predicted for unmapped areas. It is also questionable whether updating the (cloned)
particle maps with the simulated measurements yields a better estimate of the SLAM
state. As a result, the accuracy of the entropy estimates will degrade over time: in
particular, they will degrade completely for actions that enter unmapped areas.

In the next two sections we address the two limitations of information gain-based
Active SLAM: computational intractability and limited horizon. First, we describe
our simplified method, and then we describe how to use prediction to usefully extend
the planning horizon.

3 Simplified Entropy Heuristic

In order to be computationally tractable, our method eliminates the filter simulation
and entropy evaluation and instead, directly examines the variance of the simulated
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measurements. Under certain constraints, this variance is a proxy for the full entropy
and can be used for Active SLAM.

As before, the simulated measurements ẑap are generated by simulating the
motion of particle p while executing action a, and casting rays in the map. The
simulated measurements are determined by the current SLAM belief state, and are
correlated with the particle weights at least until the particle filter would resample
(if we were simulating the full particle filter).

For example, assuming a 1D state and that the particle pose distribution can be
approximated by a Gaussian, we can estimate the entropy of the particle poses for
action a as the differential entropy of the Gaussian

Ha = log(σa

√
2πe),

where σa is the weighted variance of the particle positions

σa =
√

(
#p

∑
p

wap(xp − μ)2).

Note that the (xp − μ)2 are constant for all actions, because all particles move in
lock-step under the simplified model. Using a Gaussian model for a single range
sensor, the particle weights are given as

wap =
1√

2πσ2
z

e
−(ẑap−z̄)2

2σ2
z .

Plugging in the expression for wap and discarding constants, we have

Ha ∝ log(∑
p

e−(ẑap−z̄)2
)

and since both log and exp are monotonic functions, if we can minimize Ha by
choosing the action that maximizes (ẑap − z̄)2, or equivalently to choosing the action
that maximizes the variance of the simulated measurements: the planning algorithm
only needs to estimate the relative variances to select between different actions.
Note that variance in the simulated measurements arises from the uncertainty in the
SLAM belief state and is indicative of the SLAM entropy, rather than the likelihood
of any particular set of measurements under the sensor model.

Within the particle filter’s resampling horizon, choosing the action that maxi-
mizes the sum-squared measurement difference is equivalent to choosing the action
that minimizes the entropy. Even beyond the resampling horizon, when some of the
assumptions above break down, the measurement variance criteria leads to good ac-
tion recommendations. Because we do not need to precisely simulate the full state
of the SLAM algorithm, we can use simplified sensor models and larger motion step
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sizes, yielding a smoothly degrading, computationally fast, proxy for the full SLAM
entropy estimate.

4 Useful Map Prediction

The overall goal of Active SLAM is to find actions that reduce the uncertainty in
both mapping and localization. Closing loops is crucial for SLAM, because when
the algorithm detects that it has returned to a previously mapped area, the accumu-
lated error can be canceled. It would be very beneficial if Active SLAM could select
actions that were expected to close loops: the difficulty is that making any non-trivial
loop-closure predictions involves simulating measurements in unmapped regions.
Rather than assuming all unknown space is empty, or occupied, or using some other
prior model, our method directly predicts the structure of the environment in the
unmapped area by using nearby previously constructed map segment.

In the SegMap there are multiple particle maps for each segment, or submap
(Figure 2). Different particle maps can be stitched together to yield metric map
samples. The SegMap represents the SLAM belief distribution, in the sense that
for regions where SegSLAM has low uncertainty different map samples will be
very similar, but for regions where SegSLAM is uncertain, variation in the metric
submaps and the transformations between them will yield significant variation in
the map samples.

To simulate measurements we generate metric map samples that include each par-
ticle’s current segment, simulate the motion of the vehicle within the map sample,
and cast rays. We can extend map sample generation to predict unmapped regions
by making the assumption that nearby segments are good predictors of unobserved
areas (Figure 2). We use the same process as for generating map samples, with
the addition of a step that randomly selects a nearby segment, and grafts its start

Fig. 2 Left, a diagram of a SegMap with two particles and three segments: the transforms
between segments are represented by circles. Center, three different map samples gener-
ated from the SegMap. Right, a map sample is extended by three guesses (in yellow),
which are transformed segments attached at the current vehicle position with a small random
perturbation.



Active SLAM and Loop Prediction with the Segmented Map 179

position onto the current position with some random perturbation or refinement from
map matching. We will call this grafted segment a “guess,” because it is a weaker
hypotheses about the map structure.

The question is then how to make use of the “guess” yielded by the grafted seg-
ment. If the guess conflicts with the “known” portions of the map sample due to the
regular segments, it is useless. If the guess extends into unmapped regions, it can
be used to generate informed plans (for example allowing plans to extend down a
hallway). But the real value of a guess is when it connects known regions while
bridging across unknown regions: this allows Active SLAM to close predicted
loops.

To accelerate the process of finding plans, our planner also uses the following
simplifications. It first generates a local map sample and fuses the submaps into a
single evidence grid map. It then generates a guess by selecting a random segment
to append to the vehicle’s current position, as well as a small random perturbation
(Figure 2). This guess segment includes the vehicle’s original trajectory through the
segment, so to quickly check the plausibility of the guess, our planner queries the
fused map along the (transformed) trajectory to verify that the guessed trajectory
starts in known empty space, goes into unknown space, and returns to known empty
space. If the guess passes this quick check, it is grafted into the fused map, and the
planner uses the vehicle model to see if the vehicle can pass through the resulting
map. If the vehicle can go from known empty space to grafted empty space and
back to known empty space without collision, the plan is considered a success for
the map sample.

In the next section, we present from using this approach to Active SLAM with
loop prediction in a real-world experiment.

5 Active SLAM Experiment

Beneath the Field Robotics Center highbay is a network of tunnels known as the
catacombs. The navigable area of the catacombs forms a square figure eight shape
(Figure 3). We used Cave Crawler [10] to explore the tunnels, which are are just
wide enough: in some cases the wheels rub on both sides, so we manually drove
Cave Crawler in a close approximation of the planned trajectory. We limited the
laser ranges to a maximum of 4 m so that returns would not reach the end of the
tunnel segments. As the simplified sensor model for this Active SLAM experiment,
we used a simple binary collision model that indicated traversability.

Cave Crawler started at one end of the figure eight, and used an RRT planner to
find exploration actions with a bias toward moving in straight lines. After driving
down one side, past the crossing tunnel and around the bottom of the loop, Cave
Crawler encountered the other end of the crossing tunnel (Figure 4). At this point,
it had three or four segments (varying between different runs) with which to make
guesses, and 40 particle submaps for each segment. In this experiment, we evalu-
ated guesses as described above, and checked the collision sensor model in 10 map
samples, considering the maximum variance criteria to be satisfied if the binary
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Fig. 3 Overview of the catacombs environ-
ment – the long axis of the figure eight is
about 20 m, and the short axis is about 10 m.
In several places Cave Crawler can barely
fit through the narrow tunnels.

Fig. 4 In both experiments, Cave Crawler
started at one end of the figure eight (up-
per right) and then proceeded along one side
and around the bottom. The colored point-
clouds correspond to the three segments.

Fig. 5 Action votes over the period of time when Cave Crawler approached the crossing
tunnel, for both the high and low uncertainty runs.

outcome of the collision model indicated traversability in 4-7 samples (Figure 5).
Most guesses result in collisions and rarely have success rates above 2/10. But some
guesses successfully bridged the middle segment of the figure eight, and the success
rate of actions across these bridges depended on the SegSLAM uncertainty.

To control the SLAM uncertainty, we artificially increased the motion model
noise. When the SegSLAM uncertainty was high the bridging actions had success
rates of 4/10 or 6/10, and following the max variance criteria (relative to simply
continuing straight) Cave Crawler took the action and closed the loop (Figure 6:top).
In the runs with low SegSLAM uncertainty, the bridging actions had either high or
low success rates, and Cave Crawler did not cross the center tunnel, continuing to
follow the usual exploration actions up and around the figure eight to close the loop
(Figure 6:bottom).
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Fig. 6 Top: High uncertainty run: the guessed path through the center tunnel (left) had a
success rate of 6/10, which satisfied the maximum variance criteria. After taking this ac-
tion, SegSLAM closed the inner loop (right). Bottom: Low uncertainty run: the guessed path
through the center tunnel (left) had a low variance success rate of 9/10. The vehicle continued
to follow the outside of the figure eight, and SegSLAM closed the outer loop (right).

Using our method, Cave Crawler was able to actively predict and close a loop
in real-time at full safe vehicle velocity, about 0.2 m per second in this constrained
environment.

6 Conclusions

Our approach to Active SLAM can be summarized as using simplified models to
heuristically estimate the entropy of the SegMap. In particular, the method probes
the SegMap by analyzing the measurements generated by a simple sensor model
applied to multiple map samples. We have shown that this approach is equivalent
to information-gain estimation when the planning horizon is within the resampling
period of the particle filter, and we have experimentally found that produces rea-
sonable plans even beyond this horizon. We also showed how to use the SegMap as
a predictive model to hypothesize about unseen regions by using nearby segments
as priors. Integrating all these ideas, we demonstrated active SLAM in real-time
onboard Cave Crawler.

In future work, we would like to compare our method with other information-gain
heuristics over a range of structured and unstructured 3D environments.
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Outdoor Downward-Facing Optical Flow
Odometry with Commodity Sensors

Michael Dille, Ben Grocholsky, and Sanjiv Singh

Abstract. Positioning is a key task in most field robotics applications but can be
very challenging in GPS-denied or high-slip environments. A common tactic in
such cases is to position visually, and we present a visual odometry implementa-
tion with the unusual reliance on optical mouse sensors to report vehicle velocity.
Using multiple kilometers of data from a lunar rover prototype, we demonstrate that,
in conjunction with a moderate-grade inertial measurement unit, such a sensor can
provide an integrated pose stream that is at times more accurate than that achievable
by wheel odometry and visibly more desirable for perception purposes than that
provided by a high-end GPS-INS system. A discussion of the sensor’s limitations
and several drift mitigating strategies attempted are presented.

1 Introduction

Accurate knowledge of position is critical to successful completion of field robotics
tasks. In known or highly structured environments, localization relative to a
pre-determined or progressively-refined map is typically performed using sensors
appropriate for registering map features to observations. In general outdoor scenar-
ios, absolute positioning using Global Positioning and Inertial Navigation systems
(GPS-INS) is frequently performed, often in conjunction with input from odometry
integration, and may augmented further by continuous registration of local terrain
or obstacle maps. Indeed, recent GPS-INS devices advertise errors as low as a few
centimeters in position and hundredths of a degree in attitude after alignment [13].

Many applications present significant challenges for these positioning strategies.
GPS may be unavailable or ineffective if too few satellites are visible during urban or
subterranean operations. Wheel-based odometry depends on an accurate kinematic
model and can degrade greatly in the presence of wheel slip typical of low-friction
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surfaces and skid-steered vehicles. In poorly lit or very low-texture environments,
systems based on vision will see reduced performance.

Planetary rover missions pose particularly challenging cases. GPS is unavail-
able and alternatives such as star tracking do not offer comparable accuracy. Loose
surface dust easily impedes wheel odometry. Further, visual odometry and terrain
mapping methods are frustrated by poor lighting, few visual surface features, and
tight computational constraints limiting their implementation complexity.

The specific need we seek to fulfill is that of a pose estimation system for Scarab,
the lunar rover prototype developed at Carnegie Mellon University pictured in Fig-
ure 1 [4] [20]. This 280kg skid-steered vehicle is designed to explore permanently
shadowed lunar polar craters, which combines the greatest weaknesses of most posi-
tioning methods: the unavailability of GPS, constant near-total darkness, occlusion
of most stars by the high crater walls, soft lunar regolith, and strictly limited com-
puting and power facilities. Exclusive reliance on wheel odometry was first planned
but then abandoned in recognition of the errors that would be induced by surface
slip, the eventual implementation of softer wheels that would thereby be of vary-
ing radius, and the passive differenced rocker suspension, which while excellent
for maintaining stability on bumpy terrain, makes estimating heading changes from
odometry inadequate. Certainly strategies can be applied for detecting slip some
proportion of the time—and [16] provides several methods for doing just this on
planetary rovers—but the design of Scarab’s suspension frustrates this approach
and arguably more complicated physical modeling might best be replaced by an
alternative sensing modality.

Conventional forward-facing visual odometry as used on the Mars Exploration
Rovers (MERs) [11] was considered but deemed impractical because lighting the
surrounding area would require more power than the rover can provide and induce
complex shadows. Instead, we decided upon using downward-facing visual odom-
etry. This provides tractable lighting requirements, however these forward-facing
techniques cannot be directly applied because the situation is ill-posed to compute
the 3-D incremental pose differences and the terrain beneath the rover is likely to be
too homogeneous for point-based feature tracking to work effectively. Rather, we
chose to rely on optical flow to provide an estimate of vehicle speed, which could
then be integrated to estimate incremental distance-traveled as part of a broader
odometry framework. Various methods, such as the Horn & Schunck algorithm [7],
have long existed for computing so-called dense optical flow over regions between
images. Such algorithms have been used, for instance, for autonomous heading con-
trol for obstacle avoidance for fixed-wing aircraft [21], estimating distance to the
ground and canyon walls from unmanned aerial vehicles [6], and autonomous land-
ing for helicopters [17]. In the odometry realm, downward-facing cameras have
been successfully used for positioning in pre-explored environments by correlating
the visible area against an existing database [8], however such methods are inappli-
cable to planetary rovers observing most patches for the first time.

Although an optical flow implementation using a typical camera would have been
straightforward, an intriguing alternative presented itself in the form of a custom-
built optical flow sensor from AirRobot GmbH [1] used for stabilization on its
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Fig. 1 The Scarab lunar rover. The glow be-
neath is from LED lighting for the optical
flow sensor.

Fig. 2 The optical sensor used on Scarab, in
a custom ruggedized enclosure.

quad-rotor helicopters. This device, shown in Figure 2, contains four commodity
optical mouse sensors each attached to a lens of a different focal length and reports
2-D velocity (in m/s) along the planar surface at which it is pointed and an esti-
mate of distance to this plane. The precise details of its operations are proprietary
to the manufacturer, but given that a scalar “tracking quality” value is known to
be returned by mouse sensors, we conjecture that height is derived by interpolating
across the quality values returned by each of the four sensors, with speed similarly
interpolated across the four focal-distance-compensated speed values. The sensor
nominally reports velocity with a resolution of 0.3mm/s within a range of ±10m/s
and height up to 2.5m with a resolution of 1cm.

The use of optical mouse sensors for measuring ground velocity has a number of
benefits leveraging over a decade of commercial refinement. Key among these are
remarkably robust operation on a wide variety of surfaces, significant lighting insen-
sitivity, and extremely low cost (several US dollars) due to the volume in which they
are produced. These typically contain a 15 to 100 pixels-square camera sensor and
are believed to implement a fast hardware version of Horn & Schunck [14] reporting
sub-pixel flow rates at on the order of 1kHz. Designs based on laser interferometry
are becoming prevalent, however they are not as adaptable as they do not use simple
lenses. Due to their low cost and simplicity, there exists wide interest in the hobbyist
robotics community in these sensors. Several examples of their use in limited indoor
scenarios exist in the robotics literature (eg [15], [18], and [19]), but they have yet
to see use in a field robot application. A method similar to that described here using
a webcam and image correlation matching was presented in [12].

In this paper, we describe our odometry method using this sensor, present results
from extensive field testing, and draw conclusions on the effectiveness of commod-
ity optical flow sensors for pose estimation.

2 Odometry Method

We first assume that the vehicle can only instantaneously move along its current
heading vector, or equivalently assume the non-holonomic constraint of no wheel
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side-slip. We believe this to be valid because except for rare cases such as sliding
laterally down a slope, wheel slip should occur only when skidding in place dur-
ing turns or failing to grip the ground during forward travel. Position is integrated
based on the current linear speed and heading vector at all times. Linear speed is
estimated from optical sensor readings, and the heading vector comes from the at-
titude determined by integrating IMU angular rate values. Uncertainty in the inte-
grated pose is propagated by modeling uncertainty for the optical sensor and the
IMU. The next section formalizes this procedure followed by methods for improved
accuracy.

2.1 Basic Odometry Model

We begin by defining the vehicle position x and orientation θ in a chosen world
frame:

xt = [x,y,z]T , θ t = [θx,θy,θz]T ≡ qt = [qs,qx,qy,qz]T (1)

where the latter equivalence denotes that we may refer to the orientation as the Euler
angles θ t or a unit quaternion qt .

At each time-step, the IMU provides angular rates and linear accelerations in the
body frame:

ωt = [ωx,ωy,ωz], at = [ax,ay,az]. (2)

For a given state xt we may then write the vehicle unit heading vector ût in the
world frame. The non-holonomic velocity constraint can then be embedded in the
definition of the vehicle’s linear velocity as

vt = vbodyût (3)

where vbody is the scalar linear velocity, which is assumed to be directly provided
by the optical sensor. In actuality, it reports velocity in two dimensions, but to avoid
having to very precisely calibrate for any rotational offset, we simply take the norm
of the velocity vector it reports to be the speed and determine the sign from that of
the velocity reported along the axis most nearly aligned with the body.

At time t +1, given vt+1 and the previous values xt and vt, the new position may
be estimated as

xt+1 = xt +
1
2
Δ t(vt+1 + vt), (4)

where Δ t is the time elapsed between t and t +1, computed via trapezoidal integra-
tion of the velocity vector. A similar procedure for orientation is used. Namely,

q̇t = 1
2 qt ∗ [0, 1

2 (ωt +ωt+1)]T

qt+1 = qt +Δ tq̇t
(5)

estimates the new orientation, where * denotes quaternion multiplication [10].
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Dead-reckoning error uncertainty is propagated by the linearized covariance pre-
diction equation1

Pk+1 = FkPkFT
k + GkQkGT

k , (6)

where

F =
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1 0 −VsinψΔt

0 1 VcosψΔt

0 0 1
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Approximate trends in state uncertainty growth over time can be observed by
reducing Equation 6 to straight line constant speed motion with inital covariance
Pk = diag(Px Py Pψ). For x-axis-aligned motion, Equation 7 indicates along-track
and heading error increases proportional to the square-root of elapsed time. Cross-
track error exhibits faster error growth, linear in time due to initial heading uncer-
tainty plus growth at three-halves power of time due to heading rate noise. This
highlights the importance of low heading-rate uncertainty in achieving accurate
dead-reckoning.

Pk+Δ t =

⎡⎣Px,k 0 0
0 Py,k +V 2Δ t2Pψ,k VΔ tPψ,k

0 VΔ tPψ,k Pψ,k

⎤⎦+

⎡⎣Δ tσ2
V 0 0

0 1
3V 2Δ t3σ2

ω
1
2VΔ tσ2

ω
0 1

2VΔ tσ2
ω Δ tσ2

ωx

⎤⎦
(7)

Distance and heading error drift rates for the system have been determined
through ground-truthed experimental trials. Figure 3 shows the difference in changes
observed between the dead-reckoning solution and ground-truth for varying length-
time ensembles. Twenty thousand samples were compared over a two hour period
at thirty second ensemble increments. This trial indicates drift rates of 1.2m/

√
hour

in distance traveled and 2.5o/
√

hour in heading.

Fig. 3 Estimated drift rate for distance traveled (left) and heading (right) determined by com-
paring changes over increasing time ensembles between the dead-reckoning solution and
ground-truth.

1 For brevity, we here present uncertainty propagation for planar location and heading. The
equations for the full 6-D model as we have implemented are a straightforward extension.
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2.2 Improved Attitude Estimation

While the error in the pose estimate provided by the above integration procedure will
necessarily grow without bound, several simple measures can be taken to greatly re-
duce attitude error. Many of these are intuitive and even commonplace in commer-
cial navigation systems, however they receive rare mention in the robotics literature
and are too often ignored in implementation.

A first strategy critical for long-term operation is to remove the approximately
15 degrees per hour on Earth (or 0.56 on the moon [2]) angular velocity the gy-
roscope will inherently pick up due to the rotation of the earth, which is done by
rotating the known angular velocity of the planet into the local coordinate system
and subtracting. When stationary, this measured angular velocity may even be used
to perform gyrocompassing. The gyroscope bias may be computed by averaging the
measured angular velocity vector while stationary (after subtracting the planetary
rotation rate). With some IMUs this may needed as often as every ten minutes for
even short-term performance [5]. This step was not required in our case since this
value typically averaged to be negligible.

Another common technique is to use the gravity vector (weaker but still useful
at about 0.16g on the moon [3]) as measured by the IMU’s accelerometers when
stationary to estimate roll and pitch by taking arctangents of the accelerations along
the axes. We made use of this to reset drift in roll and pitch during stationary periods.
Given now two complementary sources of roll and pitch–this direct computation
most accurate when the attitude is slowly changing and integration of angular rates
just the opposite–we implemented a matched complementary Butterworth filter pair
to continuously merge these two streams, with a cutoff frequency of 0.05Hz found to
be most appropriate given the very slow motion of the rover. This provides excellent
results with errors in roll and pitch of typically much less than a degree at all times.

Finally, anticipating missions consisting of long stationary periods (primarily in-
tended for battery recharging) followed by short periods of motion, we additionally
clamped the measured angular velocity vector to zero when the vehicle is known to
be stationary to avoid blatantly unnecessary noise integration.

2.3 Velocity Scale Calibration

Ideally, the optical flow sensor returns a correctly scaled lateral speed regardless
of the distance between the sensor and the ground. We model the actual corrupted
scaled velocity returned as

vmeasured = s(h) · vactual + b +ν, (8)

where s(h) is a scaling factor that varies with the height h, and ν is noise. At most a
trivial bias term b was observed, and this was effectively dealt with by clamping the
measured velocity to zero when the vehicle is known to be stationary.
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The height of the sensor is not fixed as Scarab is equipped with an active sus-
pension used to lower the body so that a core-drilling apparatus may operate.
Calibration trials at varying body heights were performed. Figure 9 shows a number
of such runs over distances varying between 10 and 30 meters. As it indicates, rather
different scaling values were found for daytime and nighttime operation, but within
each class, a simple quadratic fit provides reasonable compensation.

The sensor also exhibited a scale dependence on the surface type with values
tightly clustered for a given surface. An online auto-calibration scheme proved quite
effective by relying on the observation that during consistent straight-line motion,
wheel odometry can be very accurate. Every three seconds a battery of heuristics
tests whether wheel odometry is trustworthy, including whether each wheel’s veloc-
ity agrees closely with the average, all agree on direction, the reported velocity is
above a noise floor, and that the IMU is reporting minimal yaw rates. Primarily, this
eliminates periods including heavy slip or turning (implying likely wheel odometry
error). Each period is added as a learned data point over which a variation of a re-
cursive locally-weighted linear least squares algorithm is run to compute the scaling
factor as a function of body height. Each time a new velocity value from the opti-
cal sensor is received, the best estimate of the scaling factor for that height is used.
If insufficient calibration data points are available for the region surrounding that
height the scaling factor determined by the original manual calibration trials is used
as a fall-back.

An example run using the online scale calibration procedure is shown in Figures
10 and 11, which indicates that this process performs well, though unsurprisingly
not as well as a post-hoc batch method computing the scaling function from all
the data points at once. However, it performed well enough and eliminated most
difficulties associated changing surfaces. All data presented uses it unless otherwise
indicated.

3 Experimental Results

During the course of system development and verification, we collected tens of
hours of data from field testing over several kilometers of traversal, including ex-
tended simulated lunar terrain at Moses Lake, Washington and Mauna Kea, Hawaii.
Field tests were conducted both during daytime and in total darkness, for which
high-intensity LED bars were mounted to the vehicle’s underbelly to illuminate the
area seen by the optical sensor.

Anecdotally, the optical sensor worked remarkably well across a wide variety of
surfaces, including dirt, mud, grass, asphalt, and sand. Tracking was poor on poured
concrete surfaces and nearly useless on painted concrete. Most of the extended field
testing took place over sand to best emulate lunar terrain, and it was noted that
typical auto-calibrated scaling factors were somewhat higher than for other surfaces,
likely explainable by somewhat poorer tracking on this relatively featureless terrain.

As the Honeywell HG1700 IMU used for odometric integration is part of a No-
vaAtel SPAN GPS-INS system, a convenient source of approximate ground truth
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was also available. At the slow speeds the rover moves, INS position errors on the
order of tens of centimeters are large relative to short-term distances traveled, how-
ever over long distances, these relatively static uncertainties are small compared to
accumulated odometry error.

In the plots below, full odometry results are provided as well as the result of using
INS-provided attitude (the output of the INS Kalman filter that uses GPS data) in
place of integrated attitude. The purpose of this is to independently demonstrate the
effectiveness of the optical sensor (accumulating just distance-traveled error in the
odometry) and because further methods of improving heading accuracy would be a
priority in any future implementation.

An early observation was that even when the odometry-derived pose drifted sig-
nificantly, as shown in Figure 8 having atypically high gyro drift, the smoothness
of the integrated solution was much more useful to the on-board perception system
than that from the INS. Laser scanners are used to build local terrain and obsta-
cle maps. Pose jumps present false obstacles without resorting to complicated reg-
istration algorithms precluded by limited on-board computing. While a map built
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from the integrated solution will not be globally correct, the resulting higher-fidelity
short-term maps are more valuable for local motion planning.

As odometry error is inherently path dependent, error accumulated over different
trials varied, however the results shown in Figure 6 are representative. Data from this
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run, a nearly 700m nighttime traverse at Moses Lake, is also used as the examples for
the described attitude improvement and scale calibration methods. Attitude compar-
isons between the INS-reported values and integrated results are given in Figure 5.
Traces of position and heading uncertainty propagated using the model and param-
eters described are provided in Figures 13-15. Though just one example, the errors
lie within the uncertainties, lending credence to our propagation model and process
covariances. Error growth across many runs is given in Figure 12, suggesting this
method typically provides an error bounded by 5-8% of distance traveled.

4 Conclusions and Future Work

In this paper, we presented an implementation of vehicle odometry for a lunar rover
prototype using an optical mouse sensor to provide vehicle velocity. Results show
that with a moderate-grade IMU, errors can be small over long distances. Clearly the
weakest point in such a design is the accumulation of heading error, the reduction
of which would be a key focus of future implementation. The lunar application
may present some such reduction opportunities, perhaps via the stop-start nature of
motion during missions or observation from an orbiter. Other avenues of exploration
include using multiple sensors to track heading or relax the kinematic assumptions
[9] and designing a new sensor with focal lengths tuned for the mounting height.
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Place Recognition Using Regional Point
Descriptors for 3D Mapping

Michael Bosse and Robert Zlot

Abstract. In order to operate in unstructured outdoor environments, globally con-
sistent 3D maps are often required. In the absence of a absolute position sensor such
as GPS or modifications to the environment, the ability to recognize previously ob-
served locations is necessary to identify loop closures. Regional point or keypoint
descriptors are a way to encode the structure within a small local region as a fixed-
sized vector, though individually do not include enough context to fully identify
a previously seen place. Multiple queries to a database of descriptor vectors can
quickly identify similar features, and places can be recognized from a consistent set
of descriptor matches. We investigate the problem of designing informative keypoint
descriptors for 3D laser maps. Several models are considered and evaluated, with a
particular focus on the optimal descriptor scale and keypoint sampling density. The
approach is evaluated on 3D laser point cloud data collected from a vehicle driving
in unstructured off-road environments. Consistent 3D maps constructed from this
data without assistance from any other sensor (such as wheel encoders, GPS, or
IMU) demonstrate the effectiveness of our approach.

1 Introduction

Building globally consistent 3D maps is an essential requirement for many au-
tonomous systems operating in unstructured, off-road environments, including earth-
moving, mining, construction, and agriculture. In previous work [3], we introduce
an approach for incrementally estimating the 6 DoF trajectory of a vehicle using 3D
measurements taken from a continuously spinning 2D laser mounted on a vehicle
(Figure 1). The resulting trajectory can be used to construct 3D maps of the environ-
ment; however these maps are only locally accurate. In order to correct global errors,
constraints can be introduced into the map structure if place recognition events can
be reliably detected. In this paper, we investigate the place recognition problem for
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(a) Bobcat S185 (b) Toyota Prado 4WD

Fig. 1 The spinning laser is mounted on a variety of ground vehicles for data collection.

producing globally consistent 3D laser point cloud maps given locally consistent 3D
maps as input.

For our purposes, the place recognition problem can be stated as follows: Given
a 3D point cloud map of a small local region or place, determine whether or not this
place has been previously observed, and if so, find the relative coordinate transfor-
mation aligning the matching places. These relative alignments can be used as con-
straints for building a global map. Place recognition arises in several applications
including loop closure detection in SLAM, global localization in a known map, and
fusing several maps collected over time or simultaneously on multiple vehicles.

Although point cloud maps are metric by nature, the place recognition process
enforces topological constraints which correct the accumulation of registration er-
rors over time. Typically, point cloud maps are constructed using incremental meth-
ods for aligning consecutive observations (e.g., Iterated Closest Point (ICP)), which
require a reasonable prior on the alignment transformation. Therefore, the ability of
a place recognition algorithm to not only detect a match, but to estimate a rough
alignment, is also critical.

Several general approaches have been explored for 3D place recognition, mainly
in the context of loop detection for SLAM. One type of solution performs pairwise
comparisons between the current place and all places within a region of uncertainty
around the estimated robot pose [2, 5, 9]. However, as noted by Newman et al. [8],
this approach can fail in some situations where the uncertainty region does not con-
tain the matching place. In addition, at large scales, uncertainty can become so large
that the exhaustive pairwise search cannot be performed in a reasonable time [12].
Silver et al. [11] describe a system for topologically mapping underground mines,
where the tunnel structure allows the search for loop closures to be limited to in-
tersections, which can be detected using 2D laser scans. Ryde and Hu [10] use a
coarse-to-fine occupancy grid matching algorithm which initially samples the envi-
ronment uniformly for match candidates, then further considers only the top matches
when refining at a higher resolution. Our approach uses a global database of regional
descriptors or keypoints extracted from all previously observed places. Place recog-
nition is accomplished by finding those places which have a significant number of
keypoints in common with the query place. As the database can be searched in
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sublinear time with respect to the number of keypoints, this approach can be imple-
mented efficiently and independent of current pose uncertainty or loop scale.

The use of regional shape descriptors is also a common approach for object
recognition (e.g., [6, 7]). However, for the object recognition problem, descriptors
from a scene are typically matched against a set of candidate objects in a predefined
library to detect the existence of a particular type and variant of an object. In addi-
tion, when attempting to recognize places, it is not always obvious how to partition
the environment, so boundary effects can occur if the segments are not in precisely
in the same location. While in object recognition, occlusion is an important con-
sideration, in place recognition changes in the environment—such as parked cars
changing location, changing vegetation, movable furniture, doors, people, etc.—are
also important factors.

This paper contributes an evaluative study of regional shape descriptor models for
outdoor place recognition. In addition to a comparison of several models, we also
investigate the optimal descriptor scale and keypoint sampling density, which are
often arbitrarily or unsystematically chosen. We extend a descriptor model first de-
scribed for use in two dimensional maps [1] for use in three dimensional maps. This
extension is not trivial, as we must be able to consistently identify three degrees of
rotational freedom in the descriptor coordinate frame, as opposed to one rotational
DoF in 2D maps. Existing approaches tend to fix two of the three dimensions, and
make the descriptors rotationally invariant to the third, at a performance cost [6, 7].
The regional keypoint descriptors are used in a nearest neighbor voting scheme to
identify and recognize previously observed places. The ability of our approach to
autonomously generate registered outdoor maps is demonstrated in challenging un-
structured environments.

The remainder of the paper is organized as follows. In Section 2 we describe our
framework and compare several keypoint selection strategies and descriptor models.
We present mapping results generated continuously from a spinning laser range sen-
sor in both industrial and off-road environments in Section 3. Finally, in Section 4,
we present our conclusions and future work.

2 Approach

In this section, we compare several keypoint selection heuristics and descriptor mod-
els in terms of their suitability and effectiveness in our place recognition framework.
We partition our maps by considering the data from each five-second segment of
vehicle trajectory to be a “place”. For each place, we extract a set of keypoints,
compute their descriptors, and then query a global keypoint database for each new
keypoint’s ten nearest neighbors1. Each returned neighbor votes for the local map
that generated it in a positional voting scheme. The local maps with the highest
vote scores, if over a threshold, are considered as candidate place matches. The

1 We use the ANN kd-tree implementation to find approximate (ε = 1) nearest neighbors:
http://www.cs.umd.edu/∼mount/ANN
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matches can be subsequently verified using a geometric consistency check among
the matched keypoints, followed by a global graph optimization step.

Raw descriptor vectors are initially processed in order to embed them in a Eu-
clidean space and reduce the number of dimensions. The embedding occurs in two
steps, and requires training data containing pairs of matched keypoints from differ-
ent passes through the environment. First, each individual dimension is transformed
by applying the empirical cumulative distribution function to the values, resulting in
a 1D uniform distribution for that dimension. Second, the resulting descriptor is lin-
early transformed to maximize the separability between matching and non-matching
pairs. Dimension reduction is then used to prevent overfitting to noise in addition
to improving the computation efficiency of nearest neighbor searches. A detailed
description of this descriptor processing technique is available in a previous publi-
cation [1].

The first step in representing a place by a set of keypoints is to select the locations
about which to build descriptors. To ensure a high place recognition rate, keypoints
should be selected such that the likelihood of selecting keypoints in a similar loca-
tions on a subsequent pass is high. The simplest selectors either sample randomly
from the point cloud or distribute the keypoints in space. With an intelligent selec-
tion scheme there is the potential to use much fewer points as compared to more
simplistic sampling approaches, while still ensuring they are stable and salient. Ad-
ditionally, using too many points will unnecessarily increase the computation and
memory requirements of the system. However, we found little advantage in any of
the intelligent selection heuristics we experimented with, and intend to further study
this problem in future work.

Our selection heuristic therefore simply subsamples the original point cloud such
that no two points are within a minimum distance, effectively limiting the maximum
density to a predetermined value. For computing the orientation at a keypoint, we
first determine the first- and second-order moments of the point cloud within a fixed
distance of the keypoint. By taking the eigenvectors of the covariance matrix, we
are able to determine local coordinate axes, up to a sign ambiguity. To resolve this
ambiguity, we ensure that the z-axis has a positive component in the local “up”
direction, and the x-axis has a positive dot product with the direction to the center
of mass.

2.1 Keypoint Description

Typically, 3D keypoint descriptors divide the space around the keypoint into a set
of bins, then compute statistics on the points that fall into each bin to produce a
descriptor vector. We consider several descriptor types, some of which are taken
from the existing literature while others are of novel design. We consider three key
properties as design parameters for any descriptor:

Shape. The main defining characteristic of a keypoint descriptor is the arrange-
ment and number of the bins around the keypoint. There is a trade-off between
the number of bins and the potential descriptiveness of the feature. When there
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are too many bins, many of the bins will be undersampled, thereby introducing
non-Gaussian quantization errors to the descriptors, which are difficult to model.

Scale. There is a trade-off in determining the size of the local support region
around a keypoint from which to build the descriptor. Larger scales have more
context from which to make a salient descriptor, while smaller scales are not
as sensitive to boundary effects, missing data, and transient objects. However,
computing larger-scale keypoints require significantly more computation.

Statistics. The statistics gathered for each bin are also important in defining the
information contained in the descriptor vector. Many existing descriptor mod-
els [6, 7] include only a count of the number of points in each bin; however,
higher-order moments [12] or even complete orientation histograms [4] are also
possible. Care must be taken in the design of the number and shape of the bins to
ensure that enough points fall into each bin in order for the higher order statistics
to be reliable.

For the experiments presented in this paper, we evaluate the effect of varying
the keypoint scale for three main descriptor shape types: spin images, shape con-
texts, and moment grids. As the descriptors have multiple parameters related to their
shape (e.g., number and size of bins), determining the optimal shapes is a difficult
high-dimensional optimization problem. The parameters used for each descriptor
are based upon a non-exhaustive empirical study in which a sampling of reasonable
configurations was explored.

2.1.1 Base Dimensions

To each descriptor model, we include seven rotationally invariant shape-related
statistics derived from the eigenvalues of the covariance matrix of the local point
cloud. These include the three eigenvalues (where λ1 > λ2 > λ3), the planarity of
the region p = 2(λ2 −λ3)/s, the cylindrical-ness of the region c = (λ1 −λ2)/s, as
well as p+c, and p−c, where s = λ1 +λ2 +λ3. When used on its own as a descrip-
tor, the seven base dimensions are reduced to three dimensions by the preprocessing
algorithm.

2.1.2 Spin and Shell Images

Spin images [7] are cylindrical descriptors divided into bins both radially and along
the cylinder axis. The resulting support region therefore consists of a set of 3D an-
nular bins. The descriptor vector consists of a count of the number of points in each
of these bins. For the implementation used in this paper, we choose 10 radial and 10
height divisions yielding (with the seven base dimensions) a 107-dimensional de-
scriptor vectors that typically (depending on the scale) reduce down to 9-dimensions
after preprocessing.

Shell images are a generalization of spin images that are rotationally invari-
ant as the bins are defined as spherical shells about the keypoint. We choose 20
quadratically spaced radial divisions which after preprocessing typically results in a
5-dimensional feature vector.
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2.1.3 3D Shape Contexts

The support region of 3D shape contexts [6] are spheres, with the bins arranged
by dividing space quadratically along the radius, and linearly in the azimuth and
elevation directions. As with spin images, the descriptor vector simply maintains
a count of the number of points in each bin. In contrast to the original authors’
approach, we do not normalize either the shape context or spin image by volume or
density, as these effects are accounted for in our descriptor normalization procedure.
Since the average point density is much lower in our data set as compared to the
original authors’, we choose 5 radius, 8 azimuth, and 4 elevation divisions. The
resulting 167-dimensional descriptors is typically reduced to 18 dimensions after
preprocessing. We also do not need to repeat the descriptor for every rotation of the
azimuth bins since we can reliably compute all 3 rotational degrees of freedom of
the keypoint frame.

2.1.4 Moment Grids

3D moment grids use a rectilinear voxelization of the space around the keypoint.
They are extended from a 2D descriptor previously used for two-dimensional place
recognition [12]. For each cube-shaped bin, we compute moments up to second-
order, for a total of ten per voxel to include in the descriptor vector. We use 2×2×2
and 3 × 3 × 3 grids, as well as a 2 × 2 × 2 cylindrical version (radius, azimuth,
height). Including the base dimensions, the sizes of these descriptors are 87, 277,
and 87 dimensions respectively, but are typically reduced by the processing algo-
rithm to 16, 20, and 12 dimensions.

3 Results

In order to assess ideal keypoint scales and densities, a registered map is required
for training and testing purposes. An earlier untuned version of this approach was
used with a separate training dataset to create a globally consistent point cloud and
trajectory from which matching keypoint pairs could be extracted. The training data
was collected in both off-road and industrial environments. To generate the match
set, the dataset is evenly sampled at 0.5 m resolution and matching keypoint pairs
are identified as those that are within 0.5 m and 15 degrees, and observed more than
30 seconds apart. A set of unmatched pairs is generated by selecting keypoints at
random. The retrieval rates are measured using half of the matched and unmatched
pairs as training, with the remainder as a validation set in a repeated random sub-
sampling cross-validation scheme.

3.1 Keypoint Scale

Our first aim is to determine an appropriate scale for the region encoded by each
keypoint descriptor. For each descriptor type, we generate keypoints at a variety of
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Fig. 2 Results from experiments examining the F-measure at various keypoint scales and
densities. Each datapoint in (a) represents an average over 30 trials, with 3σ error bars. Note
that (a) measures accuracy relative to keypoint retrieval, whereas (b) is with respect to overall
map match detections.

scales from 1 m to 10 m and measure the retrieval accuracy over the known matches.
Note that the keypoint orientations are dependent on the scale, so must be computed
separately for each experiment. To quantify the accuracy at each descriptor scale, we
measure the precision and recall rates to compute the F-measure, which is defined
as the harmonic mean of precision and recall.

Figure 2a plots the F-measure versus the scale for each descriptor type consid-
ered. As expected, we observe an improvement in F-measure as the scale increases;
however, after about 7 m the improvement tapers off for all descriptor types. We
interpret this result as demonstrating a general improvement as more points are con-
tained within the keypoint region; eventually, however, sensitivity to boundary ef-
fects and misregistrations decrease the utility of the descriptors. We also note that
the three moment grid descriptors perform best, though the number of bins and their
arrangement seem to be less important. This suggests that the inclusion of higher-
order moments adds meaningful information, as long as the bins contain a sufficient
number of support points for meaningful statistics to be computed. The 3D shape
context descriptor performs nearly as well as the moment grid descriptors.

3.2 Keypoint Density

Given an appropriate descriptor scale, we now evaluate the overall map matching
performance resulting from the nearest neighbor voting procedure described in Sec-
tions 1 and 2. For the purposes of the voting, we aggregate the votes over five-second
intervals, with the associated place represented by the trajectory point at the center
of that interval. The choice of five seconds is made to provide sufficient time to
observe enough context around the vehicle without being overly influenced by drift
accrued in the local scan-matching. For every query place, we retain the twenty
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(a) Map 1: overhead view
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(b) Map 1: trajectory over time with matches
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(c) Map 2: open- vs closed-loop trajectories (d) Map 2: oblique view

Fig. 3 Two maps constructing using the keypoint voting scheme. (a) Map of a lightly wooded
off-road environment overlaid on a Google Maps image. (b) The trajectory of map 1 with time
indicated on the vertical axis. The links between places correspond to matches that pass the
vote score threshold and geometric consistency checks. Color indicates the strength of the
score after the consistency check (blue low, red high). The loop optimization step re-weights
the edges and is robust to the incorrect matches. (c) The open-loop and closed-loop (after
loop closures) trajectories from a second map. (d) Oblique view of the second map with color
indicating terrain height.

places with the highest vote scores. For each potential map match pair, we also per-
form a rigidity test on the keypoint matches and reduce the vote score by removing
any pairs not geometrically consistent with the largest cluster of keypoint transfor-
mations (RANSAC could also have been used for this step). Any scores higher than
a threshold are then taken as a map match. Note that additional consistency checks
(e.g., ICP) could be made to further invalidate false positives.

In this set of experiments, the map matching performance is evaluated for dif-
ferent keypoint densities for all the descriptor types and a fixed scale of 7 m. The
map matching F-measure is defined similarly to the keypoint match F-measure using
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the precision and recall rates resulting from thresholding the vote scores. Note that
when determining ground truth for map match pairs it is often difficult to decide
whether there is enough overlap to warrant a match; therefore we evaluate preci-
sion and recall based on the examples where this decision is clear. The true positive
map matches are defined as places that are temporally distinct (visited more than 30
seconds apart), spatially near (the trajectories are within 10 m), and which observe
points overlapping with (within 0.5 m of) another place in the globally registered
point cloud. True negatives are defined as temporally distinct, spatially distant (tra-
jectories are more than 20 m apart), and non-overlapping.

Figure 2b illustrates the map match F-measures for various keypoint densities.
The results demonstrate that fairly low keypoint densities (0.1 to 0.3 points per
cubic meter) are sufficient to achieve F-measures close to the maximum, as the F-
measure curve essentially flattens after this density. Again, the moment grid and 3D
shape context descriptors are observed to perform significantly better than the other
alternatives tested.

3.3 Mapping Results

Two maps constructed using our approach are illustrated in Figure 3. In both maps,
loop closures are detected using the described place recognition framework with
3 × 3 moment grid descriptors at a scale of 7 m and density of 0.3 per cubic meter.
A globally consistent trajectory is computed by a robust minimization of the loop
closure constraints (details of which are beyond the scope of this paper), and the 3D
point cloud is updated from the corrected trajectory. While we do not have ground
truth for these maps, the accuracy can be verified qualitatively by comparison with
satellite imagery (as in Figure 3a).

4 Conclusions

A systematic investigation into the design of regional point descriptors has led to
a model and associated parameters suitable for 3D place recognition. Though sev-
eral of the models considered are sufficiently capable of finding loop closures in
our data, moment grid descriptors perform best in terms of accuracy and efficiency
at this task. While the calculation of higher-order moments for these descriptors
requires about 13% more time, this increase in computation cost is not highly sig-
nificant as keypoint generation can easily be done in real-time. A limitation of our
approach is that the descriptors must be calibrated using a registered training set
and it can be challenging to obtain a sufficiently large number of true positive ex-
amples. However, since the training step can be performed on a separate dataset, the
proposed place recognition algorithm can be run online. Future work will focus on
developing intelligent keypoint selection heuristics which will reduce computation
load while still maintaining a high probability of keypoint detection.



204 M. Bosse and R. Zlot

Acknowledgements. The authors thank Lennon Cork, Paul Flick, Fabien Molliner, Julian
Ryde, John Whitham and the rest of the CSIRO Autonomous Systems Lab team for their
assistance.

References

1. Bosse, M., Zlot, R.: Keypoint design and evaluation for place recognition in 2D lidar
maps. In: Robotics: Science and Systems Conference, “Inside Data Association” Work-
shop (2008)

2. Bosse, M., Zlot, R.: Map matching and data association for large-scale 2D laser scan-
based SLAM. International Journal of Robotics Research 27(6), 667–692 (2008)

3. Bosse, M., Zlot, R.: Continuous 3D scan-matching with a spinning 2D laser. In: Proceed-
ings of the IEEE International Conference on Robotics and Automation (2009)

4. Cole, D.M., Harrison, A.R., Newman, P.M.: Using naturally salient regions for SLAM
with 3D laser data. In: IEEE International Conference on Robotics and Automation
SLAM Workshop (2005)

5. Cole, D.M., Newman, P.M.: Using laser range data for 3D SLAM in outdoor environ-
ments. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion (2006)
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Scan-Point Planning and 3-D Map
Building for a 3-D Laser Range
Scanner in an Outdoor Environment

Keiji Nagatani, Takayuki Matsuzawa, and Kazuya Yoshida

Abstract. During search missions in disaster environments, an important
task for mobile robots is map building. An advantage of three-dimensional
(3-D) mapping is that it can provide depictions of disaster environments that
will support robotic teleoperations used in locating victims and aid rescue
crews in strategizing. However, the 3-D scanning of an environment is time-
consuming because a 3-D scanning procedure itself takes a time and scan data
must be matched at several locations. Therefore, in this paper, we propose
a scan-point planning algorithm to obtain a large scale 3-D map, and we
apply a scan-matching method to improve the accuracy of the map. We
discuss the use of scan-point planning to maintain the resolution of sensor
data and to minimize occlusion areas. The scan-matching method is based on
a combination of the Iterative Closest Point (ICP) algorithm and the Normal
Distribution Transform (NDT) algorithm. We performed several experiments
to verify the validity of our approach.

Keywords: Search and Rescue, Scan points planning.

1 Introduction

Recently, requests for the development of robotic systems for search-and-
rescue operations have been increasing rapidly. After the Hanshin-Awaji
earthquake in 1995 (Japan) and the World Trade Center attack in 2001
(U.S.A.), large research projects for search and rescue were kicked off in
Japan.

One of the important tasks for mobile robots in search-and-rescue missions
is map building. Three-dimensional (3-D) mapping is used to provide repre-
sentations of disaster environments that will support robotic teleoperations
used in locating victims and aid rescue crews in strategizing. To realize 3-D
mapping in disaster environments, we constructed the 3-D scanner device
shown in Figure 1-(a). It consists of a laser range finder (SICK), rotation
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(a) Developed sensor device (b) Acquisition example

Fig. 1 Development of a sensor system and acquisition example of an environment

stage, and CCD camera to obtain information in color. It takes one minute
to scan an environment at one place, and the device generates 3-D informa-
tion to create a remote display of the target environment (e.g., Figure 1-(b)),
which helps the rescuers get a complete picture.

Search-and-rescue missions require rapid, accurate mapping. However, to
map a large-scale environment, rescue robots must obtain 3-D information in
different locations, and the scan data obtained at different locations should
be merged to represent a large-scale environment. In such cases, reasonable
scan-point planning is very important; however, measurements in different
locations generate gaps of objects in the map caused by positioning errors at
each scan point. Therefore, we propose a scan-point planning algorithm to
obtain a large scale 3-D map, and we have applied a scan-matching method to
improve map accuracy. In the scan-point planning algorithm, the resolution
of sensor data and occlusion area allow as much of a target area as possible
to be covered. The scan-matching method is based on the Iterative Closest
Point (ICP) algorithm [1] and the Normal Distribution Transform (NDT)
algorithm [2]. In this paper, we discuss the construction of 3-D maps in
outdoor environments, and we report the results of the environment mapping
of our campus buildings.

2 Related Works

Two major approaches are used to obtain a 3-D map. One, stereo matching,
involves the use of two or more cameras (e.g., [3]), while the other involves a
3-D laser range scanner (e.g., [4]). The merits of the former approach are fast
measurement and simultaneous acquisition of texture information. However,
there are some disadvantages: (1) stereo matching requires brightness and
feature information, (2) its measurement area is narrow, and (3) distance
accuracy decreases as the distance from the objects increases. Therefore, in
this study, we use a 3-D laser range scanner with a CCD camera to produce
the 3-D color map shown in Figure 1.
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In regard to scan-point planning, a classic problem is the Art Gallery
Problem [5], which involves the number of guards required to monitor the
target floor completely. Basically, the problem assumes that the shape of the
floor is known and the target environment is 2-dimensional (2-D). Recently,
some novel researches for view point planning were performed in 3-D. Se-
queira et al. proposed a view planning method for automatic acquisition of
environment information with consideration of sampling density [6]. In our
scan-point planning, we propose a scan-point planning method that combines
frontier-based navigation [7] and the Art Gallery Problem.

Recently, scan matching has been used for the adjustment of the relative
position of the scan data and particularly for simultaneous localization and
mapping (SLAM) in mobile robot navigation[8]. In this research, we apply
the conventional Iterative Closest Points (ICP) algorithm [1] and the Normal
Distribution Transform (NDT) algorithm [2] to our scan data. Because both
algorithm have advantages and disadvantages, we have combined them to
obtain a robust and accurate 3-D map.

3 Scan-Point Planning

To obtain a large scale environment by repeated 3-D scanning, we have es-
tablished the following procedures:

1. Conducting a 3-D scan
2. Representing the scan information on a Multi-Level Surface map (MLS-

map)
3. Determining the movable region
4. Planning the next scan point in the region
5. Moving the 3-D scanner to the designated point
6. Repeating steps 1 through 5 until the target region is completely covered

3.1 Representation of Scan Information

To perform scan-point planning in large-scale environments, point cloud rep-
resentation is unsuitable because of the massive volume of data and the non-
constant density. Therefore, at the beginning of this study, we applied a
Digital Elevation Map (DEM) to represent target environments [9] for scan-
point planning. In this method, each scan point is registered into one cell of
the lattice domain on a 2 dimensional (2-D) x-y plane as height information
from a base level. The DEM advantageously represents a non-flat environ-
ment. However, the method can not be used to represent spaces under objects
because only the highest scan point is effective. An example of point cloud
representation is shown in Figure 2-(a). It is a side view of a four-story build-
ing (left) and a tree (right). A DEM representation of Figure 2-(a) is shown
in Figure 2-(b) from the same viewpoint. A space under the tree is not visible
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(a) Point cloud (b) DEM (c) MLS-map

Fig. 2 Comparison of DEM and MLS-map

in the DEM representation, which is undesirable for the determination of the
movable region of mobile robots.

Fig. 3 Introduction to MLS map

A Multi-Level Surface map (MLS-map)
[10] is one solution to the representation
of such an environment. In this method,
some edge-point positions of objects are
stored in each cell of the lattice domain
on a 2-D x-y plane. Figure 3 shows a con-
cept of the MLS-map. Information about
two objects is stored in one cell, which
represents a space between the objects.
Based on the above method, the point
cloud representation in Figure 2-(a) is rep-
resented by the MLS-map in Figure 2-(c).
The space under the tree is now visible.

3.2 Determination of Movable Region

For mobile robots, the path between the current scan point and the next
scan point must be connected. Therefore, we define a movable region as an
area (1) which is connected to a current scan point and (2) whose differential
height between adjacent cells in the MLS-map is smaller than the threshold.
Of course, the movable region depends on the mobility of the target mobile
robot. In our implementation, the threshold was set at 0.15 [m].

3.3 Region Segmentation

To maintain the resolution of scan data, we divide the target region into
three regions, (1) scan-completed region, (2) low-resolution region, and
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Fig. 4 Region segmentation

(3) unscanned region. In reality, map reso-
lution depends on not only the scan range
but also the orientation; however, to sim-
plify the planning of the next scan points,
we use the following definitions: (1) The
scan-completed region (C) is a set of cells
in the target region which has scan data
and whose distance from the closest scan
point is less than a fixed value. In our
implementation, the distance value is set
at 20 [m]. (2) The low-resolution region
(M) is a set of cells in the target region
which has scan data but does not belong
to the scan-completed region. (3) The un-
scanned region (U) is a region which does not belong to (1) and (2) because
a cell in the region is too far from the scan points or is occluded by objects.

Figure 4 shows an example of the region segmentation of an initial scan
from scan point A. The white region is the scan-completed region(CA) from
point A, the gray region is the low-resolution region (MA), and the blue
rectangles are obstacles. The dark-gray region is the unscanned region (U),
where the blue rectangles occlude or are far from point A.

3.4 Evaluation Function for Next Scan Point

To minimize the scan procedure while maintaining the resolution of the scan
data, the unscanned region or the low-resolution region should be changed,
as much as possible, into a scan-completed region by the next scan. Two
different indices are included, therefore, we defined an evaluation function as
follows:

FX = area((U ∩ CB) ∪ (U ∩ MB)) · α +
area(MA ∩ CB) · (1 − α) (1)

where area(·) is an area value in the bracket, C(B) is a prospective area
which becomes a scan-completed region when the next scan is conducted at
point B, M(B) is a prospective area which becomes a low-resolution region
when the next scan is conducted at point B, and α is the weight value. If
exploration in the unscanned region is not important, the α should be very
small or zero.

The calculation of Equation (1) at one cell in the movable region requires
a ray-tracing scan in 3-D virtual space, which is time-consuming. Therefore,
we applied a hill-climbing search from several randomized initial locations.

Figure 5 shows a top view of an example of a planned result in an MLS-
map in the case of an initial scan. In this figure, the blue circle depicts an
initial scan point, the red circle is the planned scan point in the case of
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A building

Initial scan 
point

initial scan point

Planned scan 
point     =1

Planned scan 
point     =0

Fig. 5 Top view of an example of target region

(a) A view from the initial (b) A view from the next (c) A view from the next
scan point scan point (α = 0.0) scan point (α = 1.0)

Fig. 6 An example of a scan point

α = 1.0, the green circle is the planned scan point in the case of alpha = 0.0,
the flesh-colored region is the scan-completed area, the yellow region is a
low-resolution movable area, and the blue region is a low-resolution but not
movable area. Figure 6 shows virtual views, (a) is a view from the initial scan
point corresponding to the blue circle in Figure 5, (b) is a view from the
planned scan point in the case of α = 0.0 corresponding to the red circle in
Figure 5, and (c) is a view from the planned scan point in the case of α = 1.0
corresponding to the green circle in Figure 5. In the virtual views, scanning
in unknown area has priority in the case of α = 1.0.

3.5 Examples of Planning Results in Outdoor
Environments

We tried the above scan-point planning method in several different outdoor
environments. The motion of the 3-D scan unit to the next scan position was
performed by a human operator, not by a mobile robot platform. Termination
judgement was made by the operator, who checked the coverage region. Due
to space limitations, only one experimental result will be discussed here.
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Fig. 7 A result of scan-point planning in an outdoor environment (our campus)

The target environment is our campus (Mechanical Department, Aoba-
Yama, Tohoku University, Japan), which includes buildings, trees, and park-
ing slots. The weighting factor of α is set at 0.5, and the cell size of the
MLS-map is set at 1.0 [m] square. Figure 7 shows a transition of the scan
position and scan area in the first environment. In the 13 scan and movement
motions, the detection area (the map itself) was expanded step by step. The
total detection area is about 16,500 grids (that is equal to square meters).
The result shows that our proposed algorithm worked well for the large-scale
outdoor environment.

4 Scan Matching for Improved Map Accuracy

In outdoor environments, global positioning systems (GPS), electromagnetic
sensors, and inclination sensors can be used to obtain a scan point. How-
ever, because of sensing errors or noise, each scan-point location may include
a positioning error. To compensate for such errors, scan matching is used
to adjust the location and to construct an accurate map, particularly in si-
multaneous localization and mapping (SLAM). For scan matching, we apply
the Iterative Closest Point (ICP) algorithm [1] and the Normal Distribution
Transform (NDT) algorithm [2].

4.1 Summary of the ICP Algorithm

In the ICP algorithm, two given point sets are registered in Cartesian co-
ordinates. In each iteration step, the algorithm selects the closest points as
correspondences and calculates the rotation matrix R and the translation
matrix t to minimize the following equation:

E(R, t) =
Nm∑
i=1

Nd∑
j=1

ωi,j

∥∥mi − (Rdj + t)
∥∥2 (2)
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where Nm and Nd are the number of points in the reference data set M and
the matching data set D respectively. ωi,j = 1 when mi is the closest point
to dj , and ωi,j = 0 otherwize.

To improve the accuracy of the ICP algorithm, we applied the ICP algo-
rithm of points and segments, which calculates, not a distance between the
closest points, but a distance between a point in the reference data set and
a segment between two closest points in the matching data set. We call this
algorithm a line-segment ICP algorithm.

4.2 Summary of the NDT Algorithm

In the NDT algorithm, a target space is divided into grids. Then the distri-
bution of scan points in the reference data set in one grid is represented by
a normal distribution. An average in the grid i is represented by qi, and a
covariance matrix in the grid is represented by Σi. Based on the above data,
an evaluation function is defined as the sum of the matching level between
a point x′

i in the matching data set and the normal distribution i, which
corresponds to point x′

i, as follows:

E(p) =
N−1∑

i

exp
−(x′

i − qi)tΣ−1
i (x′

i − qi)
2

(3)

Detailed explanations and equations are given in [2].
The accuracy of the result depends greatly on the size of each grid. To

improve the robustness of the NDT algorithm, we applied an algorithm in
which the size of each grid is dynamically changed. At first, grid size is large
for global matching. After that, the matching sequence is repeated with pro-
gressively smaller grid sizes. In our implementation, the initial size of the grid
is 20 [m], the second size is 15 [m], and the final size is 10 [m]. We call this
algorithm the Narrower NDT algorithm.

4.3 Combination of the ICP and NDT Algorithms

To construct an accurate 3-D map of an outdoor environment, we applied
the above scan-matching algorithms to our experimental results, as shown
in section 3.5. We mounted an inclination sensor on the 3-D scanner, so the
adjustment parameters in this scan matching are the position (x, y, z) and
orientation θ of an obtained environment.

Through the above application experience, we identified the following com-
parative qualitative features: (1) The ICP algorithm is more accurate than
the NDT algorithm when the matching is successful. (2) The ICP algorithm
becomes stuck in the local minima much more easily than the NDT algorithm
does. Based on the above features, to pursue both accuracy and robustness
for scan matching, we propose a combination of the two algorithms, or the
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Fig. 8 A comparison of matching algorithms (our campus)

NDT-ICP Combination. First, the Narrower NDT algorithm is applied, and
then the line-segment ICP algorithm is applied.

Fig. 9 Matching result “4-5” by solo
ICP algorithm

Figure 8 shows a graph compar-
ing the above three matching al-
gorithms (left) and scan locations
(right). Table 1 shows the numeri-
cal evaluation values of the same re-
sult. A “number-number” represents
the scan location indices for match-
ing; for example, “2-3” represents a
match between scan point 2 and scan
point 3. Each evaluation value is the
ICP score calculated by Equation 2.
The smaller of the evaluation values
denotes better matching.

Based on the comparison results,
the NDT-ICP Combination algo-
rithm works well. In the case of scan
matching between scan points 4 and
5, the solo ICP algorithm failed to
match. The failed example is shown in detail in Figure 9. White dots are
scan data obtained at scan point 4, and green dots are those obtained at
scan point 5, where the scan points of path 1 appeared. The scan data of

Table 1 Scan Matching Comparison : Proposal

1-2 2-3 3-4 4-5 5-6
Line-segment ICP 301.0 269.2 169.2 503.9 378.4
Narrower NDT 258.7 292.1 201.9 245.6 317.7
Proposal (NDT-ICP Comb.) 236.1 262.7 173.9 226.5 254.3
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path 2, obtained at scan point 4, disappeared. However, the scan data of
path 1 seemed to be pulled by the scan data of path 2. Finally, matching
failed, as shown in the figure. In the case of the NDT-ICP Combination al-
gorithm, such mismatching did not happen. In the case of scan matching
between scan points 3 and 4, the ICP algorithm was slightly better than
the NDT-ICP Combination algorithm, perhaps because the convergence di-
rection of the solo ICP algorithm was different from the direction after the
NDT algorithm was applied and the ICP iteration was stopped in the differ-
ent situations.

5 Conclusions and Future Work

In this paper, we have proposed a scan-point planning algorithm to obtain
a large scale 3-D map efficiently and a combination of scan-matching algo-
rithms (NDT and ICP) to improve mapping accuracy. Finally, we have offered
an example of mapping in an outdoor environment to confirm the validity
of the above approach. We have also applied the approach to two different
environments, a small natural field at Mt. Aosasa in Sendai City and a park
on our campus (without large buildings). In both environments, the proposed
approach worked well. In the former case, the target environment included
small trees, and the solo ICP algorithm became stuck in the local minima for
scan matching. These results are not included here due to space limitations.

In our current implementation of scan-point planning, we have not consid-
ered the moving cost of mobile robots. Therefore, the next scan point may
be far from the current scan point, as happened in the planning procedure
shown in this paper. In the future works, it is required to discuss optimality of
the viewpoint selection deeply. Furthremore, although we have defined scan
resolution simply as the distance to an object, it should be considered in the
orientation of the targets. By solving the above problems, we aim to obtain
a feasible and accurate 3-D map in an outdoor environment.
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Image and Sparse Laser Fusion for Dense Scene
Reconstruction

Alastair Harrison and Paul Newman

Abstract. This paper is concerned with reconstructing the metric geometry of a
scene imaged with a single camera and a scanning laser. Our aim is to assign each
image pixel with a range value using both image appearance and sparse laser data.
We pose the problem as an optimization of a cost function encapsulating a spatially
varying smoothness cost and measurement compatibility. In particular we introduce
a second order smoothness term. We derive cues for discontinuities in range from
changes in image appearance and reflect this in the objective function. We show that
our formulation distills down to solving a large linear system which can be solved
swiftly using direct methods. Results are presented and analyzed using synthetic
cases to demonstrate salient behaviours and on real data to highlight real-world
applicability.

1 Introduction and Motivation

This paper is about dense mapping of workspaces using common place cameras and
scanning lasers. Cameras provide near instantaneous capture of the workspace’s ap-
pearance (texture and colour) but, from a single view, little geometrical information.
On the other hand, scanning lasers produce comparatively slow, sparse metric sam-
pling and beyond reflectance, capture little of the scene’s appearance. This motivates
us to consider how we might fuse sparse laser data and images to infer a range for
every pixel in the image, allowing us to reconstruct a 3D scene with all the texture,
colour and appearance information captured in the original image. The heart of the
problem is how to sensibly infer ranges for pixels which are not near any laser mea-
surements without introducing intolerable distortions. Our method is general in that
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it is not tied to any particular 3D laser scanner mechanism or geometry. Note also
that we aim to recover the dense geometry of a scene over scales which prohibit the
use of other direct methods such as stereo unless a truly large baseline is used.

2 Related Work

The problem of inferring 3D surface models of a scene using laser or camera sen-
sors has been studied extensively over many years (see, for example [1, 2, 3, 4]).
However, limitations in hardware and a requirement for speedy data gathering in
mobile robotics typically results either in high resolution optical images only al-
lowing inference of very basic 3D geometry, or, alternatively, low resolution range
images which often sample the scene too sparsely to allow for faithful reconstruc-
tion. Multiple view reconstruction provides an attractive alternative due to a near
instantaneous gathering of dense 3D data leading to dense scene reconstructions
from image data alone [5, 6]. Unfortunately, stereo reconstruction fidelity is limited
in range by the baseline and the image resolution. This seriously impedes accurate
reconstruction beyond a few meters from the camera. Another alternative can be
found in the exploitation of the complementary nature of vision and range sensing.
While optical images and range images represent different quantities, they share
“similar second order statistics and scaling properties” [7].

Only a relatively small body of work exists on the inference of surfaces by fusing
laser data and camera images. Usually, these techniques exploit the fact that edges
in the optical image often correspond to discontinuities in depth, and that smooth
surfaces tend to correspond to areas of similar colour and texture. In [8], depth val-
ues for pixels in an image are inferred using belief propagation in a Markov Random
Field (MRF) framework. The technique requires that the supplied range measure-
ments contain some high density areas from which to seed the solution, and is unable
to assign depth values outside of those already in the measurements. The techniques
described in [9], [10] and [7] are able to fuse the information from both sources to
significantly improve the resolution of low quality range images. The method of [9]
is particularly relevant to this work. It employs an MRF formulation with a first-
order smoothness prior. The technique favours fronto-parallel surfaces, but does not
suffer too greatly from this because the range measurements are sufficiently regular
and dense, coming from a special range camera sensor. This ‘pins’ the estimates to
lie near the true surface.

In contrast to [9] the method presented here is targeted at any combination of
commonly available monocular camera and scanning laser. In particular, this re-
quires inference of range measurements based on sparse, inhomogeneous range
data. In such cases, the fronto-parallel tendency of inferred surfaces induced by
only considering a first-order smoothness prior leads to increasingly inaccurate re-
constructions. We address that issue by introducing a second-order smoothness prior
while still framing the problem as a well-understood optimization of a linear system
of equations.
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3 Problem Formulation

In this section we shall show how a general description of the problem can be for-
mulated in such a way that in the end, only the solution of a single linear system is
required. We begin by introducing our notation.

We are given a u by v pixel image I and a 3D point cloud of k laser measure-
ments L = {l1 · · · lk}. We shall use the notation Ii to represent the ith pixel in a
vectorized image (all pixels stacked in a single vector of length N = u × v). For
each Ii we associate a range xi. Our task is to use both I and L to find a vector
x = [x1,x2 · · ·xN ]T - a range for every pixel in the image. We shall also refer to xi as
a “range node”. Each point in L can be projected into I under a distortion correct-
ing camera model and associated to the nearest pixel. Each laser point then yields
a range measurement zi tied to pixel Ii. Note the laser measurements are sparse so
not every pixel will have a range measurement — in fact very few will. We use the
notation i ∈ L to imply the index variable i ranges over all pixels which have an
associated range measurement.

We shall pose the problem as one of finding the optimal range vector x∗ such that

x∗ = argmin
x

{λ1λ2Θs(x,I)+λ1(1 −λ2)Θc(x,I)+ (1 −λ1)Θd(x,z)} (1)

where Θs(x,I) is a first order cost penalizing depth discontinuities, Θc(x,I) is a
second order cost penalizing curvature andΘd(x,z) is a data cost penalizing errors
between inferred ranges and observed range measurements. The scalars λ1,λ2 ∈
[0,1] are weightings between the three terms. We shall now consider these terms in
more detail.

3.0.1 Data Cost

The data cost is defined as a squared error between assigned range, xi and measured
range, zi

Θd(x,z) = ∑
i∈L

σi(xi − zi)2 (2)

= ||W(x − z)||2 (3)

where W is a diagonal matrix with entries

Wi,i =

{
σi if i ∈ L

0 otherwise
(4)

and σi is a measure of our confidence in measurement zi.

3.0.2 Discontinuity Cost

As in [9], we use a depth smoothness or first-order prior of the form
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Θs(x,I) =∑
i
∑

j∈N (i)
ei, j(xi − x j)2 (5)

where N (i) are the horizontal and vertical neighbours of i. As edge strength be-
tween nodes we use an exponentiated L2 norm of the difference in pixel appearance

ei, j = exp−||ci − c j||2
σ2

d

(6)

where ci is the RGB colour vector of pixel i and σd is a tuning parameter (small σd

increases sensitivity to changes in the image). Equation 5 may be written in matrix
form as

Θs(x,I) = ||Sx||2 (7)

where each row of S represents a weighted average of a pair of adjacent range nodes.

3.0.3 Smoothness/Curvature Cost

In contrast to [9] we make the further assumption that in the absence of cues to
the contrary, such as discontinuities in appearance, the gradient of surfaces varies
smoothly. Under this second order smoothness assumption, given a neighbourhood
N (i) of node xi we may make a range prediction x̂i as a linear combination of
neighbouring ranges x j for j ∈ N (i). This allows us to write simply

x̂ = Px (8)

where P is a suitably formed prediction matrix. We define curvature costΘc(x,I) in
the form

Θc(x,I) = ||x̂− x||2 (9)

= ||(P − 1)x||2 (10)

Here, 1 is the identity matrix. While details of how P is created will be postponed
until Section 4 we may proceed by understanding this cost as the L2 norm of the
deviation of x from the prediction based on modeling surfaces as locally continuous
and smooth.

3.1 Reduction to Ax = b

We may further expand Equation 3 to the form

Θd(x,z) = xTWTWx− 2zTWTWx+ zTWTWz (11)

and Equations 10 and 5 to
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Θc(x,I) = xTRTRx, Θs(x,I) = xTSTSx (12)

where R = P − 1.
Substituting Equations 11, 12 into 1 and solving for x reduces the problem to

Ax = b (13)

with

b = WTWz (14)

A =
λ1λ2RTR+λ1(1 −λ2)STS+(1 −λ1)WTW

1 −λ1
(15)

Equations 13 to 15 imply that all we need to do to perform the optimization is to
solve a large sparse linear system.

4 Constructing the Prediction Matrix

In this section we detail how the prediction matrix P is created. For simplicity we
show only 1D cases but it should be noted that P contains elements to penalize
curvature in both horizontal and vertical directions.

We decompose P into a weighted sum of three prediction operators - extrapola-
tion from left and right, and interpolation.

P = WLPL + WMPM + WRPR (16)

where subscripts L,M,R imply left-extrapolation, mean (interpolation) and right-
extrapolation respectively. The W’s are suitably constructed weighting matrices de-
rived from image appearance which we shall expand upon shortly in Section 4.1.
The use of extrapolation and interpolation can be understood graphically with ref-
erence to Fig. 1 which shows a simplified 1D case.

4.1 Anticipating Depth Discontinuities from Image Cues

The image I can be used to provide cues about the behaviour of the surface we hope
to reconstruct. Our basic assumption is one that has been used before [9] — sharp
changes in range tend to appear as changes in appearance (edges) in an image. We
have a range node for each pixel (see Equation 16) and its value can be predicted by
a weighted sum of extrapolation and interpolation from its neighbours. We describe
only the horizontal case for simplicity, but our method is applied in the vertical
case too. For each node xi the weighting is determined by the properties of pixel i
and its neighbourhood. Broadly speaking, if a pixel is identical to its left and right
neighbours then pure interpolation will occur. If however there is a discontinuity in
pixel appearance then interpolation will be down weighted and either left or right
extrapolation emphasized.
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Fig. 1 Depth prediction via weighted interpolation and extrapolation in 1D. The predictions
of the range x0 by left and right extrapolation and interpolation are shown in faded grey. The
discontinuity in the image shown at the bottom of the figure (each range node has a single
pixel attached to it) causes the left extrapolation to be down-weighted — the image edge is a
cue for a possible discontinuity in range between node x−1 and xo. The final prediction, x̂0 is
shown in the center.

To explain how the weighting matrices WL,M,R are created we shall consider
the simple 1D case shown in Fig. 2. Interpolation is preferable to extrapolation.
With this preference in mind and considering node x0 in Fig. 2, we can write the
importance weights of left / right extrapolation and interpolation as wl,m,r

wm = e(−1,0)e(0,1) (17)

wr = e(−2,−1)e(−1,0)(1 − wm) (18)

wl = e(2,1)e(1,0)(1 − wm) (19)

with ei, j as defined in Equation 6. The above relationships can be understood by not-
ing that if the pixel attached to range node x0 is identical to its neighbours (e(−1,0)
and e(0,1) are unity) then wm = 1 and wr = wl = 0 - interpolation has 100% of the
weighting. As the pixels I−1 and I1 become increasingly different, the left and right
extrapolations receive more weight. In the limit, if two pixels are entirely different,
the edge weight between them tends to zero and the attached range nodes will have
no direct link between them. It does not make the two nodes independent - there
may be other dependencies via long circuitous routes through other nodes. It does

Fig. 2 A 1D chain of range nodes (a section of x) and the edges between neighbours. Con-
sidering x0, right extrapolation uses only nodes to the right and left extrapolation uses the two
left hand nodes. Interpolation uses nodes x−1 and x1. The edges between nodes are a func-
tion of the difference in pixel appearance between adjacent range nodes (each range node is
associated with a single pixel in the image).
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however mean that range discontinuities across this boundary are not penalized be-
cause the range prediction made by multiplication by P is based on an extrapolation
from one side and not an interpolation across the discontinuity. This is a key point
in this work.

5 Results

Fig. 3 shows the results of processing two synthetic scenes. In this case the prob-
lem size is small with x having just 2500 elements (each element of x corresponds
to a vertex in the mesh). With regard to the “three plane” case note how using just a
few laser points in each distinct region of the image results in three distinct planes
being generated in the reconstructed scene. The strong edges in the images pro-
hibit information flow between planes. For the nodes at the very edge of a plane the
extrapolation and interpolation weights have become such that the node is only in-
fluenced by (coupled to) other in-plane nodes. The 1st order method alone is unable
to reconstruct the planes correctly as it tries to make all nodes have similar ranges.

In the case of the “dome” example note how while there is no range discontinuity
there is a sharp discontinuity in surface gradient around the perimeter of the dome.
Note also that the first order smoothness term is unable to reconstruct the curva-
ture of the dome in the absence of laser measurements. In contrast, with a second
order smoothness cost the curved shape of the dome is recovered well. This is an
important result. The generated curved surface is the smoothest surface that can ex-
plain the existing measurements and minimize the bust in second order smoothness
constraints implicit in P.

We now turn to processing some real data. We used a nodding SICK LMS200
laser scanner on a mobile robot to capture laser data. Images were captured by a
camera mounted above the laser with a wide angle lens. The image used in this case
was 518 by 259 pixels resulting in some 134,162 range nodes and is shown in Fig.
4 with laser measurements projected into it. For scale, the target is approx 1.7m
wide. The reconstructed model is shown alongside. Using second-order smoothness
alone provides reasonable results, but tends to introduce ‘rippling’ arartifactsround
noisy measurements. A small amount of first-order smoothness is necessary to damp
the oscillations. Fig. 5 shows points of interest in the reconstruction. We show an
outdoor result of the same problem size in Fig. 6.

The algorithm is implemented in Matlab and the linear solve is performed with
Matlab’s backslash operator (though there is no reason not to use another method
such as Conjugate Gradient). The Three Planes case and the Dome case in Fig. 3,
with 2,500 nodes both took 0.021 seconds to solve in a single iteration. For the real
data case in Fig. 4 with 134,162 nodes, the algorithm took around 30 seconds on a
2Ghz dual core laptop.

We now present some numerical analysis of the performance of our approach.
It is a hard task to obtain a ground truth geometry for the complete real scene. In-
stead of comparing pixel ranges to ground truth we compare them to laser measure-
ments taken of the scene over a long period of time and which are not used in the
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Fig. 3 Synthetic data examples which highlight important aspects of our approach. Each node
in the mesh represents a single range node projected out from an image pixel. The images
for each of the two cases are shown on the left. In all figures sparse laser measurements
are shown in red. Note how the discontinuities in the image appear as discontinuities in the
reconstructed surfaces. First-order smoothness alone tends to make surfaces have the same
depth value whereas second-order smoothness is able to correctly reproduce both planar and
curved surfaces.

Fig. 4 Results from an indoor dataset. Image and laser measurements on the left, and the
reconstructed model on the right.

Fig. 5 Details of a reconstructed scene from Fig. 4. Note the detail of the smooth floor and
inferred sharp range discontinuity between two walls.
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Fig. 6 Results from an outdoor dataset. On the left is the image with laser measurements
overlaid. On the right is the reconstructed model.
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Fig. 7 The left image shows a comparison of range estimates to ground truth laser data for
the indoor case. Areas in yellow show deviation from ground truth, with higher intensity
representing larger errors. Laser measurements are shown in red. The graph shows average
error of the estimate relative to the mean density of range measurements, when compared to
laser measurements in the hold out set. The laser has a precision of 15mm.

opoptimizationConcretely, we collect a very dense cloud of laser data at the scene
and draw from that a small sparse test set with which we reconstruct the scene shown
in Fig. 4. The remaining laser data constitutes a dense hold out set, and for each un-
used laser measurement we can compare measured range to estimated range. Fig.
7(a) shows regions of the workspace which contain pixels with significant errors.

It is also instructive to consider how the accuracy of our approach depends on the
density of laser measurements. Fig. 7(b) shows how the statistics (mean and median)
of the pixel range errors change as a function of measurement density. Note that as
expected, as measurement density increases the precision tends to that of the laser
itself around 15mm. The results given in Figs. 4 and 6 are operating in the 0.01
measurements/pixel2 region.

6 Conclusion

This paper has introduced a novel technique for fusing sparse laser data and im-
ages to enable a dense 3D scene reconstruction. Above and beyond existing prior
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work this technique uses a second order smoothness term which allows it to extrap-
olate both planar and curved surfaces. The problem is formulated as the solution
of a sparse linear system, which allows the use of fast optimization techniques.
The technique was applied to both illustrative synthetic cases as well as real data
recorded in indoor and outdoor scenes containing challenging geometry.

The qualitative and quantitative results presented here suggest that our system
provides 3D reconstructions of reasonable quality. Nevertheless, there is room for
improvement. In particular we must consider how we can increase robustness to
erroneous laser measurements (away from image edges) and how we might fuse
multiple scenes in a principled way. The flip side of this problem is handling bona-
fide discontinuities in range when there is no change in image appearance and vice
versa.
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Relative Motion Threshold for
Rejection in ICP Registration

François Pomerleau, Francis Colas, François Ferland, and François Michaud

Abstract. Simultaneous Localization and Mapping (SLAM) iteratively
builds a map of the environment by putting each new observation in relation
with the current map. This relation is usually done by scan matching algo-
rithms such as Iterative Closest Point (ICP) where two sets of features are
paired. However as ICP is sensitive to outliers, methods have been proposed
to reject them. In this article, we present a new rejection technique called
Relative Motion Threshold (RMT). In combination with multiple pairing re-
jection, RMT identifies outliers based on error produced by paired points
instead of a distance measurement, which makes it more applicable to point-
to-plane error. The rejection threshold is calculated with a simulated anneal-
ing ratio which follows the convergence rate of the algorithm. Experiments
demonstrate that RMT performs better than former techniques with outliers
created by dynamical obstacles. Those results were achieved without reducing
convergence speed of the overall ICP algorithm.

Keywords: ICP, registration, scan matching, rejection, SLAM.

1 Introduction

Simultaneous Localization And Mapping (SLAM) algorithms use motion and
observation probabilistic models to incrementally correct positioning prob-
lems. The mechanism used to transform different observation models into the
same coordinate system is called registration (also known as data association
or scan matching). Proposed SLAM solutions based on Maximum Likelihood
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(ML) present fast capabilities to minimize global positioning errors [7], but
they still need to rely on efficient and robust registration algorithms to be
stable in real robotic applications.

Registration can be done using landmarks (e.g., lines, circles, arcs, cor-
ners) [1]. When applied to the registration processes, landmarks confer the
advantage of accelerating calculation by summing up information. However,
landmark registrations can be sensitive to unstructured environments where
landmarks are difficult to detect. A second type of registration is called Nor-
mal Distribution Transform (NDT). NDT segments spatial information and
works on the first and second statistical moments to reduce the computa-
tional cost [9] while avoiding to define specific landmarks. However, NDT
is still very sensitive to segmentation because large spatial cells filter out
relevant details, whereas small cells augment the computational cost.

Another strategy is to directly use point clouds derived from exteroceptive
data. One technique to find such matches is known as Iterative Closest Point
(ICP) [2]. This method pairs points of both scans by finding for each point
of the first scan the nearest point in the second one. From these pairs a
motion vector is estimated to cope for their misalignment. This process is
iterated until convergence. ICP variants were first developed for applications
involving 3D model reconstructions [4], [6], [8]. When used in SLAM by an
autonomous robot, these algorithms need to be adapted in several ways: 1)
they must work in real-time [3]; 2) they must be adapted to the sensors to
be able to use 2D and 3D spatial information [11], and to cope with sensor
fusion (range, laser reflectivity [14], color [13], etc.); 3) they must be able to
deal with occlusion and partially overlapping scans that frequently arise in a
dynamic environment explored by a mobile platform.

This paper addresses the issue of occlusions and partially overlapping scans
by using a new adaptive rejection technique called Relative Motion Threshold
(RMT). For SLAM, changes in the environment and occlusions caused by the
motion of the mobile robot are sources of outliers (i.e., points with no match).
Fig. 1 presents an example for which an optimal rotation and translation
of the blue point cloud (pi) must be applied to align it with the reference
red point cloud (qj), with i and j being point indexes. Even after a small
displacement of the robot between t1 and t2, maps can largely differ due
to sensor occlusion. For example, in Fig. 1(b), 50% of the blue points are
outliers when compared to the red point cloud. Also, the disambiguation of
points obtained from obstacle 1 and obstacle 2 must be resolved to make
ICP robust to initial positioning errors and overlapping. Removing outliers
from the paired points is done during the rejection step of ICP, where it
minimizes misalignment errors for the determination of the motion vector
between two point clouds. The rejection technique introduced in this paper
uses an adaptive threshold based on simulated annealing ratio to augment
the robustness of ICP against outliers.

The paper is organized as follows. Section 2 presents an overview of rejec-
tion techniques. Section 3 describes the RMT rejection technique we propose.
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(a) (b)

Fig. 1 Map registration example for SLAM, with misalignment caused by odom-
etry error. The green lines represent the alignment error minimized by ICP algo-
rithms. Obs.: Obstacle. (a) Two laser scans taken at time t1 and t2. (b) Point cloud
pi (blue) taken at t2 is represented in the coordinate system of point cloud qj (red)
taken at t1. Black arrows are surface orientations.

Section 4 presents experimental results that evaluate the performance of each
rejection technique in terms of matching and convergence rate of ICP in sim-
ulated and real-world applications.

2 Rejection Techniques

Rejection techniques can be categorized as follows:

• Fix: Manual setting of the maximum distance d authorized between paired
points. Then, all paired points with a distance higher than d are systemati-
cally rejected. This method is simple but does not adapt well to conditions
that would require different thresholds.

• Zhang: Strategy based on statistical moments of the distribution of the
distances between the paired points [15]. Four conditions are needed to
adapt the threshold d:

d =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ + 3σ, if 0 ≤ μ < η

μ + 2σ, if η < μ ≤ 3η

μ + σ, if 3η < μ ≤ 6η

ρ, otherwise

(1)

where ρ is the median of the distance between paired points and η is a
distance-based parameter set by the user. This method can be adjusted to
different statistical distributions of the distances but still lacks generality.

• Mean: Technique proposed in [6] which sets d equal μ+σ for each iteration,
and where μ and σ are respectively the mean and the standard deviation
of the distances between paired points. This method has no parameter
and is flexible to different type of outliers. However it filters outliers on
the assumption that the distribution of distances is Gaussian, which is not
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a good assumption in the case of a dynamic environment where several
local minima can emerge.

• Median: An other statistical method proposed by [5] fixes d to 3 times the
median of the distances between paired points. The method has no param-
eter, but calculating a median over a huge point cloud is computationally
expensive.

• Trim.: Overlapping parameter ξ defined by [4] is used to reject a percentage
of outliers:

Ntrimmed = ξNtotal (2)

where N is the number of paired points. This approach is less dependent on
the shape of the distribution. However, it requires to sort all paired points
based on their distances at each iteration, which increases computation
time. It can also misled by a large change in the overlap that may occur
with a moving platform due to occlusions.

In addition to these techniques, it is also possible to reject multiple pairing
to a single point [16], [3], as shown in the lower right part of Fig. 1(b) where
multiple green lines connect to the same red points. Instead of authorizing
all pairs, only the one with the smallest distance is kept. This criterion has
been shown to improve the performance of all standard rejection techniques,
and thus all results presented here use this additional criterion.

3 Relative Motion Threshold Technique for Rejection

Existing rejection techniques rely mostly on the Euclidean distance between
paired points. While this distance has a direct impact on point-to-point error
metric, ICP implementations commonly use a point-to-plane error metric
to pair the points because of its faster convergence speed. This point-to-
plane error metric1 assumes that there is a local surface orientation vector
estimated for each point qj and projects the Euclidean distance between pi

and qj on this vector. The point paired to qj then minimizes this error and
not the Euclidean distance (see Fig. 1(b)). We introduce a new, more general,
rejection technique called Relative Motion Threshold (RMT). RMT is an
adaptive rejection technique that progressively identifies outliers that create
most of the error during the process of ICP. Adaptation is based directly on
the error created by paired points instead of the Euclidean distance between
those points in accordance to the matching process. We propose to reject the
outliers with a maximum authorized error et at iteration t, evaluated by:

et =

{
λet−1, if λ < 1
et−1, otherwise (3)

1 In the remaining of the text, the term error will refer to the point-to-plane error
metric when there is no ambiguity.
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with λ being a simulated annealing ratio defined by:

λ =
||Tt−1||
||Tt−2|| (4)

This ratio uses past motion information to determine if the point cloud
is converging to a local minima, where ||T || is the Euclidean norm of the
translation vector T which minimize the alignment error of pi at iteration t.
The translation vector T and the rotational vector Ω are calculated during
the Error and Minimization step at the end of each iteration and are used to
move pi toward qi. A ratio λ smaller than 1 means that the position of pi is
stabilizing. All points with a translation error larger than et + ε are identified
as outliers and rejected during the iteration t. If the ratio λ is larger than 1,
the motion of point cloud pi is accelerating toward qi due to new appearing
constraints. The maximum authorized error et is then kept stable until the
point cloud starts to converge again.

The minimum error ε is the only parameter needed for our rejection tech-
nique. It represents noises from sensor readings. A simple way to evaluate
this parameter is to take two scans of a static environment and look at the
distribution of translation errors created by the error metric used. This trans-
lation error should be centered on zero and can be estimated by a Gaussian
distribution. The parameter ε can be estimated using the standard devia-
tion of this distribution, making the parameter sensor-dependent instead of
situation-dependent.

Fig. 2(a) presents an example of the relative motion threshold in function
of iterations. During the two first iterations, only the rejection of multiple
pairings is active to initialize a value for Tt−1 and Tt−2. Then, e2 is initialized
to the maximum Euclidean norm of translation error at iteration 2. The sim-
ulated annealing ratio reduces this error until the point cloud pi temporarily
stops converging. The ratio λ is higher than 1 between iteration 6 and 7,
forcing a constant error threshold until the point cloud pi start converging
again. The final threshold error is reduced until iteration 11 where it equals

(a) (b)

Fig. 2 (a) A generic example of maximal authorized error based on RMT in func-
tion of iterations. Dashed line represents minimum error ε. (b) Final position of the
registered point clouds used in the generic example.
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the minimum error ε represented by the dashed line. Fig. 2(b) shows the
two point clouds used in this example at iteration 11. The point clouds were
taken in a room where two boxes were moved in different directions. The
thick points in light blue represent pi which converges to the right position
even with outliers caused by dynamic obstacles (i.e., boxes). Small black cross
represent outliers detected by RMT.

4 Experimental Results

Experiments were conducted in simulation and real settings using the follow-
ing ICP algorithm consisting in five steps [12]:

1. Selection reduces the number of points in pi by selecting a representative
subset of points ps, where s < i. This step is a compromise between com-
putation speed and robustness. Even if using a smaller number of points
results in faster computation time, the result may diverge if not enough
points are used, or if the selection process filters out necessary constraints.

2. Matching pairs each point of ps in the point cloud qj . This corresponds
to a closest point search problem. One data structure often used to solve
this problem is the k-d tree. It is a data structure that partitions the space
into k dimensions, with the property of accelerating the nearest neighbor
search. Recently, utilization of the approximate k-d tree [8] has shown to
give faster results without altering ICP precision.

3. Weighting improves or reduces impacts of pairing point on the error ma-
trix by using criteria such as distance, normal compatibilities and scanner
noise. However, results suggest that weighting is data-dependent and does
not increase convergence rate significantly [12].

4. Rejection uses techniques described in Section 2 and 3.
5. Error and minimization use all the remaining matched points to evaluate

the misalignment error and a create a motion vector m = [T, Ω]′ minimiz-
ing this error where T is the translation components and Ω the orientation
components. This motion vector is applied to the point cloud pi. Point-
to-plane error function is shown to have a faster convergence rate than
point-to-point error [12].

Steps 2 to 5 are repeated until any of the ending condition is reached.
Several ending conditions have been proposed, e.g. number of iterations, er-
ror, relative motion between two iterations [4], [16], stabilization of mean
and standard deviation of the distances between paired points, number of
registered pairs [6]. Our complete ICP algorithm uses all of those.

4.1 Evaluation Method

To test the RMT rejection technique while dealing with outliers or occlusion
caused by moving objects, we enriched the test protocol described in [10].



Relative Motion Threshold for Rejection in ICP Registration 235

(a) (b)

Fig. 3 (a) Two scans to be matched. The first scan is in red, whereas the second
scan, after translation and rotation, is in thick blue. The green crosses show the
distribution of displacement error used in our test with a standard deviation of 0.15
on x- and y-axis. (b) Comparison of the performance of several rejection methods
in function of iterations. The performance is measured by the mean position error
in respect to ground truth.

More specifically, we recorded data taken by a SICK LMS 200 laser range
finder in a U-shaped room. Without moving the sensor, we added or moved
boxes in its field of view. This way we generated 10 pairs of different scans
with an overlapping ratio around 75%. For each trial, one of the two scans
was transformed with a rotation and a translation vector drawn randomly
according to a Gaussian distribution in order to fit the uncertainty of the lo-
calization of standard SLAM techniques. The standard deviations were 0.15 m
for each translation component and 0.15 rad for the angle. Fig. 3(a) shows an
example of two scans as well as the distribution of displacement of the second
scan. We can see that in the second scan, one of the boxes moved while the
other was removed. As the sensor is fixed between the scans, the result of the
registration algorithm is exactly the inverse of this transformation. Fig. 3(b)
shows the results for each rejection techniques. Curves represent the mean of
the XY alignment error of pi over 4000 trials. For rejection techniques that
require the setting of parameters, optimal values were derived by sampling
the parameter space and computing the percentage of good registration over
a training set. The final performances were evaluated using the remaining
configurations. Theses optimal parameters are presented in Table 1. RMT
provides a large improvement over the other rejection techniques, since other
methods tend to wrongly categorize points as outliers and converge towards
local minima.

Table 1 Parameters used for each rejection techniques during comparison test.

RMT Median Trim. Mean Fix Zhang

Parameter ε = 0.05 none ξ = 76% none d = 0.3 m η =
0.02 m
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Table 2 Robustness of the rejection techniques with respect to initial error. The
performance is measured in term of the mean final of XY alignment error of point
clouds (in meter).

Std RMT Median Trim. Mean Fix Zhang

0.05 0.001 0.005 0.013 0.009 0.027 0.021
0.10 0.004 0.016 0.015 0.013 0.029 0.056
0.15 0.021 0.031 0.032 0.039 0.055 0.107
0.20 0.034 0.051 0.060 0.059 0.077 0.132
0.30 0.135 0.145 0.189 0.203 0.261 0.282
0.40 0.272 0.294 0.356 0.362 0.412 0.423

In terms of speed, ICP is an iterative algorithm known to converge in a
small number of iterations. RMT rejection method does not impair the con-
vergence rate of the matching algorithm. The mean and covariance on the
number of iterations for the Median and RMT are respectively (μ = 9.5,
σ = 2.4) and (μ = 9.9, σ = 1.9). Those results were obtained while keep-
ing registration converging to the right value for 4000 trials. No significant
difference were observed between all rejection techniques tested.

Looking at how rejection techniques perform with shifting initial positions,
Table 2 presents the correct registration computed for 4000 trials of each
rejection technique for various standard deviations on the initial error. RMT
rejection technique performs better than the others for all conditions tested
by having the lowest residual error. Moreover, a rise in the initial position
variance decreases the performance for every methods, as expected. For this
setup, it means that uncertainty on the position of the robot should be kept
under 15 cm before applying ICP to achieve good registration. However, RMT
rejection method is more robust than other techniques as performance loss
occurs at a higher variance while being less computationally expensive than
median technique.

4.2 Real-World Application

The last section described experiments with outliers mainly due to dynamical
obstacles. Another main source of outliers can be created by low overlapping
percentage of scans. The Canadian Space Agency (CSA) uses a rotating laser
range finder installed on a robot to test Mars exploration algorithms which
is showed in Fig. 4 (a). The robot typically moves few meters on a simulated
Martian terrain, takes a 3D scan and decides where to go next. In this kind
of application, overlapping between scans can vary between 50% and 90%
and few 3D features are available, making the registration very sensible to
outliers. The RMT was used on 3D point clouds extracted within this context
of application. Fig. 4 presents the result of one registration with a distance of
15 m between the two scans. The grayscale surface correspond to the section
used for the registration. The maximum height of the surface is about 1 m.
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(a) (b)

Fig. 4 (a) Robot and environment of the Canadian Space Agency for the Mars
exploration project. (b) RMT applied to scans with low overlapping. In grayscale,
the surface recovered from match points. In red and blue, the outliers of each scan.

Points on both side of the surface represent outliers removed during the regis-
tration. This demonstrates that the RMT can also deal with outliers created
by low overlapping scans. Moreover, the algorithm is currently used by the
Space Technologies Research Program of the CSA for complete mapping of
the experimental Martian terrain.

5 Conclusion and Future Work

This paper presents a novel rejection technique called RMT in the context of
ICP registration applied to SLAM in mobile robotics. Results show promising
performance, making RMT a very interesting alternative to other rejection
techniques. In particular, RMT allows better registration with point clouds
containing dynamical obstacles. RMT also demonstrates its applicability in
a Mars exploration context with low overlapping percentages. It also gives
good results for identifying dynamical obstacles. In future work, we plan to
characterize the stability of the approach in a complete SLAM algorithm,
and to further extend the range of initial error that ICP can resolve.
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Bandit-Based Online Candidate Selection for
Adjustable Autonomy

Boris Sofman, J. Andrew Bagnell, and Anthony Stentz

Abstract. In many robot navigation scenarios, the robot is able to choose between
some number of operating modes. One such scenario is when a robot must decide
how to trade-off online between human and tele-operation control. When little prior
knowledge about the performance of each operator is known, the robot must learn
online to model their abilities and be able to take advantage of the strengths of
each. We present a bandit-based online candidate selection algorithm that operates
in this adjustable autonomy setting and makes choices to optimize overall naviga-
tional performance. We justify this technique through such a scenario on logged
data and demonstrate how the same technique can be used to optimize the use of
high-resolution overhead data when its availability is limited.

1 Introduction

Autonomous UGVs have advanced to a point where they are competent and reli-
able a large portion of the time. However, even the most robust autonomous robotic
systems will struggle with certain situations. Fortunately, in some domains it is rea-
sonable to assume that a human operator may be available for periods of time to
provide remote tele-operation support. Full tele-operation is prohibitively expensive
for many applications due to the degree of required human attention and communi-
cations bandwidth, so a policy must determine under which conditions the robot or
the human are to take control.

It is important for such a system to be well-suited for online use. Not only is it
unpredictable in advance how well the autonomy system will perform in novel envi-
ronments, but human operator performance can also vary depending on factors such
as bandwidth limitations, operator handicaps such as limited skill or familiarity with
the interface, fatigue and weather conditions. When little prior knowledge about the
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Fig. 1 For our experiments,
we used logs from the
Crusher unmanned ground
vehicle. The robot operates
in complex, natural envi-
ronments where the goal
is to navigate across large
distances with the aid of on-
board and overhead sensor
data. Further information
about the system can be
found in [1]. The overhead
processing capabilities used
to plan prior routes and
generate features for our
experiments are described
in [2].

operators’ abilities is available, a learning system can observe the performance of
the autonomous vehicle in particular situations and compare that to performance un-
der remote human-control in similar situations. When the vehicle encounters simi-
lar situations in the future, it can then invoke whichever expert demonstrated better
performance: the remote human or autonomous vehicle. Such a capability would
enable a single operator to assist many UGVs, ensuring peak performance for the
entire team with minimal human involvement.

We pursue this problem using an on-line, reinforcement learning approach and
demonstrate its performance on logged data from the rugged, all-terrain UGV shown
in Figure 1. The candidate selection system’s goal is to learn to interpret available
overhead sensor data in order to make decisions that maximize its overall long-term
performance. This inevitably becomes a trade-off between exploring candidates’
performance in situations that will allow it to learn more about the world and taking
advantage of their learned models to maximize current performance.

We also show how this technique can be used to deal with scenarios where limited
high-resolution overhead data is available to aid the robot in navigating through
an environment. The Digital Terran Elevation Data (DTED) level of an overhead
elevation data set specifies its density of coverage. Higher resolution overhead data
can be used to produce more accurate traversal cost estimates that the UGV can use
for better prior path computation but often require expensive and time-consuming
aerial surveying and a large amount of bandwidth if remotely supplied to the vehicle.
In scenarios where the availability of such data is limited, our algorithm can be
extended to allow the robot learn to identify the situations where it will most benefit
from high resolution data in order to allocate it to areas that maximize its impact.

The next section presents background on adjustable autonomy techniques and
some example applications. Section 3 presents our online candidate selection al-
gorithm, followed by experimental results in Section 4 and concluding remarks in
Section 5.
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2 Related Work

We deal with the scenario where a human can contribute limited attention to improve
a mobile robot’s performance. In this scenario, a robotic system operates somewhere
on the spectrum between full autonomy, where there is no human involvement, and
full tele-operation, where the human is in complete control at all times. Scenarios
where the degree and methods of human interactions with robots within a system
can be varied dynamically in order to optimize performance are often referred to as
ones of sliding autonomy or adjustable autonomy [3, 4]. While most mobile robot
systems tend to lie on one of the two extremes of this spectrum, effectively balancing
autonomy with limited human involvement can lead to significant improvements in
safety, efficiency and overall cost.

In some scenarios where the human is the primary operator, the autonomy system
is intended to aid by request or when it detects a dangerous situation [5, 6, 7, 8].
Similar approaches have been applied to automating repetitive tasks in surgery to
decrease surgeon fatigue [9].

In scenarios where the autonomy system is the default operator, the system must
reason about whether and when to transfer control to a human [10, 11, 12]. Some
have suggested relinquishing control when there is an expectation of high benefit
[13, 14] or the degree of uncertainty is high [15].

Goodrich and Schultz have written an extensive survey article on the field
of Human-Robot Interaction exploring many additional approaches and applica-
tions [16].

The key difference in our approach from the above-mentioned approaches is that
we do not constrain the system by any pre-determined rules or models. Since in
many scenarios prior performance information is unavailable, the ability to learn
the capabilities of each potential expert online allows systems to better adapt to
more diverse and challenging environments.

3 Approach

3.1 Contextual Multi-armed Bandit Setting

The candidate selection problem involves choosing an operator for each encoun-
tered situation from a set of candidate systems, in our case the autonomy system
and the human tele-operator, whose performance we assume comes from some un-
known distribution. It is therefore intuitive to frame this problem as an instance of
the commonly studied multi-armed bandit problem [17, 18, 19].

In the k-armed bandit setting, at each time step the world chooses k losses (or re-
wards), l1, . . . , lk, and the player makes a choice of an arm i ∈ {1,k} without knowl-
edge of the hidden losses. The player then observers only the loss li corresponding
to the chosen arm. Since the loss distributions are unknown, there is an inevitable
conflict between minimizing the immediate loss and gathering information that will
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be useful for long-term performance. This is often referred to as the exploration-
exploitation trade-off since we must choose between exploring our unknown loss
distributions and exploiting the arm we currently believe to be best.

We deal with a more suitable variation of this setting called the contextual bandits
setting where at each time step t the player also observes some contextual information
xt which can be used to determine which arm to pull [20]. We compute these features
from commonly available overhead imagery and DTED 3 elevation data for the given
environment as described in [2] and convolve them with a Gaussian kernel in order
to blur the data, in effect introducing an influence from surrounding areas into each
location. This creates a more realistic modeling problem since the rate of progress
at a given location is heavily influenced by factors from the surrounding area.

As is common with bandit problems, our goal is to minimize regret, the differ-
ence between the performance of the algorithm and that of the optimal algorithm in
hindsight:

R =
T

∑
t=1

(lt − l∗t ) (1)

where l∗t is the loss incurred in round t by the optimal strategy.

3.2 Exploration-Exploitation Trade-Off

We choose to deal with the exploration-exploitation trade-off through the use of con-
fidence bounds. With a model that is able to supply confidence bounds, the widths
of the confidence bounds reflect the uncertainty of the algorithm’s knowledge. By
choosing the candidate with the highest upper confidence bound at each time step,
the algorithm elegantly trades off between exploration and exploitation. When un-
certainty is high, choosing that candidate will provide information that will quickly
reduce uncertainty in that region of the model. As we gain knowledge about each
candidate, confidence bounds will shrink and we will choose the candidate with
the highest expected performance. This approach was well-justified for the bandits
setting and shown to have small regret [21].

3.3 Formalization

We frame online candidate selection problems as follows. At each time step t, we
get some contextual features xt for our environment and must choose from one of
k candidates to operate the robot for that time step1. The goal in such a setting is
to minimize the loss at each time step, measured in the case of operator selection
by the period of time it takes to enter and exit a 3 meter radius window around that
location.

1 In the case of choosing between a human and the autonomy system, k = 2. We discuss
this problem in the more general case as it could also be applied to any candidate selection
setting such as choosing between multiple autonomy systems, multiple human operators
or multiple overhead data sources as shown later.
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After each selection, the algorithm observes the noisy feedback li
t of only the

chosen candidate i. We model the distribution for li
t as a Gaussian whose mean is a

linear function of the contextual features xt :

E(li
t |μ i,xt) = μ ixt (2)

We assume the estimates have Gaussian noise and are therefore distributed:

l̃i
t ∼ Normal(li

t ,σ2) (3)

We model this distribution online using a Bayesian linear regression model as
described in [22]. This not only allows us to efficiently perform online updates of
our model but also provides a variance estimate for each prediction. We therefore
track k Bayesian linear regression instances in parallel, one for each candidate. At
each time step we choose the candidate with the highest upper confidence bound
prediction for that scenario.

4 Experimental Results

We validate this candidate selection algorithm offline through the following two
applications relevant to mobile robot navigation2.

4.1 Adjustable Autonomy

While we do not have the system infrastructure to be able to trade-off online be-
tween tele-operation and autonomous vehicle control, we simulated such an online
scenario by using a pair of logged traversals of the same long course in western
Pennsylvania by each candidate: a human tele-operator using a high-bandwidth
camera system and the autonomy system. All locations where the path of the hu-
man driver and the autonomous driver were in sufficient proximity were used as a
test point for the system. As the algorithm chose a candidate, the traversal time for
only the specified candidate was revealed to the algorithm.

The course and estimated relative performance of each candidate using a trained
model appear in Figure 2. Quantitative results comparing our algorithm to various
alternatives appear in Figure 3 and Table 1.

4.2 Online Overhead Data Selection

We also show how this algorithm can be applied to direct the use of various-density
overhead data where there is either limited time to gather that data or limited band-
width for wireless transmission of the data to the vehicle during navigation. In such

2 Many of the images in this paper are best viewed in color.
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Fig. 2 Aerial image of test site with course driven using each operating mode (left) and the
estimated differences in traversal time in seconds per meter for this site using the final models
learned by the online candidate selection algorithm (right). The algorithm found that human
performance tended to excel in open areas where the human was better able to interpret sparse
obstacles and drive aggressively and at perimeters of heavy obstacles when the human’s situ-
ational awareness allowed him to better interact with the environment.

Table 1 Online Operator Selection Performance

Algorithm Cumulative Time (seconds)a Percent Improvement over Always-Human

Online Algorithm 9551.7 9.41
Optimal 7809.3 25.94

Worst-Case 12791.0 -21.31
Always-Human 10544.4 0.00

Always-Autonomy 10055.9 4.63
Random Driver 10307.4 2.95

a Note that since 3 meter regions at example locations often overlapped with each other,
these cumulative traversal times are greater than the total navigation time.

situations, the vehicle must decide online how to best utilize the availability of data
for upcoming navigation.

We simulated this scenario by analyzing sets of multi-waypoint logged runs from
a field test at Fort Carson in Colorado on sets of courses using DTED levels 3, 4 and
5 overhead data. The candidates for each waypoint in this case were the choice
of density of aerial data for an area bounding that path segment. The candidate
selection system therefore had the goal of learning a mapping from the average of
feature values (computed as described earlier) within the segment’s bounding box
to the average traversal speed for the vehicle over that segment of the path using
each candidate type of data. While DTED 5 data almost always resulted in the best
performance, we simulated a scenario where high-density data is available for only
a fraction of all segments: a maximum of 20% availability for DTED 5 and 30%
availability for DTED 4.

At each step we used a linear program to optimize the allocations of remaining
data availability using the predicted performance on all remaining segments from



Bandit-Based Online Candidate Selection for Adjustable Autonomy 245

Fig. 3 Online operator selection performance: cumulative navigation time for our algorithm
and various alternatives (left) and the average regret of our algorithm over previous examples
compared to alternatives (right).

Fig. 4 Aerial image of sample terrain for data selection experiments is shown in top-left.
Estimated traversal time in seconds per meter is shown for DTED 3, 4 and 5 data at top-right,
bottom-left and bottom-right respectively. As expected, DTED 5 data shows large improve-
ments in navigation speed for difficult terrain but does not provide much benefit on roads and
open fields.
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Fig. 5 Overhead data selection performance: sum of average navigation speed over each
path segment for our algorithm and various alternatives (left) and the average regret of our
algorithm over previous segments (right).

Table 2 Online Overhead Data Selection Performance

Algorithm Average Speed (meters / second) Percent Improvement over Random

Online Algorithm 2.45 5.60
Optimal 2.71 16.81

Worst-Case 2.04 -12.07
Random Data Source 2.32 0.00

the learned models for each candidate at that time. Selections at each step were
based on the initial step of this locally computed optimal allocation. To avoid having
to do integer programming, we chose the candidate with the highest allocation at the
first step.

The course and estimated rate of progress using each data source predicted by
the trained model appear in Figure 4. Quantitative results for this scenario appear in
Figure 5 and Table 2.

Our algorithm shows a clear improvement over naive or random approaches for
both scenarios with quickly-converging regret properties.

5 Conclusion

We have presented an online algorithm for dealing with scenarios where the robot
must learn to trade-off between multiple operating modes. The proposed approach
relies on a bandit-based framework and uses confidence bounds to deal with
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exploration-exploitation trade-offs. The algorithm was demonstrated on two sce-
narios relevant to the mobile robotics domain and showed improved performance
over several alternatives. We hope that such techniques will increase the potential
real-world applications of mobile robots by allowing them to adapt in real-time to
changing environments and better allocate available resources.
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Applied Imitation Learning for Autonomous
Navigation in Complex Natural Terrain

David Silver, J. Andrew Bagnell, and Anthony Stentz

Abstract. Rough terrain autonomous navigation continues to pose a challenge to
the robotics community. Robust navigation by a mobile robot depends not only on
the individual performance of perception and planning systems, but on how well
these systems are coupled. When traversing rough terrain, this coupling (in the form
of a cost function) has a large impact on robot performance, necessitating a ro-
bust design. This paper explores the application of Imitation Learning to this task
for the Crusher autonomous navigation platform. Using expert examples of proper
navigation behavior, mappings from both online and offline perceptual data to plan-
ning costs are learned. Challenges in adapting existing techniques to complex online
planning systems are addressed, along with additional practical considerations. The
benefits to autonomous performance of this approach are examined, as well as the
decrease in necessary designer interaction. Experimental results are presented from
autonomous traverses through complex natural terrains.

1 Introduction

The capability of autonomous robotic systems to successfully navigate through un-
structured environments continues to advance. Ever improving high resolution sen-
sors and perception algorithms allow a mobile robot to build a detailed model of
its environment, and advances in planning systems allow for the generation of ever
more complex routes and trajectories towards achieving a navigation goal. However,
as perception and planning systems become more complex, so does the task of cou-
pling these systems. This coupling often takes the form of a Cost Function. Using
data from the perception system as input, the cost function maps to a scalar cost
value, defined over the state space of the planning system (Figure 1). These costs
are then used as the optimization metric by the planning system when determining
the next action or sequence of actions.
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Fig. 1 Crusher (Left) is capable of autonomous navigation through complex outdoor terrain.
Perceptual data (Top Right) are converted to costs (Bottom Right) for use by the planning
system.

In simple or structured environments, cost functions are often easily defined; for
instance, in an indoor environment the cost of traversable freespace should be very
low, and the cost of walls or other obstacles should be high. However, in rough or
unstructured terrain, it is less intuitive how to define cost. A small obstacle should
clearly have larger cost than flat ground, and smaller cost than a large obstacle.
Explicitly defining these tradeoffs encodes the desired behavior of the robot and
is quite challenging; defining a generalizeable function that maps from perceptual
inputs to the proper cost is even more so.

This first step of defining the relative cost of various terrains requires a concrete
definition of what metric a robot’s performance will be measured against. Com-
mon metrics include maximizing safety or probability of success, minimizing dis-
tance traveled or time taken, minimizing net energy loss, minimizing observability
or maximizing sensor coverage. Often, the actual desired robot behavior optimizes
a combination of such metrics; for example, it may be desirable for a robot to ap-
proximately maximize safety but take certain risks to minimize distance traveled.

Previous work has focused on several differing approaches. Attempts to explic-
itly approximate traversability through simulation [3] or proprioception [5] limit the
choice of metrics to maximizing safety; they also require a robot model capable
of directly computing probabilities of mobility failure. Approaches focused on ex-
plicitly combining multiple metrics are limited to optimizing one metric subject to
constraints on others [13, 15]. The most common general solution is to manually
design and hand tune a cost function until the robot achieves the desired behavior.
This can be an incredibly tedious process (as it requires a manual optimization in
a potentially high dimensional space) and often results in systems that suffer from
poor generalization and a lack of robustness to novel scenarios.

This paper explores the application of imitation learning to this challenge, specif-
ically the LEARCH [10] algorithm described in the next section. The application
of this approach to the Crusher autonomous navigation platform [14] (Figure 1) is
reviewed, along with a discussion of practical considerations when applying this
approach.
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C0 = Prior;
for i = 1...T do

foreach Pe do
foreach x ∈ getBoundingBox(Pe) do

F [x] = getPerceptionFeatures(x);
M[x] = Ci−1(F [x]) + Le(x);

P∗ = planPath(se,ge,M);
P∗

e = replanExamplePath(Pe,β ,M);
{UPe

+ ,UPe− } = computeVisitationCounts(P∗
e ,P∗);

Ri = trainBalancedRegressor(F,U+,U−);
Ci = Ci−1 ∗eηiRi ;

Fig. 2 The LEARCH algorithm

2 Imitation Learning

Although explicitly defining the relative tradeoffs between different actions is a dif-
ficult task for a domain expert, indicating or demonstrating examples of correct be-
havior is often easier (otherwise, the task itself is not well defined). Therefore, the
imitation learning framework seeks to learn the correct robot behavior from obser-
vation of expert behavior. Many previous applications of this framework to mobile
robots [6, 7] sought to learn to predict what action to perform, based on the action
performed by an expert at a certain state. In this way, action prediction essentially
replaces the lower level motion planning operation on a mobile robot. However, this
approach is inherently myopic and does not scale to longer range planning, as it
requires all necessary information to be encoded in the current robot state.

Therefore, rather than learn a mapping from features of a state to actions, we seek
to learn a mapping from features of a state to costs, such that the planning system
will produce the correct behavior when provided with said costs. This approach has
its roots in the concept of Inverse Optimal Control, and has recently been developed
for use in robotic systems [1, 8]. By learning a cost function to reproduce expert
behavior, the need for explictly defining a metric or weighting between metrics is
eliminated; the new metric is matching human performance, and it is left up to
the human expert to define (through behavior) how to balance various options and
considerations.

It is important to note that this approach learns the correct cost function for a
specific planner or system of planners, and maps to cost from a specific perception
system. The purpose is not to try and improve the separate performance of these
systems; rather, it is to optimize the coupling of these modules to provide the best
overall system performance. As the Crusher system operates with costs defined over
a 2D grid, subsequent descriptions will deal specifically with this setting. Without
loss of generality, it is easiest for now to consider the planning system as a basic
A* planner, and a planned path as a sequence of 2D grid cells. Adaptation to more
complex planning systems is covered in the next section.
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Our imitation learning approach is based on the LEARCH algorithm, (Figure 2);
for a full derivation, see [10]. The input to the algorithm is a set of example paths,
each a sequence of 2D locations leading from a start s to a goal g and representing
the correct path (according to the expert). LEARCH seeks to find a cost function C
such that each example path Pe is the planner output under the cost function. The
LEARCH inner loop iterates through each example. For each example path Pe with
start and goal se and ge a path P∗ is planned under the current candidate cost function
Ci (C0 can be initialized to any prior). Since P∗ is the output of an optimal planner,
Ci(P∗) ≤ Ci(Pe). Since we desire a C such that C(Pe) = C(P∗), we seek to minimize
the difference in cost C(Pe)−C(P∗). As the cost of a path is simply the sum of costs
at states along it, Pe and P∗ provide a list of states where the cost could be changed
to lower this cost difference: states in Pe could have their cost lowered and states in
P∗ could have their cost raised (states in both simply cancel).

This list of candidate states (called the visitation counts) provides a local gradi-
ent in the space of cost functions. However, the cost at each state can not simply
be raised or lowered, as the goal is not to identify the correct cost for each cell, but
rather a function that maps perceptual features to an appropriate cost. If a function
ΔCi could be found that approximated this gradient (the output is positive or nega-
tive when provided with the appropriate features), adding it to Ci would lower the
cost difference.

Finding a general function to match a list of input/output pairs can be solved
through regression analysis. In this case, the inputs are well defined (perceptual
features), but the outputs are not; for each input, the required cost delta is not known,
just its sign. Therefore, outputs targets are specified as ±1 depending on whether
the costs need to be raised or lowered. In this way, the regressor R generalizes the
local cost changes over the entire feature space. Each regression target can also be
weighted to indicate that certain cost changes are more important relative to others.
Determining these relative weights is discussed in Section 3.

The final learning procedure is summarized as follows: for each example path
and the corresponding plan (under Ci), compute the set of visitation counts and the
corresponding perceptual features. Next train a regressor R over these input/output
pairs, and combine it with Ci, weighted by a learning rate parameter η . The cost of
cells along an example path (which an expert specifically chose to encounter) will
generally be lowered, while the cost of cells along a temporarily cheaper path (which
the expert chose to avoid) will generally be increased. This loop is then iterated until
convergence. Figure 3 provides a visual example of this procedure in action.

A few details remain. Rather than summation, we use an update rule of Ci+1( f ) =
Ci( f )eηRi( f ), resulting in exponentiated functional gradient descent [10] which
makes better use of available dynamic range, as well as naturally enforcing a posi-
tivity constraint on costs. The choice of regressor (e.g. linear, neural net, etc.) is also
unspecified. This decision helps define the balance between descriptiveness and gen-
eralization in the space of possible cost functions, and is discussed further in Section
3. Finally, by augmenting costs with a margin (determined by a loss function Le(x)),
trivial cost solutions can be eliminated and generalization improved.
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Fig. 3 An example of the LEARCH algorithm learning to interpret satellite imagery (Top) as
costs (Bottom). As the cost function evolves (left to right), the current plan (green) recreates
more and more of the example plan (red). Quickbird imagery courtesy of Digital Globe, Inc.

In addition to the algorithm as described, there are a few modifications that can
increase robustness to noisy or imperfect expert demonstration [11, 12]. Human ex-
perts rarely demonstrate exact optimal behaviors, especially in large areas of similar
terrain. By performing a balanced regression (normalizing relative weights such that
positive and negative targets have equal total weight), the regressor can be forced
to more strictly separate between terrains when changing cost. Another addition to
the algorithm is to continually replan the example path. Human demonstration often
contains a degree of high frequency noise; a smoothing operation is therefore bene-
ficial. This smoothing can be performed by selecting a new example that is entirely
contained within a corridor of width β around the original example. The new exam-
ple is created by planning the optimal path using the current cost function within the
corridor (and infinite cost elsewhere). This has the effect of adapting the example
to the current cost hypothesis at a small scale (implicitly defined by β ), while still
adapting the hypothesis to the example at a large scale.

3 Application to Autonomous Navigation

Our imitation learning approach was applied to the task of interpreting perceptual
data for the purpose of motion planning on the Crusher system. Crusher is provided
with two main forms of perceptual data: static sources of prior data (overhead im-
agery and LiDAR), and dynamic sources of data collected in real time (onboard
cameras and LiDAR). Once these data sources have been converted to 2D cost grids
and fused together (at the cost level), Crusher’s motion planning system is respon-
sible for choosing vehicle actions. The motion planning system is similar to [4],
and combines a global planner based on Field D* [2] and a local planner based
on forward simulation of potential vehicle actions (specifically constant curvature
commands) for a fixed horizon.

For the Crusher platform, imitation learning was first applied to the task of inter-
preting overhead data to create prior cost maps [11]. 2D feature maps are extracted
from the input data sources, and then converted from maps of features to a map of
costs. These maps are then used for global route planning offline, as well as online
global planning when fused with current perceptual data. This context provides an
ideal setting for the application of the LEARCH algorithm due to the static nature
of the perceptual data, and the ease of collecting training examples: each example
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is simply a path that can be ’drawn’ by an expert on top of imagery or other visual-
ization of the underlying data.

Since overhead costs are only used for planning in regions that have not yet been
directly observed by the robot, overhead costs are learned with respect to the Field
D* global planner. As Field D* plans an interpolated path over a 2D grid, comput-
ing visitation counts is not as straightforward as simply marking which states each
path traverses through. Instead, the distance traveled through each grid cell must
be recorded. This results in visitation counts that are real valued instead of binary.
During regression the output target for a real valued visitation count is still ±1, but
the target is now weighted relative to the visitation count. If a path passes through
cell x1 for twice as long as x2, then x1 has twice the impact on the cost of a path;
moving the cost in the right direction is therefore twice as important.

Like many motion planning algorithms, Field D* also makes use of a configura-
tion space expansion to account for the dimensions of the vehicle. A configuration
space expansion also results in non-binary visitation counts; it is taken into account
by incrementing the count of all states x j relative to their contribution to the cost
of state xi when xi is on a path. Crusher’s planning system performs an expansion
by averaging costs over a circular window. Therefore, for a path traveling distance
d through cell xi, all cells x j within the expansion window have their counts incre-
mented by d. More complex expansions can be accounted for in the same manner.

Imitation learning was next used to learn costs from features generated by
Crusher’s onboard perception system. Crusher’s perception software processes raw
sensor data into feature descriptions of voxels in real time; each column of voxels
is then converted into a 2D cost. Therefore, unlike learning from overhead data,
features are not static. While additional adaption of the LEARCH algorithm is re-
quired in order to deal with the dynamic and unknown nature of real time perceptual
data, the approach remains conceptually similar and will be treated as such moving
forward; for details see [12].

Instead of drawing a path on top of a visualization, collecting expert examples to
train the perception system consists of the expert manually driving Crusher through
an example behavior. Along with the path traversed, all raw sensor data is logged
during this collection. Sensor data is then post-processed via playback through
Crusher’s perception software to generate the final features that will be converted
into costs. By logging the raw sensor data, perception software does not need to
remain static after training data collection. Whenever changes or improvements are
made to perception software, features can simply be regenerated, and a cost function
relearned. Therefore, training data in this form does not need to be recollected every
time the system changes; the cost function is simply retrained offline.

Since costs from online perceptual data determine Crusher’s actual motion com-
mands, costs must be learned with respect to the local planning system. Figure 4(a)
provides a simplified example to demonstrate why this is so. If costs were trained
with respect to the global planner, LEARCH would be satisfied with the cost on the
obstacle O when it is sufficiently high to make up for the extra distance |Pg|− |Pc|.
However, since |Pl|, |Pr| > |Pc| + O > |Pg|, Pc remains the cheapest local planner
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Fig. 4 (a) A simplified scenario where the local planner has only 3 possible actions.
(b) Example of a new feature (right) learned from panchromatic imagery (left).

option in this case. The result would be that the local planner would still choose to
drive over the obstacle. This result is observed empirically in Section 4.

Unfortunately, there are also problems with training directly for the local planner.
As the local planner only considers a discrete, kinematically feasible set of actions, it
is often the case that no series of actions will sufficiently match the expert example.
In this case, the LEARCH termination condition is undefined. Terminating when
the example path is lower cost than the planned path will not suffice; in Figure 4(a)
this could result in C(Pe) < C(Pc) < C(Pl),C(Pr) (the colliding action would still be
preferred). Running until the cost function converges is therefore necessary, but has
its own side affects. Once C(Pc) > C(Pl),C(Pr), LEARCH will start to try and raise
the cost along Pl or Pr. If the chosen regressor can differentiate between the terrain
under Pl or Pr and that under Pe, it will raise those costs without proper cause. The
end result is a potential addition of noise to the final costs, and lower generalization.
The degree of this noise depends on the resolution of the planner and the regressor.

If there were some way to know the ’right’ planner action, then the selection
of that action could serve as a termination condition. Collecting this information
during demonstration by an expert would be extremely tedious, requiring an ex-
pert selection at every planning cycle. Instead, we propose the use of a heuristic
approach to approximate this decision. Essentially, we seek to ’project’ the expert’s
example behavior onto the space of possible planner actions. This is performed by
first learning a perception cost function for the global planner. As described above,
such a cost function will generally underestimate the cost necessary for the local
planner. Therefore, we score each local planner action by its average cost instead of
total cost1. An action with low average cost can not be said to be optimal, but it at
least traverses desirable(low cost) terrain. An additional distance penalty is added to
bias action scores towards those that make progress towards the goal2. After scoring
each action, that with the lowest score is used as the new example. The result of this
initial replanning step is to produce a new example behavior that is feasible to the
local planner.

1 The global planner section of each action is still computed with respect to total cost.
2 The weight of this penalty can be automatically tuned by optimizing performance on a

validation set, without any hand tuning.
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When dealing with static overhead data a cost function, once learned, will gener-
ally only be applied once through a data set. In contrast, a perception cost function
will be continually applied in real time on a robot when operating autonomously.
Therefore, it is important that the cost function be computationally inexpensive. As
combining multiple linear functions yields a single linear function, linear regressors
have a significant computational advantage over nonlinear regressors (which would
require a separate evaluation per regressor). Unfortunately, they also suffer from
limited expressiveness. This can be dealt with by adding a feature learning phase,
as described in [9, 11]. Such a phase automatically decides to occasionally learn
simple non-linear combinations of the original input features that help differentiate
terrains that are difficult for a linear cost function to discriminate. This approach is
similar to the way in which cost functions are often hand-engineered: simple lin-
ear functions handle the general cases, with sets of rules to handle difficult special
cases. Additionally, such new features can be used as a guide in the development of
further engineered features. Figure 4(b) provides an example in the overhead con-
text, demonstrating a new feature derived from only panchromatic satellite imagery.
This new feature strongly disambiguates roads and trails from surrounding terrain,
and could be taken as an indication that an explicit road extractor would be useful.

4 Field Results and Conclusions

The described imitation learning approach was implemented to learn mappings from
both overhead and onboard perceptual data to cost. As described in [10], this ap-
proach is guaranteed to converge when using a properly chosen learning rate 3. In
practice, a decaying learning rate of the form η/

√
n is used at the nth iteration. The

parameter η affects only the rate of convergence; a well chosen η usually results
in convergence after approximately 50 - 100 iterations. The computation required at
each iteration for each example is dominated by the cost of applying the current cost
function to local feature maps, and then planning through the resulting cost map. For
the training sets used in this work, computation per iteration was approximately 5
minutes on a 2.4 Ghz processor4.

The Crusher autonomy system originally made use of hand-tuned cost functions
for converting overhead and perception features to costs. Comparing autonomous
performance when using different cost functions can quantify the differences in per-
formance brought about by these different approaches. Engineered prior cost maps
were used for the first 4 Crusher field experiments. This process consisted of first
performing a supervised classification of the raw feature maps, and then converting
the classifier outputs into costs. This lossy compression of the feature space was
performed to make designing a cost function easier and more intuitive. As different
test sites provided differing data sources and resolutions, this process was repeated
for each test site. Additionally, the desire to create cost maps from different subsets

3 Use of a smoothing corridor removes the theoretical guarantee; however in practice this
has not proven to affect convergence.

4 If faster learning is required, LEARCH can be parallelized by example at each iteration.
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and resolutions of prior data (in order to perform resolution comparisons), meant
multiple cost functions were necessary. For each site, labeling training data and de-
termining parameters for multiple cost functions would involve on average more
than a day of a domain expert’s time. Learned prior cost maps were then used for
the remaining 6 field experiments. For each site, producing a series of example paths
would take on average only 1-2 hours of an expert’s time. These examples could then
be used to train multiple cost maps using different data sources and resolutions.

In a timed experiment on a 2 km2 test site, producing a supervised classification
required 40 minutes of expert involvement, and tuning a cost function required an
additional 20 minutes. In contrast, producing example paths required only 12 min-
utes. As Crusher has been tested on sites ranging up to 200 km2, this time savings
is magnified in importance. The final cost maps were also evaluated by comparing
planned routes to an independent validation set of examples. The engineered map
produced routes that matched 44% of states along validation paths on average. Using
imitation learning to learn just the correct weights for the supervised classification
produced a map that scored 48%. Imitation learning from the raw features scored
57%. This result demonstrates that the automated approach performs superior pa-
rameter tuning, and makes better use of all the available raw data. It has also been
shown that Crusher navigates more efficiently when using learned prior maps online
as opposed to engineered maps, driving safer routes at faster speeds [11].

During the more than 3 years of the Crusher program, an engineered perception
cost function was continually redesigned and retuned, culminating in a high perfor-
mance system [14]. However, this performance came at a high cost. Version control
logs indicate that 145 changes were made to just the form of the cost function; ad-
ditionally more than 300 parameter changes were checked in. As each committed
change requires significant time to design, implement, and validate, easily hundreds
of hours were spent on engineering the cost function. In contrast, the final training
set used to learn a cost function consisted of examples collected in only a few hours.

The performance of different perception cost functions was compared through
over 150 km of comparison trials. The final results comparing 4 different cost func-
tions are presented in Table 1. In comparison to the engineered system, a cost func-
tion learned for the global planner resulted in overly aggressive performance. As
discussed in Section 3, learning in this manner does not result in sufficiently high
costs; the result is that Crusher drives faster and turns less while appearing to suf-
fer from increased mobility risk. In contrast, the costs learned for the local planner

Table 1 Averages over 295 different waypoint to waypoint trials per perception system,
totaling over 150km of traverse. Statistically significant differences (from Engineered) de-
noted by *

System Avg. Distance Avg. Cmd. Avg. Cmd. Avg. Lat. Dir Switch Avg. Motor Avg. Avg. Avg Vert. Avg Lat. Susp. Safety

Made Good (m) Vel. (m/s) Ang. Vel.(◦/s) Vel. (m/s) Per m Current (A) Roll(◦) Pitch(◦) Accel (m/s2) Accel (m/s2) MaxΔ (m) E-stops

Engineered 130.7 3.24 6.56 0.181 0.107 7.53 4.06 2.21 0.696 0.997 0.239 0.027
Global 123.8* 3.34* 4.96* 0.170* 0.081* 7.11* 4.02 2.22 0.710* 0.966* 0.237 0.054*
Local 127.3 3.28 5.93* 0.172* 0.100 7.35 4.06 2.22 0.699 0.969* 0.237 0.034
Local w/replan 124.3* 3.39* 5.08* 0.170* 0.082* 7.02* 3.90* 2.18 0.706* 0.966* 0.234* 0.030
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performed very similarly to the high performance of the engineered system. Ad-
ditionally, adding an initial replanning step further improved performance; by re-
ducing cost noise, average speed increased, with a decrease in turns and direction
switches, and no increase in mobility risk.

In conclusion, this work has demonstrated the applicability of imitation learning
towards improving the robustness of autonomous navigation systems, while helping
to minimize the necessary amount of expert interaction. Specifically, the parame-
ter tuning problem that often results from the coupling of complex perception and
planning systems can be automated through expert demonstration instead of expert
intervention. In the future, we wish to expand this approach to also automate the
selection of parameters internal to a planning system, further reducing the need for
human tuning.
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Trajectory Design for Autonomous Underwater
Vehicles Based on Ocean Model Predictions for
Feature Tracking

Ryan N. Smith, Yi Chao, Burton H. Jones, David A. Caron,
Peggy P. Li, and Gaurav S. Sukhatme

Abstract. Trajectory design for Autonomous Underwater Vehicles (AUVs) is of
great importance to the oceanographic research community. Intelligent planning is
required to maneuver a vehicle to high-valued locations for data collection. We con-
sider the use of ocean model predictions to determine the locations to be visited by
an AUV, which then provides near-real time, in situ measurements back to the model
to increase the skill of future predictions. The motion planning problem of steering
the vehicle between the computed waypoints is not considered here. Our focus is
on the algorithm to determine relevant points of interest for a chosen oceanographic
feature. This represents a first approach to an end to end autonomous prediction and
tasking system for aquatic, mobile sensor networks. We design a sampling plan and
present experimental results with AUV retasking in the Southern California Bight
(SCB) off the coast of Los Angeles.

1 Introduction

More than three-fourths of our earth is covered by water, yet we have explored less
than 5% of the aquatic environment. Autonomous Underwater Vehicles (AUVs)
play a major role in the collection of oceanographic data. To make new discoveries
and improve our overall understanding of the ocean, scientists must make use of
these platforms by implementing effective monitoring and sampling techniques to
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study ocean upwelling, tidal mixing or other ocean processes. One emerging exam-
ple of innovative and intelligent ocean sampling is the automatic and coordinated
control of autonomous and Lagrangian sensor platforms [4].

As complex and understudied as the ocean may be, we are able to model and
predict certain behaviors moderately well over short time periods. Expanding our
modeling capabilities, and general knowledge of the ocean, will help us better ex-
ploit the resources that it has to offer. Consistently comparing model predictions
with actual events, and adjusting for discrepencies, will increase the range of valid-
ity of existing ocean models, both temporally and spatially.

The goal of this paper is to present an innovative ocean sampling method that
utilizes model predictions and AUVs to collect interesting oceanographic data that
can also increase model skill. Our motivation is to track and collect daily informa-
tion about an ocean process or feature which has a lifespan on the order of a week.
We use an ocean model to predict the behavior of an interesting artifact, e.g., a fresh
water plume, over a small time period, e.g., one day. This prediction is then used as
input to an algorithm that determines a sampling plan for the AUV(s). The AUV(s)
are then retasked from a current mission or deployed. Afterward, the collected data
is assimilated into the ocean model and an updated prediction is computed. A new
sampling plan is created and the process repeats until the artifact is out of range or
is no longer of interest.

We motivate the work from an oceanographic perspective and provide a realistic
field application. Next, we briefly describe the ocean model and AUV used in this
study. We discuss the waypoint selection algorithm and present results from a field
implementation. We conclude with future research plans.

The work presented here serves as a proof of concept for the utilization of ocean
model forecasts to design sampling missions for AUVs in particular, and aquatic
mobile sensor platforms in general, to follow an ocean feature and collect data.

2 Oceanography Application and Ocean Model

Microscopic organisms are the base of the food chain: all aquatic life ultimately
depends upon them for food. There are a few dozen species of phytoplankton and
cyanobacteria that can create potent toxins when provided with the right conditions.
Harmful algal blooms (HABs) can cause harm via toxin production, or by their
accumulated biomass. Such blooms can cause severe illness and potential death to
humans as well as to fish, birds and other mammals. The blooms generally occur
near fresh water inlets, where large amounts of nutrient rich, fresh water is deposited
into the ocean. This water provdes the excess food to support higher productivity
and a bloom of microorganisms. It is of interest to predict when and where HABs
may form, and which coastal areas they may affect. Harmful algal blooms are an
active area of research along the western coast of the United States and are of large
concern for coastal communities in southern California. The impact of HABs in this
region can be seen in [7, 10]. With this motivation, we choose fresh water plumes
as an ocean feature for which to design predictive tracking missions.
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The predictive tool utilized in this study is the Regional Ocean Model Sys-
tem (ROMS) [9] - a split-explicit, free-surface, topography-following-coordinate
oceanic model. We use ROMS because it is an open source ocean model that is
widely accepted and supported throughout the oceanographic and modeling com-
munities. Additionally, the model was developed to study ocean processes along the
western U.S. coast which is our primary area of study.

Research is currently ongoing to update and improve ROMS for the Southern
California Bight (SCB)1 in an effort to characterize and understand the complex up-
welling and current structure that exist and drive the local climate. The Jet Propul-
sion Laboratory (JPL) uses ROMS to provide nowcasts and hourly forecasts (up to
36 hours) for Monterey Bay, the SCB and Prince William Sound, see [6] for more
information. The JPL version of ROMS assimilates HF radar surface current mea-
surements, data from moorings, satellite data and any data available from AUVs
operating in the area. Information regarding this specific version of ROMS and the
data assimilation process can be found in [3].

3 Mobile Sensor Platform: AUV

Fig. 1 He Ha Pe, one
of two USC Slocum
gliders, flying a mis-
sion off the coast of
Catalina Island.

The mobile sensor platform used in this study is a Webb
Slocum autonomous underwater glider, as seen in Fig. 1.
(http://www.webbresearch.com) The Slocum glider is a type
of AUV designed for long-term ocean sampling and moni-
toring [8]. These gliders fly through the water by altering the
position of their center of mass and changing their buoyancy.
Due to this method of locomotion, gliders are not fast moving
AUVs, and generally have operational velocities on the same
order of magnitude as oceanic currents. The endurance and
velocity characteristics of the glider make it a good candidate
vehicle to track ocean features which have movements that are
determined by currents, and that have a residence time on the
order of weeks.

We utilize autonomous gliders because our collaborative
research group owns two of them, and hence field experiments
can be readily performed. We have upgraded the communica-
tion capabilities of our vehicles to take advantage of our local
wireless network; details on this can be found in the concur-
rent article, [5].

Extensive research has been done on glider dynamics and controller design, e.g.,
see [2] and the references therein. Thus, we do not discuss these details nor the
trajectory along which the glider travels. We assume here that the glider can suc-
cessfully navigate from one location to another.

1 The SCB is the oceanic region contained within 32◦ N to 34.5◦ N and −117◦ E to
−121◦ E.
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4 Trajectory Design

We now present an algorithm which generates the locations for the AUV to visit to
follow the general movements of a fresh water plume through the ocean.

Considerable study has been reported on adaptive control of single gliders and
coordinated multi-glider systems, see for example [4] and the included references.
In these papers, the trajectories given to the gliders were fixed patterns (rounded
polygons) that were predetermined by a human operator. The adaptive control com-
ponent was implemented to keep the gliders in an optimal position, relative to the
other gliders following the same trajectory. The difference between the method used
in [4] and the approach described here, is that here the sampling trajectory is deter-
mined by use of the output of ROMS, and thus is, at first glance, a seemingly random
and irregular sampling pattern. Such an approach is a benefit to the model and scien-
tist alike. Scientists can identify sampling locations based upon ocean measurements
they are interested in following, rather than setting a predetermined trajectory and
hoping the feature enters the transect while the AUV is sampling. Model skill is
increased by the continuous assimilation of the collected data; which by choice, is
not a continuous measurement at the same location.

For a fresh water plume, the low salinity and density imply that this feature will
propagate through the ocean driven primarily by surface currents. A plume may
dissipate rapidly, but can stay cohesive and detectable for up to weeks; we assume
the later case. It is of interest to track these plumes based on the discussion in Sect. 2
as well as in [1]. In addition to tracking the plume, it is also important to accurately
predict where a plume will travel on a daily basis. The ROMS prediction capabilities
for a plume are good, but model skill can significantly increase from assimilation of
in situ measurements.

A single Slocum glider is not optimal for the task at hand, as it is built for en-
durance missions and traveling at low velocities. Hence, we can not expect it to be
able to collect samples over the entire area of a potentially large plume. Thus, we
restrict ourselves to visiting (obtaining samples at) at most two locations for each
hour of sampling. The primary location that we are interesed in tracking is the cen-
troid of the plume extent; analogous to the eye of the storm. Optimally, we would
also like to gather a sample on the boundary of the plume. However, the glider may
not be able to reach the plume centroid and a point on the boundary in a one hour
time frame. With the given mission and the tools at hand, we present the following
trajectory design algorithm.

4.1 Trajectory Design Algorithm Based on Ocean Model
Predictions

We propose the following iterative algorithm for plume tracking utilizing ocen
model predictions. This is the first known presentation of such a technology chain,
and as such, is presented in a simplified manner. First, we assume the glider trav-
els at a constant velocity v. Let d be the distance in kilometers that the vehicle can
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travel in a given time. We neither consider vehicle dynamics nor the effect of ocean
currents upon the vehicle in this study; these are areas of ongoing research. Also, we
only consider a 2-D planar problem as far as the waypoint computation is concerned.

The input to the trajectory design algorithm is a set of points, D (referred to as
drifters) that determine the initial extent of the plume, and hourly predictions of the
location of each point in D for a set duration. For the points in D , we compute the
convex hull as the minimum bounding ellipsoid, E0. The centroid of this ellipsoid,
C0, is the start point of the survey. Next, we consider the predicted locations of D
after one hour, D1. The centroid of D1 is C1; the centroid of the minimum bounding
ellipsoid E1. The algorithm computes dg(C0,C1), the geographic distance from C0

to C1. Given upper and lower bounds du and dl , resp., if dl < dg(C0,C1) ≤ du, the
trajectory is simply defined as the line C0C1. If dg(C0,C1) ≤ dl , the algorithm first
checks to see if there exists a point p ∈ E1 ∪D1 such that

dl ≤ dg(C0, p)+ dg(C1, p) ≤ du. (1)

If such a point exists, the trajectory is defined as the line C0 p followed by the line
pC1. If the set of points p ∈ E1 ∪D1 which satisfy Eq. 1 is empty, then the algorithm
computes the locus of points, L = {p∗ ∈ L |dg(C0, p)+dg(p,C1) = d}. This locus
L , by definition, defines an ellipse with focii C0 and C1. We then choose a random
point p∗ ∈ L as another location for sampling. Here, the trajectory is the line C0 p∗
followed by the line p∗C1. If dg(C0,C1) > du, the algorithm aborts as the plume is
traveling too fast for the chosen vehicle. The algorithm then repeats this process for
the defined duration of tracking. This selection process of waypoints for the AUV to
visit to track the plume is presented in Algorithm 1. The overall iterative process to

Algorithm 1. Waypoint Selection Algorithm Based on Ocean Model Predictions
Require: Hourly forecasts, Di for a set of points D defining the initial plume condition and

its movement for a period of time, T .
for 0 ≤ i ≤ T do

Compute Ci, the centroid of the minimum bounding ellipsoid Ei of the points Di.
end for
while 0 ≤ i ≤ T −1 do

if dl ≤ dg(Ci,Ci+1) ≤ du then
The trajectory is CiCi+1.

else if dg(Ci,Ci+1) ≤ dl and ∃p ∈ Ei ∪Di such that dl ≤ dg(Ci, p)+ dg(p,Ci+1) ≤ du.
then

The trajectory is Ci p followed by pCi+1.
else if dg(Ci,Ci+1) ≤ dl and {p ∈ Ei ∪Di|dl ≤ dg(Ci, p)+dg(p,Ci+1) ≤ du} = /0. then

Compute L = {p∗ ∈ L |dg(C0, p)+ dg(p,C1) = d}, select a random p∗ ∈ L and
define the trajectory as Ci p∗ followed by p∗Ci+1

else if dg(Ci,Ci+1) ≥ du then
Stop the algorithm. The plume is moving too fast for the selected AUV.

end if
end while
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Algorithm 2. Ocean Plume Tracking Algorithm Based on Ocean Model Predictions
Require: A significant fresh water plume is detected via direct observation or remotely

sensed data such as satellite imagery.
repeat

A set of points (D) is chosen which determine the current extent of the plume.
Input D to ROMS.
ROMS produces an hourly forecast for all points in D .
Input hourly forcast for D into the trajectory design algorithm.
Execute the trajectory design algorithm (see Alg. 1).
Uploaded computed waypoints to the AUV.
AUV executes mission.
The AUV sends collected data to ROMS for assimilation into the model.

until Plume dissipates, travels out of range or is no longer of interest.

design an implementable plume tracking strategy based on ocean model predictions
is given in Algorithm 2.

Remark 1. In the SCB, a vertical velocity profile of ocean current is generally not
constant. Since the plume propagates on the ocean surface (1 − 3 m) and the glider
operates at depths of 60 − 100 m, it is not valid to assume that they are subjected to
the same current regime, in both velocity and direction. Thus, it may be possible for
a plume to outrun a slow-moving vehicle (i.e., dg(Ci,Ci+1) ≥ du).

5 Implementation and Field Experiments in the SCB

The rainy season in southern California runs from November to March. During
this time, storm events cause large runoff into local area rivers and streams, all
of which empty into the Pacific Ocean. Two major rivers in the Los Angeles area,
the Santa Ana and the Los Angeles River, input large fresh water plumes to the
SCB. Such plumes have a high liklihood of producing HAB events. We deployed a
Webb Slocum glider into the SCB on February 17, 2009 to conduct a month-long
observation and sampling mission. For this deployment, the glider is programmed
to execute a zig-zag pattern mission along the coastline, as depicted in Fig. 2, by
navigating to each of the six waypoints depicted by the red and black bullseyes.
Figure 2 also delineates the 20 m and 30 m isobaths, given by the green and red
lines, respectively.

Unfortunately, weather and remote sensing devices did not cooperate to produce
a rain event along with a detectable fresh water plume, so we were unable to retask
the glider to track a real plume by use of Algorithm 2. Instead, we defined a pseudo-
plume D with 15 initial drifter locations to demonstrate the proof of concept of this
research. The pseudo plume is given by the blue line in Fig. 3.

The set D was sent to JPL and input to ROMS as the initial plume condition.
The locations of the points in D were predicted for 15 hours. The initial time and
location for the beginning of this retasking experiment coincided with predicted
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Fig. 2 Preset waypoints, depicted with red
and black bullseyes and the intended path of
the glider given by the magenta line. Image
created by use of Google Earth.

Fig. 3 Plume (blue line), computed way-
points (yellow diamonds), and path connect-
ing consecutive waypoints (black line). Im-
age created by use of Google Earth.

coordinates of a future glider communication. The pseudo-plume was chosen such
that C0 was near this predicted glider surfacing location.

Based on observed behavior for our vehicle during this deployment, we take v =
0.75 km/h, and initially defined dl = 0.5 and du = 0.8. The hourly predictions were
input to the trajectory design algorithm and a tracking strategy was generated. Due
to slow projected surface currents in the area of study, the relative movement of the
plume was quite small. To keep the glider from surfacing too often and to generate
a more implementable trajectory, we opted to omit visiting consecutive centroids.
Instead, we chose to begin at the initial centroid, then visit the predicted centroid
of the plume after five, ten and 15 hours, C5, C10 and C15, respectively. Between
visiting these sites, the algorithm computed an additional waypoint for the glider to
visit. These intermediate waypoints were chosen similarly to the p∗ defined earlier,
with d = 3.75; the distance the glider should travel in five hours. This design strategy
produced seven waypoints for the AUV to visit during the 15 hour mission. The
waypoints are presented in Table 1.

Note that we include the initial centroid as a waypoint, since the glider may
not surface exactly at the predicted location. Upon visiting all of the waypoints in
Table 1, the glider was instructed to continue the sampling mission shown in Fig. 2.
Figure 3 presents a broad overview of the waypoints in Table 1, along with a path

Table 1 Waypoints generated by the plume tracking algorithm. Waypoint numbers 1,3,5 and
7 are the predicted centroids of the pseudo-plume at hours 0,5,10 and 15, respectively.

Number Latitude (N) Longitude (E) Number Latitude (N) Longitude (E)

1 33.6062 -118.0137 5 33.6189 -118.0349
2 33.6054 -118.0356 6 33.6321 -118.0257
3 33.6180 -118.0306 7 33.6175 -118.0361
4 33.6092 -118.0487
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connecting consecutive waypoints. The plume is delineated by the blue line and
the waypoints are numbered and depicted by yellow diamonds. Note that the glider
did not travel on the ocean surface during this experiment. Between waypoints, the
glider submerges below a set depth and performs consecutive dives and ascents
creating a sawtooth-shaped trajectory as its glide path.

6 Results

In the study of path planning for field robots, planning the trajectory is usually
less than half the battle, the real challenge comes in the implementation. This is
exaggerated when dealing with underwater robots due to the complex environment.
Next, we present results of an implementation of the designed sampling mission
onto a Slocum glider operating in the SCB.

The waypoints given in Table 1 were computed under the assumption that the
mission would be loaded onto the glider at a specific time and approximate geo-
graphic location. The glider arrived and communicated at the correct time and loca-
tion, however, communication was aborted before the plume tracking mission could
be uploaded. We were able to establish a connection two hours later at a different
location, and successfully upload the mission file; this location is the red droplet
labeled 1 in Fig. 4. We opted to not visit waypoint 1 based on the location of the
glider and to get the glider back on schedule to track the plume. Figures 4 and
5 present magnified images of Fig. 3, where computed waypoints are the yellow
diamonds and the red droplets are the actual locations visited by the glider.

We were able to sucessfully generate a plan and retask a deployed glider to follow
an ocean feature for 15 hours. It is clear from the data that consideration has to be

Fig. 4 Computed waypoints (yellow diamonds) and actual glider locations (red droplets).
Image created by use of Google Earth.
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Fig. 5 Computed waypoints (yellow diamonds) and actual glider locations (red droplets).
Image created by use of Google Earth.

made for glider dynamics and external forces from the ocean in the trajectory design
algorithm. This is an area of active research. The motivation of this research is to
follow plumes through the ocean via centroid tracking.

One element that we have neglected to discuss up to this point is that we have
no metric for comparison. In particular, when we reach a predicted centroid, we
do not have a method to check whether or not the plume centroid was actually
at that location. We are planning experiments to deploy actual Lagrangian drifters
to simulate a plume. This will give a comparison between the ROMS prediction
and the actual movement of the drifters. This also provides a metric to determine
the accuracy of the prediction and the precision of the AUV. Another component
omitted from earlier discussion is time. When tracking a moving feature, a prediced
waypoint contains time information as well as location. For this implementation, the
glider began the mission at 0302Z and ended at 1835Z; a total time of 15.55 hours.
Due to external influences, arrival at a few waypoints was not at the predicted time.
Resolving this matter is contained within the addition of external forces, and is the
subject of ongoing work.

7 Conclusions and Future Work

Designing effective sampling strategies to study ocean phenomena is a challeng-
ing task and can be approached from many different angles. Here, we presented a
method to exploit multiple facets of technology to achieve our goal. Utilizing an
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ocean model and an AUV, we were able to construct a technology chain which out-
puts a path to follow a fresh water plume centroid for a chosen period of time. The
successful field experiment presented here required the cooperation and communi-
cation between many individuals. Retasking an autonomous glider remotely while
it is in the field involves patience, determination and many resources. In a period of
less than two hours, we were able to decide to retask the glider, delineate a plume in
the ocean, use ROMS to generate a prediction, generate an implementable tracking
strategy, create a glider mission file and have it ready to upload to the glider. This
paper has demonstrated that we have implemented the collaboration and technology
chain required to perform complex field experiments. The work now is to improve
upon the waypoint generation algorithm and extend it to design implementable 3-D
trajectories.

The main implementation issue is the ability of the glider to accurately navi-
gate to a given waypoint. This is a direct result of the waypoint selection algorithm
only solving the 2-D problem, and ignoring the dynamics of the glider and the com-
plex ocean environment. Details on how to implement robustness and generate more
complex sampling missions are outside the scope of this paper. Areas of ongoing re-
search include plans to incorporate the kinematic and dynamic models of the glider
and extend this from a planar to a 3-D motion planning algorithm. Also, we plan
to incorporate a 3-D current output of ROMS to plan a trajectory that exploits the
currents to aid the locomotion of the glider. A more immediate step is to incorpo-
rate multiple AUVs, which leads to the development of an optimization criterion on
which vehicle is best suited for a certain mission or to visit a chosen waypoint. A
long-term goal is to facilitate autonomy for the entire system, leaving the human in
the control loop as a fail-safe.
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AUV Benthic Habitat Mapping in South Eastern
Tasmania

Stefan B. Williams, Oscar Pizarro, Michael Jakuba, and Neville Barrett

Abstract. This paper describes a two week deployment of the Autonomous Under-
water Vehicle (AUV) Sirius on the Tasman Peninsula in SE Tasmania and in the
Huon Marine Protected Area (MPA) to the South West of Hobart. The objective of
the deployments described in this work were to document biological assemblages
associated with rocky reef systems in shelf waters beyond normal diving depths. At
each location, multiple reefs were surveyed at a range of depths from approximately
50 m to 100 m depth. We illustrate how the AUV based imaging complements ben-
thic habitat assessments to be made based on the ship-borne swath bathymetry. Over
the course of the 10 days of operation, 19 dives were undertaken with the AUV
covering in excess of 70 linear kilometers of survey and returning nearly 160,000
geo-referenced high resolution stereo image pairs. These are now being analysed to
describe the distribution of benthic habitats in more detail.

1 Introduction

The Autonomous Underwater Vehicle (AUV) Sirius was part of a two week expe-
dition in October, 2008, whose objective was to describe biological assemblages
associated with rock reef systems in deep shelf waters on the Tasman Peninsula
in SE Tasmania and in the Huon Marine Protected Area (MPA) to the South West
of Hobart. Detailed multibeam sonar bathymetry data were previously collected by
Geoscience Australia using a Simard EM3002 multibeam sonar system, Applannix
motion sensor and C-Nav GPS to provide high-resolution Digital Elevation Maps
(DEMs) of the study areas. The DEMs were used to determine suitable AUV survey
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(a) Tasman Peninsula (b) AUV Sirius

Fig. 1 (a) The site of survey work on the Tasman Peninsula in the South East of Tasmania.
(b) The vehicle on-board the R/V Challenger prior to deployment. The dolerite cliffs of the
peninsula can be seen in the background.

locations and to identify any hazards to operation. At each location, multiple reefs
were surveyed at a range of depths from approximately 50 m to 100 m depth. Where
distinct ectones (e.g. reef to sand) are present, transects were designed to cross tran-
sition zones and help determine the uniqueness of ectonal assemblages. Replication
depended upon site logistics, however, dive profiles were designed to provide suf-
ficient replication to quantitatively determine abundances of key species/features
within depth strata, within reefs, between reefs (km to 100 km scale), and between
differing levels of reef complexity.

2 Biodiversity Hub

While inshore reef systems are relatively easy to access and describe using meth-
ods such as dive surveys, offshore systems have remained relatively unknown be-
cause of the expense and complexity of available survey methods. A recent and
very significant development contributing to our understanding of the physical en-
vironment of shelf habitats has been multibeam sonar and the interpretation of its
associated backscatter. This has opened up opportunities for developing predictive
capacity in this field where matching biological datasets are available. However, the
effectiveness of this technique has yet to be fully tested as an appropriate surro-
gate for predicting patterns of biodiversity because of the lack of matching biolog-
ical datasets collected at the same spatial scales and locations as fine scale acous-
tic surveys. In this context, the AUV deployments reported on here were part of
a multi-disciplinary experimental program in eastern Tasmania, where the analysis
of covariance is to be undertaken on co-located fine-resolution seabed habitat data,
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provided by the EM3002 multibeam sonar data, and biological datasets collected at
similar spatial scales by Remotely Operated Vehicles (ROVs), Baited Underwater
Video systems (BRUVs), towed video and the AUV. This research is being under-
taken by the University of Tasmania and Geoscience Australia as part of the Ma-
rine Biodiversity Research Hub, which is a collaborative program funded under the
Commonwealth Government’s Commonwealth Environmental Research Facilities
(CERF) Program. Within this Hub, several interrelated projects are designed to de-
velop and test appropriate surrogates for biodiversity and incorporate these into an
advanced predictive framework that covers a range of spatial scales [2].

The AUV data enables a finer-scale coupling of biological datasets with multi-
beam bathymetry than data collected through the use of ROVs, BRUVs and towed
video alone, because of geo-referencing errors associated with USBL tracking sys-
tems. This additional data is expected to allow scale matching errors to be examined
in more detail and allow surrogacy to be examined at the finest possible scale. Ul-
timately, CERF researchers expect to be able to compare the relative efficiency of
using AUV, ROV and towed video systems for shelf habitat biological surveys. In
addition, the high resolution images produced by the AUV are expected to signif-
icantly enhance the ability to identify taxa, adding finer taxonomic resolution, and
hence value, to the data collection.

3 AUV-Based Benthic Habitat Mapping

One of the key features of the present cruise was the availability of a high resolution
optical imaging AUV. The high spatial resolution and capacity to geo-reference the
resulting imagery provides an invaluable mechanism for observing the extent and
composition of particular benthic habitats. In this case, these data allow for post
cruise analysis to validate habitat classification based on backscatter and slope data
extracted from the ship-borne multibeam bathymetry.

AUVs are becoming significant contributors to modern oceanography, increas-
ingly playing a role as a complement to traditional survey methods. Large, fast sur-
vey AUVs can provide high resolution acoustic multibeam and sub-bottom data by
operating a few tens of meters off the bottom, even in deep water [6, 10]. High reso-
lution optical imaging requires the ability to operate very close to potentially rugged
terrain. The Autonomous Benthic Explorer (ABE) has helped increase our under-
standing of spreading ridges, hydrothermal vents and plume dynamics [16] both
using acoustics and vision. The AUV SeaBED [14] is primarily an optical imaging
AUV, used in a diverse range of oceanographic cruises including coral reef char-
acterization [13] and surveys of ground fish populations [1]. Recently, the related
AUVs Puma and Jaguar searched for hydrothermal vents under the artic ice [7].
Other AUV systems have been used to explore biophysical coupling, including map-
ping harmful algal blooms [11] and characterising up-welling around canyons [12].

The University of Sydney’s Australian Centre for Field Robotics operates
an ocean-going AUV called Sirius capable of undertaking high resolution, geo-
referenced survey work [15]. This platform is a modified version of the WHOI
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SeaBED vehicle. This class of AUV has been designed specifically for relatively
low speed, high resolution imaging and is passively stable in pitch and roll. The
submersible is equipped with a full suite of oceanographic sensors including a
high resolution stereo camera pair and strobes, multibeam sonar, a depth sensor,
Doppler Velocity Log (DVL) including a compass with integrated roll and pitch sen-
sors, Ultra Short Baseline Acoustic Positioning System (USBL), forward-looking
obstacle avoidance sonar, a conductivity/temperature sensor and combination fluo-
rometer/scattering sensor to measure chlorophyll-a, turbidity and dissolved organic
matter. The on-board computer logs sensor information and runs the vehicle’s low-
level control algorithms. Sirius is part of the Integrated Marine Observing System
(IMOS) AUV Facility, with funding available on a competitive basis to support its
deployment as part of marine studies in Australia.

Navigation underwater is challenging because electromagnetic signals attenu-
ate strongly with distance. Absolute position estimates such as those provided by
GPS are therefore not readily available. Simultaneous Localisation and Mapping
(SLAM) is the process of concurrently building a feature based map of the en-
vironment and using this map to obtain estimates of the location of the vehicle.
The SLAM algorithm has seen a considerable amount of interest from the mobile
robotics community as a tool to enable fully autonomous navigation [3, 4]. Our
current work has concentrated on efficient, stereo based Simultaneous Localisation
and Mapping and dense scene reconstruction suitable for creating detailed maps of
seafloor survey sites [8, 9]. These novel approaches, based on Visual Augmented
Navigation (VAN) techniques [5], enable the complexity of recovering the state es-
timate and covariance matrix in a VAN framework to be managed. This has allowed
these algorithms to run on significantly larger mapping problems than was previ-
ously feasible. These techniques have been used to renavigate the estimated vehicle
trajectories using the data collected for this paper.

A typical dive will yield several thousand geo-referenced overlapping stereo
pairs. While useful in themselves, single images make it difficult to appreciate spa-
tial features and patterns at larger scales. It is possible to combine the SLAM tra-
jectory estimates with the stereo image pairs to generate 3D meshes and place them
in a common reference frame [15]. The resulting composite mesh allows a user to
quickly and easily interact with the data while choosing the scale and viewpoint
suitable for the investigation. Spatial relationships within the data are preserved and
scientists can move from a high level view of the environment down to very detailed
investigation of individual images and features of interest within them. This is a
useful tool for the end user to develop an intuition of the scales and distributions of
spatial patterns, even before any automated interpretation is attempted. Examples of
the output of the 3D reconstructions for dives undertaken on this cruise are included
below.

4 Deployments

The deployments undertaken over the course of the 10 day cruise in October 2008
were on shelf reef habitats at depths of between 50 and 100 m in eastern Tasmanian
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waters and in estuarine waters in 30 to 50 m deep in the Huon MPA and around
Port Arthur, Tasmania. The vehicle was deployed on 19 dives over the 10 days of
operation. During the course of these dives, the vehicle covered in excess of 70 lin-
ear kilometers of survey and collected nearly 160,000 high resolution stereo image
pairs. Each dive ranged between 2.5 km and 6.5 km in total length with an average
of 3.7 km covered per dive travelling at a speed of 0.5 m/s or approximately 1 knot.
Table 1 shows summary statistics for the dives undertaken during the course of this
cruise. Dives 1 through 4 were calibration runs undertaken prior to the scientific
missions and are not show here.

Figure 2 shows the AUV dive profiles overlaid on the previously collected ship-
borne mutlibeam bathymetry, focusing on the Tasman Peninsula deployments. The
AUV dive profiles were targeting particular rocky reef structures identified in the
bathymetry derived from ship-borne multibeam surveys undertaken prior to the
cruise. Figure 3 (a) shows two AUV dive profiles over the bathymetry at OHara reef
(seen in the middle of Figure 2 (b)) with high resolution multibeam data collected
by the vehicle from an altitude of 20 m over the eastern edge of the reef embedded
in the figure. Figure 3 (b) shows details of one of the three dimensional seafloor
reconstructions generated using the combined SLAM and stereo meshes for one of
these dives.

Figure 4 shows dive profiles for six dives undertaken around the Hippoly-
tes, a rocky island located group approximately 4 km offshore. These areas, in

Table 1 AUV Tasmania Dive Summary

Dive Lat Long Max Depth Distance Avg. Alt. No. Stereo pairs
[m] [m] [m]

5 -43.0615 147.9648 67.0 5625 2.00 12262
6 -43.0631 147.9825 66.3 2947 2.00 7256
7 -43.084558 147.974086 77.9 4774 2.00 11278
8 -43.094119 148.024267 85.9 2817 2.10 7262
9 -43.120019 148.05373 90.9 2652 2.08 6336

10 -43.119798 148.047008 88.5 2717 2.06 6406
11 -43.119126 148.038401 83.3 2660 1.97 6727
12 -43.120581 148.03754 84.0 2875 2.00 6787
13 -43.123972 148.053974 96.3 2759 2.16 6870
14 -43.119887 148.045257 89.5 2995 2.06 7737
15 -43.040462 147.955845 57.8 4559 1.99 10563
16 -42.956996 148.005154 76.4 6542 2.05 15521
17 -43.165023 147.874164 52.7 4290 1.99 9768
18 -43.18674 147.88763 32.4 3889 2.02 8863
19 -42.913151 148.003898 60.0 6300 2.00 15162
20 -43.084558 147.974086 76.9 2780 2.04 6564
21 -43.29307 147.129389 45.9 4619 2.00 9655
22 -43.327701 147.166552 35.8 1153 1.51 2548
23 -43.270816 147.124965 33.0 3200 1.50 1623

TOTAL 70153 159188
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(a) Tasman peninsula deployments

(b) Fortescue Bay

Fig. 2 Tasmanian Deployments 2008 illustrating the prior multibeam bathymetry available
with AUV dive profiles overlaid (ship-borne multibeam sonar image courtesy of Geoscience
Australia). The AUV profiles are colour coded by depth.

approximately 90 m of water, were expected to feature high levels of biodiversity.
Finally, Figure 5 shows high resolution multibeam bathymetry collected by the ve-
hicle in the Huon MPA showing a series of pockmarks mapped using the vehicle’s
on-board multibeam sonar at an altitude of 20 m during dive 23. These pockmarks
had been identified in prior ship borne multibeam surveying but were targeted by the
AUV to generate higher resolution bathymetry as well as undertaking a number of
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(a) Ohara reef bathymetry

(b) 3D reconstruction

Fig. 3 (a) Ohara reef bathymetry with two AUV imaging dive profiles (Dive 7 and 20) over-
laid (ship-borne multibeam sonar image courtesy of Geoscience Australia). The long axis of
these dives are 2 km in length. The AUV dive profiles are colour coded by measured depth.
The colour coding between the AUV depth and the bathymetry are not consistent in order for
the dive profile to stand out. Detailed bathymetry collected by the vehicle from a 20m altitude
at the eastern edge of the reef is overlaid on the orginal ship-borne bathymetry showing the
interface between the rocky reef and the deeper, sandy substrate. The AUV bathymetric data
is gridded at 0.5m resolution. (b) Details of one of the SLAM loop closure points identified
during Dive 7 at OHara reef. The vehicle path generated using SLAM has been used to place
the stereo meshes into space and the resulting mesh has been texture mapped using the im-
ages. As can be seen, the loop closure has been successful, resolving the detailed structure
of the scene in spite of the vehicle having travelled nearly 2 km between the two passes over
this area.

visual passes at an imaging altitude of 2 m. The visual imagery revealed that these
pockmarks, surrounded by muddy substrate, were filled with algal growth. Further
investigation using divers is planned to determine the nature of this growth.
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Fig. 4 Dive profiles for dives 8 through 13 around the Hippolytes, a series of islands located
some 4 km offshore of the Tasman peninsula (ship-borne multibeam sonar image courtesy of
Geoscience Australia).

Fig. 5 A series of pockmarks mapped using the vehicle’s on-board multibeam sonar at an
altitude of 20 m during dive 23 in the Huon MPA.

The data gathered during the AUV dives will form a baseline at or near the time
of protection for newly designated MPAs. This will allow changes related to pro-
tection, time and climate change to be assessed through time. This dataset will un-
derpin proposals for ongoing research on the respective MPAs (Commonwealth and
State) with respect to both ecosystem effects of fishing and climate change in an
otherwise poorly understood ecostystem. The AUV, ROV and BRUV surveys will
also provide, for the first time, a detailed quantitative inventory of the benthic fau-
nal assemblages associated with temperate shelf reef systems in this region, and
of the MPAs themselves. Shelf reef assemblages of this region remain relatively
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undescribed with respect to the quantitative composition of dominant species or tax-
onomic groupings, therefore providing that initial baseline description represents a
significant contribution of this study. Like inshore systems, shelf reef assemblages in
this region are influenced by fishing (e.g. scalefish and lobster), introduced species
and climate change, yet nothing is currently known of the interactions occurring in
these systems.

5 Conclusions and Future Work

This paper has reported on an expedition taken to survey biological assemblages
associated with deep water, rocky reef systems off the coast of the Tasman peninsula
and in the Huon MPA. Although the detailed analysis of the data and comparison
against the benthic habitat classification based on sonar backscatter and slope is on-
going, we have illustrated how the data collected by the AUV is complementary to
ship-borne multibeam.

We are currently preparing to return to Tasmania in early 2009 to undertake addi-
tional deployments associated with further multibeam swath mapping and to target
urchin barrens and scallop fisheries. The impact of fishing and climate change on
these poorly understood habitats stands to derive significant benefit from the de-
tailed, optical surveying capabilities of tools such as the AUV.
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Sensor Network Based AUV Localisation

David Prasser and Matthew Dunbabin

Abstract. The operation of Autonomous Underwater Vehicles (AUVs) within un-
derwater sensor network fields provides an opportunity to reuse the network in-
frastructure for long baseline localisation of the AUV. Computationally efficient
localisation can be accomplished using off-the-shelf hardware that is comparatively
inexpensive and which could already be deployed in the environment for monitoring
purposes. This paper describes the development of a particle filter based localisation
system which is implemented onboard an AUV in real-time using ranging informa-
tion obtained from an ad-hoc underwater sensor network. An experimental demon-
stration of this approach was conducted in a lake with results presented illustrating
network communication and localisation performance.

1 Introduction

Tracking an Autonomous Underwater Vehicle’s (AUV’s) position is essential for
navigation and geo-referencing data gathered during survey tasks. Unlike some
other types of field robots, AUVs suffer significant challenges in determining their
location as GPS signals are only available whilst at the surface. There are three
general approaches to maintaining an AUV’s position estimate for navigation: (1)
integration of motion estimates, (2) using acoustic transponders as a position refer-
ence, or (3) using the environment as a position reference [10, 12].

Path integration approaches accumulate motion estimates from either inertial
measurement units, Doppler Velocity Logs (DVLs) or vision systems to determine
position relative to a starting point [14]. These by themselves suffer integration drift
with time and minimising this drift is highly dependent on hardware selection and
algorithm choice.

Acoustic transponder systems provide absolute position estimates and do not
suffer from error accumulation inherent in path integration approaches. These can
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either be characterised as long or short baseline systems. In long baseline systems,
the AUV uses ranging information from acoustic transponders placed at known lo-
cations to determine its position. Short baseline systems typically localise the AUV
relative to a support vessel. Although successfully used in many open ocean and
near shore situations, key issues in this method arise from the propagation of sound
underwater such as reflections, echoes, and changes in water density [12, 14].

An alternative to both odometry and acoustic transponders is to reference the ve-
hicle’s position against environmental features such as the seabed terrain or salient
image features. This approach is advantageous as no other objects need to be in-
troduced into the environment thus reducing equipment cost, deployment time and
survey requirements. Many such approaches use Simultaneous Localisation And
Mapping (SLAM) to produce an environment map for localisation which has the
advantage of allowing exploration without a map and the side benefit of construct-
ing a map of the environment [9]. These methods are often used in conjunction with
an odometry system [8] for improved localisation in low feature environments and
during decent to and ascent from the seafloor.

In this paper, we propose an intermediate approach to AUV localisation by util-
ising existing acoustic sensor network nodes (underwater modems) designed for ad-
hoc data communication [2] instead of deploying a dedicated long or short baseline
localisation system. Furthermore, this paper describes the development of a network
based time-of-flight localisation algorithm which is implemented onboard the AUV
in real-time to allow navigation within challenging and unstructured environments.

2 Sensor Network Based Localisation

Underwater wireless sensor networks provide a means to remotely monitor a set of
parameters at multiple locations distributed throughout a marine environment. Many
challenges exist to ensure reliable communications which include environmental ef-
fects as well as hardware limitations [1]. As such, most reported sensor nodes use
either point-to-point communications between two nodes, or preset routing tables in
multi-node systems. Previous work realised ad-hoc underwater communications by
using commercially available acoustic modems that were controlled by low power
processor boards attached to each modem to act as the sensing platform and imple-
ment a networking layer [2]. This forms the foundation for the network used in this
investigation.

2.1 Scenario Description

This paper considers the use of acoustic sensor network nodes already deployed
in the environment as a means of providing localisation information to an AUV in
place of dedicated long baseline transponders. An AUV is equipped with an acous-
tic modem allowing it to communicate with the surrounding sensor nodes and from
the round trip time determine its distance to the node. In a typical scenario, an AUV
would operate in and around a sensor network, acting as an additional mobile sensor
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in a long term infrastructure or environmental monitoring project. In such a situa-
tion network relative localisation is necessary for both navigation and registering
sensor data.

The system proposed here is based on the assumption that sensor nodes are placed
arbitrarily within the environment, however, their position and depth below the sur-
face is known to the AUV with a bounded uncertainty. It is also assumed that not all
nodes are within communication range of the AUV and communication reliability
between the AUV and a sensor node is not perfect. This is plausible in practice when
the sensor network extends over great areas such as in lakes, rivers, or around coral
reefs where line-of-sight communication is not available.

2.2 Localisation

In previous work [3, 4], a localisation system was developed and demonstrated
which used custom built acoustic transponders utilising TDMA. This system al-
lowed accurate localisation of the AUV and self-localisation of the transponders
within the environment. The solution proposed here differs in that there is no clock
synchronisation between the AUV and the sensor nodes, rather round trip times are
measured. This also means that nodes are not consuming energy via transmission
just to maintain network synchronisation when the AUV is not within range.

As the elapsed round trip time is being measured at the message (communication
packet) level, it is influenced by factors such as the delay for modulating and demod-
ulating the signals, packet length and other inherent hardware delays. Therefore, the
estimate of range, R, can be determined by the measurement of the time-of-flight,
tto f , and systematic hardware and software delays by

tto f =
(

dA/N+dN/A
vw

+Δ tModem/Packet +Δ tnode

)
R ≈ (tto f −Δ tModem/Packet −Δ tnode

)
ṽw/2

(1)

where dA/N and dN/A are the actual distances from the AUV to the Node and from
the Node to the AUV respectively, Δ tModem/Packet is the internal time delay of the
modem for packet handling which is assumed deterministic, Δ tnode is the time over-
head of the node controller again assumed deterministic, and vw and ṽw is the actual
and approximated velocity of sound in water.

The system fuses time-of-flight data from the beacons (sensor nodes) with self
motion and depth measurements made by the vehicle using a particle filter [13].
A Kalman filter could also achieve this, however, using a particle filter allows the
possibility of multi-modal distributions which would be necessary in global locali-
sation. The vehicle pose is represented as

X = {x , y , z}T (2)

where x and y are the vehicle’s Cartesian coordinates referenced to a global frame,
and z is the vehicle’s depth. In practice the vehicle’s depth sensor is sufficiently
precise to not need filtering, however, a 3D filter is used to allow for potential
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calibration errors in the depth sensor and for differences between the depth zero
point between the AUV and the beacons. In this study, an observational model on
depth is applied as a normal distribution with σ = 0.1m.

The range estimation has two error conditions; (1) normally distributed mea-
surement noise, and (2) echoes. Measurement noise is modelled as being normally
distributed with a σ = 3m (See Section 4). The range measurements are modelled
as having a 95% chance of being a true return as opposed to an echo (P(E) = 0.05),
which removes the need for explicitly filtering outliers before updating the filter.
Algebraically, the probability of a pose estimate, X, given a range estimate, R, from
modem i, is given by

P(X|R) = (1 − P(E))N (R −|X− mi|,σ)+

{
0, R ≤ |X− mi|

P(E)
rmax−|X−mi| , R > |X− mi| (3)

where rmax is the maximum permissible range, N(x,σ) is a zero mean Gaussian and
each of the modem locations, mi is defined as

mi = {xmi , ymi , depthmi}T (4)

In this investigation, 1000 particles are used which can easily be processed in real-
time on the AUV’s onboard computer. Resampling occurs whenever range or depth
measurements are made.

As the proposed AUV does not have Doppler or visual odometry (assumed turbid
water in this investigation) the motion model for the vehicle is based on motor force
and vehicle hydrodynamics. The dominant source of error in the motion model is
assumed to be an unknown current acting on the vehicle. The unfortunate situation
for AUVs without Doppler Velocity Logs or precision inertial measurement units is
that there is no way to account for external disturbances. This places the burden on
the localiser to detect and correct disturbances. This current is assumed to have a
zero mean, normally distributed velocity with 0.5 to 1.2 m/s standard deviation.

3 Experimental Platforms

The acoustic sensor network nodes and CSIRO developed Starbug AUV used in this
investigation are described below.

Acoustic Sensor Network Nodes

The sensor network nodes used in this investigation were developed for ad-hoc un-
derwater communications and consist of an acoustic modem, a custom developed
“node-controller”, power supply and environment sensors as shown in Figure 1(a).

The modem used was a commercially available CDMA modem 1, chosen for its
relatively low cost, in-built broadcast capabilities, and RS232 interface, although

1 Aquacomm acoustic modem from DSPComm (www.dspcomm.com)
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(a) Internal view of an acoustic underwater
sensor network node.

(b) The Starbug MkIII AUV.

Fig. 1 Acoustic underwater sensor network node and the Starbug AUV used in network based
localisation trials.

its maximum transmission rate is only 480bps. It should be noted that any acoustic
modem that permits broadcast messaging at a sufficient bit rate could be used with
only slight changes to the software that runs on the node controller.

The “node controller” is a custom system designed to provide the networking
layer that most commercial modems lack [2]. The ad-hoc networking protocol is
based on a modified Dynamic Source Routing (DSR) approach and can be con-
figured for maximizing information throughput or minimising energy expenditure.
The node controller software is implemented on CSIRO’s “Fleck” wireless sensor
network embedded hardware [11]. Apart from the need to model message handling
delays, the localisation algorithm is not strongly dependent upon the details of the
node controller. Range measurement messages are short (4 bytes of data) consist-
ing of source and destination addresses, message type and a temporary message
identifier.

Autonomous Underwater Vehicle

Figure 1(b) shows the Starbug AUV that was used in these experimental trials [6],
which is a shallow water research vehicle with an operating speed of 0.5 to 1.0 m/s
and a maximum depth of 40 m. Unlike many other AUVs, Starbug uses only visual
odometry provided by a downward facing pair of stereo cameras which also record
video data [7]. While this approach provides accurate odometry information it is
only available when the AUV’s altitude is low and degrades when operating in low-
light or turbid water, or when descending through the water column. This capability
is not used in these experiments so that the worst case localisation is presented.

One of the sensor nodes described above is mounted on the AUV allowing it
to communicate with underwater nodes that are within range. The AUV interfaces
with the onboard sensor node via a serial connection allowing it to interrogate



290 D. Prasser and M. Dunbabin

surrounding nodes in turn and estimate time-of-flight. In general operation, one
range measurement is made every two seconds.

4 Experimental Results

The proposed sensor network based localisation system described in Section 2 was
tested using an underwater network at Lake Wivenhoe in Queensland, Australia. Ex-
periments included characterisation of the modems with node-controllers for inclu-
sion in the particle filter, as well as evaluation of the AUV localisation performance
with varying number of sensor nodes and geometric distribution.

4.1 Acoustic Modem Characterisation

The first experiments consisted of assessing the communication throughput for a
static network in which data packets are transmitted from a source to sink node in a
multi-hop fashion. Figure 2(a) shows that packet throughput with increasing range
illustrating that under static conditions data throughput between the deployed sensor
nodes deteriorates significantly after approximately 1200m.

The modems used have an onboard active receive gain adjustment not accessible
to our node-controller. During initial trials it was observed that as the AUV moved
around the environment the range request packets from the AUV would not be reli-
ably received. As such, each modem was sent two range requests in succession (two
seconds apart) to allow the modem to adjust its receive gain if necessary. Figure 2(b)
shows the results of successful range request returns as a function of range as the
AUV moves throughout the sensor fields. As seen, on average, a greater number of
second requests were successful. This assisted in receiving ranges to nodes, how-
ever, it slowed the rate at which all nodes in the sensor field could be interrogated.
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Fig. 2 Static network node performance for normal internode communication and the success
rate of ranging requests from the AUV.
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Fig. 3 Measured modem ranging performance with echoes and range estimate performance.

Figure 3(a) shows the range to a sensor node from the AUV as it moves through-
out the sensor field from time-of-flight measurements against the range as calculated
from GPS (AUV antenna was at the surface). As seen, a general linear relationship
exists, however, a number of false readings are present as a result of echoes within
the environment creating longer return path lengths (and hence time-of-flight).

Figure 3(b) shows the range estimation error for the data in Figure 3(a) after
discarding range measurements that can be attributed to echoes. The remaining
range errors are approximately normally distributed with a standard deviation of
approximately 3 m. For this environment a worst case estimate of the probability of
multi-pathing is 5%. Both of these effects are used in the sensor model described in
Section 2.

4.2 Localisation Performance

The localisation performance was measured by sending the AUV on a trajectory
consisting of a set of waypoints such that the GPS antenna was at the water’s surface
for ground truth. The experiments consisted of a different number of sensor nodes
within communication range and in different locations of Lake Wivenhoe with water
depth ranging from 6 to 28 m. The vehicle speed was set to 0.5 m/s and the particle
filter was initialised to the GPS position at the start of each experiment.

Figure 4 shows the results of a trial with three sensor nodes within communica-
tion range of the AUV. The error in position between ground truth and localiser is
bounded with an RMS value of 4.4m. Figure 5 shows a second trial with four sensor
nodes within communication range of the AUV during a rectangular survey mission.
As seen, the localisation error is bounded with an RMS value of 3.1m illustrating an
improved localisation estimate with a different node arrangement.
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Fig. 4 (a) The actual and estimated path using the localiser with three sensor nodes within
communication range of the AUV. Also shown are the locations of the sensor nodes (dia-
monds) and the covariance of the localisation estimate. A total of 397 range updates (out of
approximately 600 attempted) were received during the experiment. (b) The error in position
between ground truth and localiser as a function of time with a bounded RMS value of 4.4m.
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Fig. 5 Localisation performance of particle filter over the course of a rectangular survey
experiment with four sensor nodes within communication range. A total of 154 range updates
were received (out of approximately 285 attempted) during the experiment and the RMS error
was 3.1 m.

The performance of the system was evaluated in the limiting case where only one
sensor node is within communication range (single beacon localisation). Using the
data acquired from the three sensor node case, Figure 6 shows the performance of
the system using only one of the sensor nodes. Compared to the first scenario the
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Fig. 6 Localisation performance of particle filter over the course of a survey experiment with
one sensor node within communication range.

number of range measurements has been reduced from 397 to 168. The RMS local-
isation error is 7.7 m, although greater than previous experiments it does illustrate
that the AUV is still capable of estimating its position with an accuracy suitable for
navigating in most underwater environments.

5 Conclusions

An approach to localisation of an AUV using an ad-hoc acoustic underwater net-
work has been presented. The system utilises existing sensor network infrastructure
with estimates of communication overhead to determine time-of-flight information
between the AUV and individual sensor nodes. A particle filter based localisation
system was developed and implemented in real-time onboard the AUV. Experimen-
tal field results have demonstrated that, despite the absence of precise self motion
estimate and a slow rate of ranging updates, the system is able to provide localisation
performance sufficiently accurate for navigation within and immediately outside the
sensor network communication field.

Current research is focused on improving localiser performance by incorporating
more accurate vehicle motion estimates using the AUV’s existing visual odometry
system [7]. Additionally, the system is being expanded to perform network self lo-
calisation. This could be accomplished using network localisation techniques such
as in Djusgash, Singh, et al. 2008[5]. In the scenario of long term underwater mon-
itoring this would allow extra sensor nodes to be added to the network without
requiring precise knowledge of the sensors location. Finally, the integrated AUV
and sensor network system performance is currently being evaluated in different
ocean environments including bays and coral reefs.
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Experiments in Visual Localisation around
Underwater Structures

Stephen Nuske, Jonathan Roberts, David Prasser, and Gordon Wyeth

Abstract. Localisation of an AUV is challenging and a range of inspection applica-
tions require relatively accurate positioning information with respect to submerged
structures. We have developed a vision based localisation method that uses a 3D
model of the structure to be inspected. The system comprises a monocular vision
system, a spotlight and a low-cost IMU. Previous methods that attempt to solve the
problem in a similar way try and factor out the effects of lighting. Effects, such as
shading on curved surfaces or specular reflections, are heavily dependent on the light
direction and are difficult to deal with when using existing techniques. The novelty
of our method is that we explicitly model the light source. Results are shown of an
implementation on a small AUV in clear water at night.

1 Introduction

We are interested in the localisation of underwater robots around fixed infrastruc-
ture. There are many applications of underwater robotics where it is critical for the
robot to know where it is with respect to a structure, such as inspection tasks and
welding. Assuming that most structures are passive, ie. they do not transmit any lo-
cation information, then there are two viable sensing modalities that can be used to

Stephen Nuske
The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: nuske@cmu.edu

Jonathan Roberts and David Prasser
Autonomous Systems Lab, CSIRO ICT Centre, PO Box 883, Kenmore,
Queensland 4069, Australia
e-mail: jonathan.roberts@csiro.au,david.prasser@csiro.au

Gordon Wyeth
School of Information Technology and Electrical Engineering, University of Queensland,
St Lucia, Queensland 4072, Australia
e-mail: wyeth@itee.uq.edu.au

A. Howard et al. (Eds.): Field and Service Robotics 7, STAR 62, pp. 295–304.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

nuske@cmu.edu
jonathan.roberts@csiro.au, david.prasser@csiro.au
wyeth@itee.uq.edu.au


296 S. Nuske et al.

image a structure; sonar and computer vision. Of these, we have been investigating
the use of vision in order to localise an Autonomous Underwater Vehicle (AUV)
with respect to a known piece of underwater infrastructure - the leg of a surface
platform.

Typically, the visual environment around such a structure is poor. Firstly, sus-
pended particles in the water reduce visibility. Secondly, there is minimal or no nat-
ural lighting deep underwater, thus requiring an artificial light source to be mounted
on the AUV. Thirdly, the visual appearance of the structure in this scenario is highly
dependent on the incident angle of the light source. The light source is constantly
moving (as it is on the AUV) and consequently the visual appearance of the structure
varies dramatically over time. This is quite different from typical well lit environ-
ments, where the light source (typically the Sun) is far less dynamic and also where
there is a significant level of ambient lighting. However, rather than this poor visual
environment being a negative, we would argue that we can turn it to our advantage.
By modeling the light source mounted on the AUV we can predict the appearance
of the structure (the legs of a platform in our example) from different viewing poses.
The process is to use an a priori 3D-surface model of the permanent structure be-
ing navigated with the light model to generate artificial images which are compared
against the real camera image to localise the AUV.

2 Previous Work

Kondo et al. present two methods of navigating underwater structures in [10] and
[9]. In [10], two laser beams are directed at the structure which are detected in the
camera images to triangulate the relative distance and orientation of the vehicle. In
[9], Kondo et al. use a light stripe to illuminate a 2D profile of the structure which is
detected in the camera images. A common feature of the two systems developed by
Kondo et al. is the use of active lighting. In our work an artificial light source is also
used, but unlike the focused beams or light stripes of Kondo et al., the light source
is unfocused.

Stolkin et al. [13] present work for a submarine localising from a leg of a platform
and use an explicit 3D model of the structure, projecting the model onto the image
plane to predict the shape of the structure. Model based tracking is an attractive
approach for this application as the form of the structure is well known a priori.
Fig. 1 shows the basic idea behind model based visual tracking. Synthetic images
are generated for a large number of possible robot poses and each of these images
is compared with the actual image captured by the robot. The comparator can take
many forms. Examples include taking the pose that gives the best match, or using a
multi-hypothesis framework such as a particle filter [8].

In the wider robotics field, model-based tracking has received much attention.
The works of Gerard and Gagalowicz [4], Noyer et al. [12] and Ho and Jarvis [5]
present pose estimation systems based on 3D-surface maps. They perform corre-
spondences between real and synthetic images. Both Noyer et al. [12] and Ho and
Jarvis [5] estimate pose with a probabilistic particle filter, which is an efficient
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Fig. 1 An overview of the idea of model-based visual pose estimation. Multiple synthetic
images (generated at different possible poses of the AUV) are compared with the real camera
image of the scene.

means of sampling the solution-space, whereas Gerard and Gagalowicz [4] present
a more brute force evaluation of the solution-space. None of these 3D-surface based
methods consider reflectance and lighting properties in their work – they only use
textured 3D models – which do not generalize to any lighting condition. A tex-
tured model would not suffice for the application presented in this paper, because
the structure is made of one material and is therefore essentially texture-less. The
images of the structure are also highly dependent on the light source, indicating that
both reflectance properties of the structure and a light model should be known.

The work of Kee et al. [7] and Blicher et al. [1], in the domain of face identifi-
cation, introduce the idea of using a 3D-surface model together with a light model.
They show how to perform face identification in unknown lighting conditions by
first estimating the current light source, then generating synthetic images of each
face model using the estimated light source model. They used a database of many
different 3D-surface face models. A single fixed pose of the faces with respect to the
camera was assumed, then multiple synthetic face hypothesis images were matched
to the real image. However, in our work there is a single 3D-surface map of the
environment (the structure) and multiple pose hypotheses that are matched to a real
image (taken from the AUV). The pose hypotheses with the best image match to the
camera image from the robot will provide the pose estimate. This idea of estimating
and incorporating a light model has not yet been applied to visual localisation.

3 Localisation Framework

Our framework uses a model of the structure and a model of light source together
to generate synthetic images that are expectations of the real camera images. The
synthetic images are compared to the real images to estimate the pose of the camera.
The pose estimation is facilitated in a probabilistic multiple pose hypothesis frame-
work – a particle filter – which uses a synthetic image of the structure from each
pose hypothesis to derive a comparison score against the real image.
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Fig. 2 The AUV has a forward facing camera with a field-of-view depicted in the figure by
pyramid viewing volume. The spotlight is also facing forward and partially illuminates the
field-of-view of the camera (depicted by the inner cone).

A forward looking spotlight and camera are mounted rigidly to the AUV[3]
which is inspecting a structure. Fig. 2 shows the AUV, the coordinate system, the
camera and spotlight-setup. A single forward-facing camera, from the AUV’s stereo
pair, is used. The field-of-view of the camera, is shown as pyramidal viewing vol-
ume in Fig. 2. The extrinsic pose of the camera is calculated with respect to the
vehicle, and is facing along the vehicle’s positive x axis. The camera’s intrinsic pa-
rameters were calibrated using the OpenCV library[6]. The camera images are then
undistorted by these parameters, and the model of the structure can then be projected
directly onto the image plane.

3.1 Synthetic Image Generation

The synthetic images are generated from a polygon mesh of the structure. The mesh
includes the surface normal, diffuse and specular reflectance properties. Meshes us-
ing such detailed surface properties have rarely been applied to visual localisation.
These photometric properties are incorporated into the Blinn-Phong model [2] using
the OpenGL library for generating synthetic images. There are other lighting mod-
els which could be also used, but the Blinn-Phong model is chosen for its simplicity,
speed of computation and prevalent implementation on most graphics processors. In
addition to the pose of the light, the model incorporates a number of other parame-
ters to account for the attenuation by water and angular spread of the light source.

The structure to be localised against is comprised of three steel tubes, linked
together by smaller rungs at approximately 45 degree angles. This structure is mod-
elled as a polygon mesh of each of the tubes by defining the number of slices and
stacks in the mesh of each tube. The rendering is performed with per-fragment
lighting calculations, and shading interpolation to the pixels within the fragment,
according to the light model defined above. A series of tests were performed to cal-
culate the optimum number of polygons taking into account render times and model
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accuracy. For this model and using an Intel dual core 2.33GHz CPU and a NVIDIA
Quadro FX 350M GPU with 320x240 images, it was found that optimum value of
3120 polygons equated to a time of 0.325ms to render a single synthetic image.

3.2 Particle Filter Localisation

The use of a particle filter is described in detail by Thrun et al. in [14]. The particle

filter is a set of N pose hypotheses (particles) Xt = x(1)
t ,x(2)

t ,x(3)
t . . . ,x(N)

t . The set is
sampled from the previous set Xt−1 using a propagation model mt and a correspond-
ing set of weights (probabilities),W . The weights are calculated from an observation
of the environment, y, as follows:

W (n)
k = p(yk|x(n)

k ) (1)

the observation of the environment is a camera image, y, which is compared with
each pose particle x by rendering a synthetic image. The measurement of probabil-
ity is provided from an image matching technique (discussed in Section 3.3). The
concept is that a synthetic image generated from the particles nearest the correct
pose will give the best match with the real image. These particles are then the most
likely to be re-sampled for the next iteration. The current pose estimate of the AUV
is extracted from the filter as the mean pose of the particles with the highest weights
(top 5%). We use roll and pitch estimates from the AUV’s Inertial Measurement
Unit (IMU) as each particle’s roll and pitch estimate. The remaining four degrees
of freedom are propagated using a constant velocity model calculated from a set of
previous pose estimates extracted from the particle filter.

3.3 Gradient-Domain Image Matching

The comparison process between the camera image and a synthetic image provides
a likelihood measure for the set of particles in the filter. The works of [1, 4, 7, 12],
all use image matching techniques which compare real and synthetic images. All of
the techniques are variants of the Mean Absolute Difference (MAD).

The simple image matching techniques assume that it is possible to generate pixel
intensities for the synthetic image that are equivalent to those in the real image. This
is different from photo-realistic rendering, which is only interested in making the
synthetic image appear real. Whereas, these image intensity matching techniques
require the environment model and light model to be accurate estimates of the actual
physical properties of the surrounding environment. The parameters of such models
are difficult to estimate accurately. Furthermore, the Blinn-Phong image formation
model [2], employed for real-time performance, does not incorporate the ability to
model poor visibility. Suspended tiny particles that cause poor visibility have two ef-
fects on the lighting; absorbing light and reflecting light. These effects would need to
be modelled before accurate intensity values could be generated in the synthetic im-
age. It is difficult to generate accurate images of simulated poor visibility conditions
at a rate quick enough for this framework. For this reason, intensity-based matching
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Fig. 3 Top Left: Real camera image. Top Right: Real Sobel image. Bottom Left: Synthetic
image. Bottom Right: Synthetic Sobel Image. Horizontal gradient is shown in red and vertical
in green; therefore pixels with diagonal gradients are yellow.

is not used and, instead, a gradient-domain image matching technique is developed.
The gradient-domain removes the absolute intensity levels whilst capturing the sub-
tle shading in the environment. This behaviour is different to an edge-image that
identifies drastic boundaries of intensity.

The first step is to pass the real-image through a Gaussian filter, which removes
the effects of noise. The synthetic and real images are then both passed through a
horizontal Sobel operator to generate gradient images in both the x and y directions;
Gx and Gy are the real Sobel images and gx and gy are the synthetic. Example syn-
thetic and real images are shown in Fig. 3. The x direction is shown in red and y in
green, therefore pixels with high x and y gradients are yellow. To compare the real
and synthetic Sobel images, it would be possible to turn these two images into a
gradient magnitude image and a gradient orientation image, which would enable a
more logical means for comparison. But to avoid the expensive square root and arc
tan computations, the images are compared directly in x and y gradients.

Firstly, a sum is taken of the gradient magnitude in the real, Sr, and synthetic, Ss,
images:

Sr =
N

∑
p=0

(|Gx(p)|+ |Gy(p)|) Ss =
N

∑
p=0

(|gx(p)|+ |gy(p)|) (2)

where N is the number of pixels. Secondly, a sum of the difference in gradients
between real and synthetic is calculated in each direction, Dx, Dy;
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Dx =
N

∑
p=0

(|Gx(p)− gx(p)|) Dy =
N

∑
p=0

(|Gy(p)− gy(p)|) (3)

the final image matching score is derived by subtracting the sum of the gradient
difference from the sum of the gradient magnitude and normalizing by the sum of
the gradient magnitude:

Dμ =
(Sr + Ss)− (Dx + Dy)

Sr + Ss
(4)

This result equates to the observation y and the particle x(n) from (1). The better the
match between the images the larger value of Dμ . This score can be incorporated
into the observation y and the particle x(n) from (1) as follows:

W (n)
k = p(yk|x(n)

k ) ∝ eρDμ (5)

Where ρ is a positive constant that adjusts the convergence of the particle filter.

4 Results

An experiment was conducted at night in clear water with the aim of determining if
the visual localisation system in combination with the IMU could localise the AUV
as it moved freely in all six degrees of freedom. The experiment began with the AUV
approximately 1.5m away from the structure. The AUV approached the structure,
strafed side to side, descended and rotated around the structure. Note that there was
no ground truth data available during this experiment and hence the performance of
the system could only be checked manually by inspecting the projected centre lines
of the structure from the estimated pose, and confirming they align correctly in the
raw camera images. Tracking images from the experiment are presented in Fig. 4,
along with a movie of the results can be found in the video attachment located at:

http://www.cat.csiro.au/ict/download/nuske/auv pooltest1.mpg
The visual localisation system maintained accurate track of the structure for 440

frames where there were significant changes in scale, orientation and translation.
The system then made a mistake when one of the columns of the structure disap-
peared behind another, and then reappeared on the other side. The system estimated
the column reappearing on the same side, and did not recover from this error. The
frames just before and just after the disappearing column can be seen as the bottom
two images of Fig. 4. When the system was run again, and again over the same data,
it did occasionally correctly estimate that the rear column appeared on the other
side. However, it failed more times than it succeeded and a solution to this problem
is currently being investigated.

Algorithmic speed and efficiency are critical to ensure a practical system for the
target application. There is a demand to use low power processors on AUVs due to
the on board power limitations of the vehicles. The results reported above were pro-
cessed off-line. However, the algorithm has been implemented in a such a way as to
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Fig. 4 Images showing the tracking of the oil rig structure. Real camera image is overlaid
with the centre lines of the structure projected from the estimated pose. Bottom left corner of
each image is a synthetic rendering of the structure. The frame number is located in the top
left corner of each image. Data was collected at 15Hz.
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make it amenable to on-board impementation. The resolution of the 3D-surface was
minimised, and the image processing and matching algorithms were implemented
on a GPU, which all brought the processing times much closer to real-time rates.
The system was run on a laptop computer, which used small mobile processors
and graphics hardware. It achieved a frame rate of 0.5Hz with 800 particles using
320x240 sized images and would therefore require the AUV to be moving slowly
with respect to the structure to be able to track it reliably in real time.

The two potential methods to achieve higher efficiencies, would be to further
reduce the render times of the synthetic images, and also to reduce the number of
particles in the filter. Reducing the render time could involve further reductions in
the polygon counts, only passing sections of the model that are in view to the graph-
ics pipeline, optimising the lighting calculations or with improved/multiple GPUs.
Future improvements to reduce the number of particles could include using a two-
stage coarse-to-fine particle filter, such as used in the work of Klein and Murray [8],
or to develop a better propagation model. The depth sensor and the magnetic com-
pass are two sensors which could be included in the propagation model. However,
it would need to be confirmed that these sensors are locally consistent in the desired
environment (that is, if their inter-frame motion estimates are accurate). Another
possible method of improving the propagation model is to use a visual odometry
system. Marchand et al. [11] present such an approach.

5 Conclusion and Future Work

We have presented a visual localisation system that explicitly models the spotlight
of an AUV navigating underwater structures. The light model is used in conjunc-
tion with a surface model of the structure to generate synthetic images that are
accurate representations of the real camera image. A particle filter framework is
employed where a synthetic image is rendered from each pose hypothesis and a ob-
servation function computes a probability through comparison with the real camera
image. The observation function compares the real image with the synthetic images
operates in the intensity gradient domain, avoiding the need to generate precise in-
tensity values in the synthetic image and allows the system to operate in poor visi-
bility conditions which are difficult to replicate in the synthetic image. The system
was tested using a monocular vision system, spotlight, steel structure and low-cost
IMU. Results show that the system can localise the vehicle in challenging image
sequences where the light source is constantly moving and illuminating the scene
non-uniformly.

In future work the system will continue to be developed with the goal of a fully
functioning system in the targeted offshore environments. Localising from struc-
tures of other shapes and surface characteristics will be evaluated. The image pro-
cessing algorithms presented here are essentially generic and are expected to be able
to provide similar results from other structures. Improvements to the lighting model
will also be investigated, such as modelling the spotlight as an area light source and
also using a more accurate model of the surface reflectance properties to generate
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images with more precise representation of the shading. More accurate odometry
information will also be employed which may come from a compass, a pressure
(depth) sensor or potentially a visual odometry algorithm. This information is ex-
pected to greatly improve the accuracy and computational efficiency of the system
by significantly reducing the area of the state space that must be evaluated. Ambigu-
ous visual scenarios which have been the cause of divergence in the localisation filter
will also be investigated in more detail.
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Part VII
Multi-Robot Cooperation



Leap-Frog Path Design for
Multi-Robot Cooperative Localization

Stephen Tully, George Kantor, and Howie Choset

Summary. We present a “leap-frog” path designed for a team of three
robots performing cooperative localization. Two robots act as stationary mea-
surement beacons while the third moves in a path that provides informa-
tive measurements. After completing the move, the roles of each robot are
switched and the path is repeated. We demonstrate accurate localization us-
ing this path via a coverage experiment in which three robots successfully
cover a 20m x 30m area. We report an approximate positional drift of 1.1m
per robot over a travel distance of 140m. To our knowledge, this is one of the
largest successful GPS-denied coverage experiments to date.

1 Introduction

Localization is critical for the navigational aspect of many robotic applica-
tions. Without accurate positioning, a mobile robot would get lost, wander
away from its target workspace, and fail to complete its intended task. Addi-
tionally, there are many situations where an external positioning system, such
as GPS, is unavailable to the robot, e.g. indoors, within dense vegetation, and
underwater. To solve the localization problem, a team of robots can employ
cooperative localization [1] to incorporate relative sensor measurements into
a Kalman filter framework that estimates the pose of the robots.

It can be shown that the accuracy of such a filter is dependent upon the
path the robots take. This is due to the fact that certain measurements are
more informative than others, depending on the vantage point of the sensor.
We believe a “leap-frog” path, as in [2, 3], is desirable because it temporarily
grounds the increasing uncertainty of the system via stationary robots.
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Fig. 1 Three robots used for experimental evaluation of the proposed leap-frog
localization strategy.

The contribution of this work is the introduction of a new leap-frog path
designed to produce informative measurements for three robots performing
cooperative localization. We also report a 20m x 30m large-scale GPS-denied
coverage experiment with three robots (see Fig.1) that was only possible after
the gain in positioning accuracy provided by this new leap-frog strategy.

2 Related Work

The majority of recent work on cooperative localization ignores the path
planning aspect of this topic and instead focuses on filtering. In [1], Roume-
liotis et. al. define a Kalman filter framework, similar to our formulation in
Sec. 3, that can be used for cooperative localization. In [4], they iterate on
this work and present a distributed method for computing the Kalman filter.
Finally, the work in [5, 6] studies the growth of uncertainty under different
sensing modalities and with a varying number of robots.

Some recent work has addressed path planning and control for robots per-
forming cooperative localization. Hidaka et. al. [7] present derivations to show
that with any number of robots, the optimal formation for accurate localiza-
tion is a “packed circles” configuration. For three robots, they claim that the
optimal formation is an equilateral triangle. Trawny et. al. [8], on the other
hand, perform optimization over possible multi-robot paths and demonstrate
a performance improvement in simulation. Although the optimization is ben-
eficial, we believe this method is susceptible to local minima.

Finally, some research has involved the investigation of leap-frog paths
for cooperative localization. Navarro-Serment et. al. [2] use a group of small
heterogeneous robots (Millibots) for localization and mapping. The authors
use leap-frog paths to help maintain a better estimate over the occupancy
grid map and their EKF localization. Kurazume [3] introduces leap-frog paths
for cooperative localization as well, with a path that is designed to represent
triangle chains of different configurations. Although these paths prove to be
accurate solutions for localization, Kurazume does not analyze these paths
from an information theoretic standpoint.
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3 Cooperative Localization

To reduce motion error, a team of robots can employ cooperative localization,
which improves the estimate of the state via relative sensor measurements
between robots. This type of filtering method can be implemented with an
extended Kalman filter, as in [1].

The state vector for the filter Xk is defined,

Xk =
[

X0
k

T
X1

k
T

. . . XN−1
k

T
]T

X i
k =

[
xi

k yi
k θi

k

]T
,

where N is the number of robots and X i
k represents the state of the i-th

robot at time step k. In this formulation, (xi
k, yi

k) represents the position of
the i-th robot and θi

k represents that robot’s heading.
The state process equation f(X i

k, ui
k) is based on a unicycle model,

f(X i
k, ui

k) =
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k + υi

k cos θi
kΔt

yi
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k sin θi
kΔt

θi
k + ωi

kΔt
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k =

[
υi

k

ωi
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]
,

where ui
k is a motion input for the i-th robot, which is composed of a trans-

lational velocity υi
k and a rotational velocity ωi

k.
The measurement equation for our state is a bearing-only measurement,

hi
j(Xk) = arctan

(
yi − yj

xi − xj

)
− θj

which represents the relative bearing angle to the i-th robot as measured by
the j-th robot. A typical sensor that provides bearing measurements in this
form is a monocular camera.

The purpose of the extended Kalman filter (EKF) is to recursively esti-
mate the state mean and covariance matrix with two stages: the prediction
step, which produces the estimated mean and covariance, X̂k+1|k and Pk+1|k
respectively, as well as the measurement update step, which produces an
update to the estimated mean and covariance, X̂k|k and Pk|k respectively.

3.1 Prediction Step

The EKF prediction step is applied when processing the robot’s internal ve-
locities (usually from wheel encoders). The state mean and covariance matrix
are computed as follows.

X̂k+1|k =
[

f(X̂0
k|k, u0

k)T f(X̂1
k|k, u1

k)T . . . f(X̂N−1
k|k , uN−1

k )T
]T

Pk+1|k = FkPk|kFT
k + WkUkWT

k
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where X̂k|k and Pk|k define the estimate from the previous time step, and Fk

and Wk are the Jacobians of the state process equation, as defined below.

Fk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f(X̂0
k|k,u

0
k)

∂Xi
k

0 . . . 0

0
∂f(X̂1

k|k,u
1
k)

∂Xi
k

...
...

. . . 0

0 . . . 0
∂f(X̂N−1

k|k ,uN−1
k

)

∂Xi
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Wk =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f(X̂0
k|k,u

0
k)

∂ui
k

0 . . . 0

0
∂f(X̂1

k|k,u
1
k)

∂ui
k

...
...

. . . 0

0 . . . 0
∂f(X̂N−1

k|k ,uN−1
k

)

∂ui
k

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The matrix Uk is a covariance matrix with 2x2 matrices along its diagonal
(all U i

k for 0 ≤ i < N−1 as defined below).

U i
k =

[
α |υi

k| 0
0 β |υi

k| + γ |ωi
k|
]

(1)

Matrix U i
k represents the covariance matrix for the additive white Gaussian

noise that is expected to perturb robot i’s motion input ui
k. Conventional

implementations use a static covariance for this purpose, but we believe a
velocity dependent noise model is more accurate. The model in Eq. 1 accounts
for the fact that wheel slippage is more pronounced at higher speeds and that
zero additive noise should be expected when the robots are stationary.

3.2 Measurement Update Step

To properly incorporate the information provided by the bearing sensors, we
perform a correction to the predicted state estimate,

Hi
j =

∂hi
j(X̂k|k−1)
∂Xk

K = Pk|k−1H
T (HPk|k−1H

T + R)−1

X̂k|k = X̂k|k−1 + K(zk − h(X̂k|k−1))
Pk|k = Pk|k−1 − KHPk|k−1 (2)

where, for M bearing measurements, K is the Kalman gain, H is the mea-
surement Jacobian, and R is an MxM matrix with diagonal elements σ2

z (the
variance associated to a single measurement). The Jacobian H is constructed
by appending together all row vectors Hi

j for each measurement between a
robot i and another robot j. Likewise, h is constructed by appending together
all hi

j to form a column vector. zk is the measurement vector to which h is
associated.

It is important to realize that the effectiveness of this cooperative local-
ization filter is dependent upon the path of the robots. This can be seen
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in Eq. 2 where a positive definite matrix KHPk|k−1 is subtracted from the
predicted covariance Pk|k−1. Since H is dependent upon the state estimate
X̂k|k−1, the reduction in uncertainty via subtracting KHPk|k−1 will vary in
amount depending on the configuration of the robots.

4 Leap-Frog Path Design

In Sec. 3, we discuss how the effectiveness of the cooperative localization
filter is dependent upon the path of the robots. This suggests that by careful
path planning, we can achieve better position accuracy during experiments.
As in [2, 3], we suggest the use of a “leap-frog” path for a team of robots,
where at any given time, a subset of the robots temporarily act as stationary
measurement beacons while the other robots are in motion.

A “leap-frog” path is intuitively beneficial for the Kalman filter because
when robots are stationary, they will not gain any positioning noise, thus
temporarily grounding the normally increasing uncertainty of the system. A
moving robot can move around at will without concern for its added predic-
tion noise because it can easily visit the nearby stationary robots to drive its
position uncertainty down to their level via relative sensor measurements.

4.1 Three-Robot Path Design via Information Gain

The use of three robots for localization is a good fit for bearing-only measure-
ments because the intersection of two bearing rays from two different robots
will triangulate the location of a third robot, albeit with error due to noise.
To investigate path design for a team of three robots, we consider the mea-
surement update equation for the information filter, which is a dual to the
Kalman filter and is commonly used in localization and mapping algorithms,
such as [9]. The measurement update is as follows,

Ik|k = Ik|k−1 + HT R−1H,

where the information matrix Ik|k = P−1
k|k is the inverse of the covariance

matrix. In this work, we define the information gain G(Xk) as a norm of
the positive definite matrix that is added to the information matrix during a
measurement update,

G(Xk) = tr
(
HT R−1H

)
.

The information gain depends on the state Xk through the measurement
Jacobian H . We argue that states producing a larger information gain will
offer measurements that are more informative to the Kalman filter.

To investigate the path optimization problem for three robots, we consider
the situation in Fig. 2 where two robots (0 and 1) lie stationary on the y-axis
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Fig. 2 Stationary robots 0 and 1 are a distance d/2 away from the x-axis. An
analysis of the information gain is used to obtain the appropriate leap-frog path for
robot 2.

an equal distance away from the x-axis (with a separation distance d). The
third robot (robot 2) acts as the moving robot in this leap-frog strategy.

For any pose (x, y, θ) of robot 2 in Fig. 2, the filter will have the following
information gain G(Xk),

Xk =
[

0
d

2
0 0

−d

2
0 x y θ

]T

G(Xk) = σ−2
z

(
6 +

4
d2

+
4

(y − d/2)2 + x2
+

4
(y + d/2)2 + x2

)
To determine the optimal y value for any x position of robot 2, we can take
the derivative of the information gain with respect to y, as follows,

∂G(Xk)
∂y

= 8σ2
z

(
y − d/2

((y − d/2)2 + x2)2
+

y + d/2
((y + d/2)2 + x2)2

)

By setting the derivative to zero, we can find the y that maximizes the in-
formation gain. The solution is y = 0, independent of the robot’s x position.
This implies that for a robot that is “leaping” past the two stationary robots
along the direction of the x-axis, the optimal trajectory is for the robot to
trace the x-axis itself, with position y = 0 throughout the path, and pass
through the other two robots. This can be generalized for any position of
robots 0 and 1 in the plane: the trajectory of robot 2 should move along
the equidistant path between the two stationary robots to achieve maximum
information gain.

We introduce a new three robot leap-frog path in Fig. 3 to build off this
result. To our knowledge, this is the only path for which the moving robot, at
every time step, will trace the equidistant path between the stationary robots.
The implementation of this path involves the trailing robot of an equilateral
triangle configuration to pass through the stationary robots, establishing a
new position and a new equilateral triangle configuration on the other side.
The robots then switch roles and repeat the sequence.
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Fig. 3 This is the leap-frog path we use for simulations and experiments, which is
based on an analysis of information gain for a team of three robots.

4.2 Empirical Results

To test the generated path displayed in Fig. 3, we have performed a series
of Monte Carlo simulations for three mobile robots performing cooperative
localization. The robots (when moving) are instructed to drive at a constant
0.5 m/s with α = 0.006, β = 0.02, and γ = 0.003 for the motion noise
model in Eq. 1. Relative bearing measurements are obtained at 10 Hz and
are assumed to have additive Gaussian noise with a standard deviation of 1
degree.

In Fig. 4, we compare the results of the Monte Carlo simulations for three
different paths. Path (a) is a smoothed version of the leap-frog path designed
in Sec. 4, path (b) is a trajectory obtained when the robots move in an
equilateral triangle formation, and path (c) is the same as (b) but omits the
measurements.

Each path was simulated for 1000 different trials with randomly generated
noise for measurements and motion. While the estimate of the state for each
trial follows the intended path due to feedback control, the actual state for
each trial is affected by the noise and drifts from the path. We measure the
filter performance by observing the distribution of the robot state over all
trials. A larger spread of data points implies worse tracking of the actual state.
To quantify the performance, we compute the trace of the sample covariance

a) b)
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Fig. 4 Path (a) represents the leap-frog path presented in Sec. 4, path (b) rep-
resents the optimal formation for localization, and path (c) represents odometry
only. The plot depicts the trace of the sample covariance matrix generated for a
collection of 1000 Monte Carlo simulations.



314 S. Tully, G. Kantor, and H. Choset

matrix for the actual robot state computed over the 1000 simulated trials.
Fig. 4 shows a graph of this metric for each of the path types. We note that
our leap-frog path outperforms the optimal formation.

5 Experimental Evaluation

The motivating application for this work is GPS-denied autonomous cov-
erage, for which accurate positioning is of critical importance. We apply a
smoothed version of the path depicted in Fig. 3 to a team of real robots
performing coverage.

5.1 Experimental Setup

We use three robots for outdoor localization experiments, each of which is
based on the Learning Applied to Ground Vehicles (LAGR) platform [10].
Each mobile robot has three on board computers, wheel encoders for odom-
etry, and a set of four stereo cameras mounted above the chassis. We choose
to treat the 4 stereo pairs as 8 individual bearing sensors in order to reduce
the computational load. The filter is implemented according to Sec. 3 and is
centralized (meaning that only one of the robots is running the Kalman filter
at any given time). The robots measure bearing to each other by detecting
large red spheres in the camera images with a circle Hough transform [11].
See Fig. 1 for a photograph of the robots in their experimental configurations.

5.2 Coverage Experiments

The photos in Fig. 5 are from a video sequence recorded during one of our
coverage experiments at Gesling stadium at Carnegie Mellon University. We
are able to use this video sequence to post-process ground truth position
data for each of the three robots. In order to do this, we compute a camera
projection matrix based on known 3D points in the image (the markings on
the football field). Then, after manually selecting a robot’s location in the
image plane, we can infer its 3D position via its projection onto the plane.

a) b) c)

Fig. 5 An experiment on the football field at Gesling Stadium at Carnegie Mellon
University. The three photos here are extracted from a video sequence used to
record the ground truth position of the robots throughout the experiment.
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a) b)

Fig. 6 (a) shows the estimated trajectory of the robots during a coverage ex-
periment along with ground truth points (yellow circles). The final ground truth
position is displayed with yellow stars. (b) shows the same experiment with a filter
that ignores the bearing measurements (dead reckoning only).

The estimated path of the robots during the aforementioned coverage ex-
periment is drawn in Fig. 6 (a). This estimated path follows an overall desired
path that is composed of multiple smoothed versions of the leap-frog path
displayed in Fig. 3 pasted together so as to sweep a region for coverage. The
travel distance for each robot was approximately 140m during the experi-
ment. The covered area was 20m x 30m. Ground truth points are shown
in Fig. 6 for comparison and to help quantify the localization performance.
Fig. 6 (b) shows the odometry-only estimate of the path. It is worth noting
how erroneous this path is (most likely due to turning biases from unequally
inflated tires) and how effective the filtering is in correcting the erroneous
path to agree closely with the ground truth data.

The true final position of the three robots is also depicted in Fig. 6. The ap-
proximated error between the filtered estimate and the measured final ground
truth pose is: 1.09 meters for robot 0 (the red trajectory in Fig. 6), 1.01 me-
ters for robot 1 (the green trajectory in Fig. 6) and 1.15 meters for robot 2
(the blue trajectory in Fig. 6). We note that the accuracy of these ground
truth measurements is subject to possible user error when manually selecting
the image points that correspond to the robots in the video sequence.

The localization accuracy for this experiment is quite remarkable for this
type of outdoor robot. The presence of wheel slippage coupled with a difficult
terrain can cause severe drift in the odometry estimate over a path this long.
Additionally, the measurements that we acquire with vision can be fairly noisy
compared to more expensive laser range finders. But when an informative
path, such as the one we present in Sec. 4, is used, the accuracy improves
significantly, as shown in our experiment.
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6 Conclusion

This work presents a leap-frog path designed to aid localization for a team of
three robots. The path is designed such that the moving robot travels along a
path that adds maximal information to the filter. The resulting path outper-
forms the optimal formation-based path. The experiment that we describe
is, to our knowledge, one of the largest outdoor GPS-denied coverage results,
successful in part because of precise localization.

Although we believe the absolute optimal path (in terms of localization
accuracy) for a team of three robots would involve a leap-frog motion strategy,
the path we introduce in this paper is most likely not optimal. Precisely
defining the optimal path is still an open problem, which may require running
an exhaustive simulation to optimize over all possible combinations of motion
inputs: a task that would be computationally infeasible.

Also, this paper has focused on developing paths for a team of three robots.
We believe that a three robot team is a good fit for applications that require
accurate positioning, in part because three robots can provide proper trian-
gulation. That said, it is always beneficial to add additional information to
the Kalman filter, and a way to do this would be to add additional robots.
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A Location-Based Algorithm for
Multi-Hopping State Estimates
within a Distributed Robot Team

Brian J. Julian, Mac Schwager, Michael Angermann, and Daniela Rus

Abstract. Mutual knowledge of state information among robots is a cru-
cial requirement for solving distributed control problems, such as coverage
control of mobile sensing networks. This paper presents a strategy for ex-
changing state estimates within a robot team. We introduce a deterministic
algorithm that broadcasts estimates of nearby robots more frequently than
distant ones. We argue that this frequency should be exponentially propor-
tional to an importance function that monotonically decreases with distance
between robots. The resulting location-based algorithm increases propaga-
tion rates of state estimates in local neighborhoods when compared to simple
flooding schemes.

1 Introduction

Robots in a team need to communicate state estimates to self-organize.
Since many applications desire the team to spread over large-scale domains,
resulting distances between robots can become larger than their capable peer-
to-peer transmission ranges. These configurations require multi-hop network-
ing to distribute state information over the entire system. To facilitate the
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transportation of data packets in a multi-hop fashion, many mobile ad hoc
networks implement sophisticated routing schemes. Due to the mobile nature
of such networks, these schemes consume a significant amount of communi-
cation capacity for maintaining knowledge about network topology. While
some routing strategies take spatial configurations into account, the robots
are agnostic to the relevance of the actual data being transferred. There is no
concept of data importance from the robots’ point of view, often resulting in
the suboptimal allocation of communication resources (e.g. time, bandwidth,
power) to transfer packets.

The strategy in this paper allows robots to better manage communication
resources for relaying state estimates. Since the collaboration of robots takes
place in the physical world, spatial relationships between robot states can
give insight into the importance of transferring each estimate. This location-
based approach gives a quantitative answer to the question: how important
is it for one robot to broadcast state information about another robot? We
represent the importance of transmitting a state estimate as a function that
is inversely proportional to the distance between robots.

From this importance function we develop a deterministic algorithm that
ensures state estimates propagate throughout a robot network. The proposed
location-based algorithm is efficient in terms of bandwidth and computational
complexity; it does not require network topology information to be transmit-
ted or computed. We used Monte Carlo simulations to show increased propa-
gation rates of state estimates in local neighborhoods. Then with real control
and wireless hardware, we simulated a nine robot team running a Voronoi
coverage controller to show the algorithm’s effectiveness in solving distributed
control problems. Experimental results for the propagation of state estimates
are also presented with five AscTec Hummingbird quad-rotor flying robots
and four stationary robots.

A substantial body of work exists on location-based routing for mobile ad
hoc networks. Haas proposed a zone-based routing protocol using a radius
parameter to reduce the number of control messages [4]. Ni et al. developed
a distance-based scheme to decide when a node should drop a rebroadcast
[5], while Sun et al. adapted a similar scheme for setting defer times [7]. Cai
et al. discussed how these ad hoc schemes influence flooding costs [1].

Our proposed algorithm is related to this body of work in that location is
used to broadcast information through a mobile ad hoc network. However,
instead of routing actual data packets to a predetermined receiver, we are
deterministically transmitting state information to be used by the entire team
of robots. This allows all transmissions to be treated as simple broadcasts, for
which the sender uses the algorithm to select state estimates. This strategy
is applicable for many distributed control problems, such as coverage control
algorithms for mobile sensing networks.
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Fig. 1 A simple exam-
ple where robots i and j
share a Voronoi bound-
ary but cannot communi-
cate their state estimates
directly. This problem
is easily resolved using
a mobile ad-hoc net-
work topology to route
information through
robot k.

2 Importance of Broadcasting State Estimates

A common assumption for distributed control algorithms is that robots have
access to state estimates of other nearby robots. This assumption is often
translated into unrealistic requirements on communication range. The most
common requirement is that estimates need to be directly shared between
robots that are within a specified distance. Another common requirement is
for information to be shared between robots of a defined spatial relationship
(e.g. adjacent Voronoi regions [2] or overlapping fields of view [6]).

These communication requirements are too simplistic to be realized in
practice. Actual network topologies depend on more than simple distance
criteria, such as environment geometry, channel interference, or atmospheric
conditions. Even if transmission ranges are ideal in the physical sense (e.g.
the ideal disk model), spatial relationships for certain distributed controllers
cannot guarantee peer-to-peer connectivity. Figure 1 shows a configuration
where a direct communication link cannot be created between the Voronoi
neighbors i and j. Moreover, robots that are spatially disconnected may de-
cide not to route state estimates to one another. If they move to become
spatially connected, the lack of shared data will prevent the robots from
learning about their new neighbors. Thus, no new communication links will
be established. We are motivated by these serious and unavoidable compli-
cations to develop an algorithm that ensures state estimates flow throughout
a team of robots.

2.1 Broadcast Scheme

Consider n robots moving in a space1, P . Each robot, i ∈ {1, . . . , n}, knows
its current state, pi(t) ∈ P , by some means of measurement (e.g. GPS or
visual localization). We propose that each robot maintains a list of state
estimates, [p1(ti1), . . . , pn(tin)], where tij denotes a time stamp at which robot

1 Although it is easiest to think of the space being R
2 or R

3, the strategy we
describe is equally useful with more detailed state estimates (e.g. velocity, accel-
eration, joint positions, state machine information, etc.)
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i’s estimate of robot j’s state was valid. We have that tij ≤ t and tii = t.
Each robot’s state estimate is initialized to infinity to indicate that a valid
estimate is lacking, except for its own state which is always current.

We desire to communicate state estimates throughout the robot network.
For simplicity, we use Time Division Multiple Access (TDMA)2 to divide
the data stream into time slots of equal length, m. During a time slot, one
assigned robot is allowed to broadcast over the shared frequency channel.
Other robots broadcast one after the other in a predetermined order. One
complete broadcast cycle is referred to as a frame.

To broadcast its own state estimate once per frame, the robot’s time slot
must be long enough to transmit the estimate and an associated time stamp.
Such a time slot is considered to have length of m = 1. Clearly time slots of
unit length are not sufficient to transmit information throughout the network;
each robot would only be updated with the state estimate of its neighbors
on the network. For multi-hop networking, the robots need longer time slots
to broadcast the estimates of other robots.

One naive strategy is to assign a time slot length equal to the number
of robots, m = n, so that each robot can broadcast its entire list of state
estimates, thus creating a simple flooding scheme. Robots that are adjacent
on the network use this information to update their own list, retaining only
the most current state estimates. The process is repeated for each time slot,
naturally propagating state estimates throughout the network without the
need of a complicated routing protocol.

Although simple to implement, this strategy is not scalable for a large
number of robots. Consider the rate a system can cycle through all time slots
to complete one frame. This frame rate, rf , gives insight into how quickly
state estimates are being forwarded, and therefore how confident distributed
controllers can be in using the estimates. For a network of fixed baud rate, rb,
the maximum frame rate3 is given by max(rf ) = rb/mnb, where b is the data
size of a state estimate and its associated time stamp. For m = n, increasing
the number of robots in the system will decrease the frame rate quadrati-
cally. This inherent trade-off provides motivation to reduce the length of the
time slot.

2.2 Importance Function

Many distributed controllers are dependent on spatial relationships between
robots. When selecting which state estimate to broadcast, the selection pro-
cess should also depend on these relationships. This makes sense because a
2 In this paper we primarily discuss implementing the proposed strategy using

TDMA; however, many other channel access methods are appropriate (e.g.
FDMA or CDMA).

3 We are ignoring overhead associated with TDMA (e.g. guard periods, checksums,
etc.)
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robot’s state is more likely to be useful to controllers in proximity. However, it
cannot be considered useless to controllers that are distant due to the mobile
nature of the system. We propose that the importance of robot i broadcast-
ing robot j’s state estimate is inversely proportional to the distance between
robot states.

Since the robots only have access to the state estimates they receive, a
distance estimate is used to give the following importance function

fij(t) = d (pi(t), pj(tij))
−α (1)

where d(·, ·) ≥ 0 is a distance function and α ∈ (0, ∞) is a free parameter,
both of which are selected for the given distributed controller. For example,
a Voronoi coverage controller dependent on linear spatial separation may use
a Euclidean distance function with α = 1. This same distance function is ap-
propriate for a sensor-based controller dependent on light intensity, although
α = 2 may be used since light intensity decays quadratically with distance
from the source. Conversely, the distance function does not need to be Eu-
clidean or even of continuous topology, such as for truss climbing robots with
a finite configuration space. In any case, a robot should consider its own state
estimate to be the most important to broadcast. This is reflected in the model
since fii is infinite for any valid d(·, ·) and α.

3 Location-Based Algorithm for Broadcasting States

We use the importance function in Equation (1) to develop a deterministic
algorithm. For a given time slot, this algorithm selects which state estimates
a robot will broadcast. We first describe a probabilistic approach to help
formulate the final algorithm.

3.1 Probabilistic Approach

Consider a robot that needs to select m state estimates to broadcast during
its time slot. We provided motivation in Section 2.2 that some selections are
more important than others. However, the robot should not systematically
select the state estimates associated with the highest importance; doing so
can prevent estimates from fully dispersing throughout the system. Instead,
we propose that the probability of robot i selecting the state estimate of
robot j is

P ij
Mi

(t) =
fij(t)∑

k∈Mi
fik(t)

, j ∈ Mi (2)

where Mi is the set of robot indices associated with selectable estimates.
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Algorithm 1. Deterministic Method for Selecting State Estimates
n is the number of robots in the system and m is the time slot length.

Require: Robot i knows its state pi(t) and the state estimate of other robots
pj(tij).

Require: Robot i knows its running counter [ci1, . . . , cin].
Mi ← {1, . . . , n}; Ni ← Ø;
for 1 to m do

P ij
Mi

(t)← fij(t)∑
k∈Mi

fik(t)
, ∀j ∈Mi; cij ← cij [1− P ij

Mi
(t)], ∀j ∈ Mi;

k← arg maxk∈Mi(cik); Mi ←Mi\{k}; Ni ← Ni ∪ {k}; cik ← 1;
end for
return Ni

Prior to the first selection for a given time slot, Mi is the set of all robot
indices. From the full set the robot always selects its own state since it has
infinite importance. The robot then removes its index from Mi to prevent
wasting bandwidth. Since Equation (2) is a valid probability mass function,
the robot can simply choose the next state estimate at random from the
corresponding probability distribution, then remove the corresponding index
from Mi. This means estimates of closer robots are more likely to be chosen
than ones that are farther away. By repeating this process, the entire time
slot of length m can be filled in a straightforward, probabilistic manner.

3.2 Deterministically Selecting Estimates

It is not ideal in practice to probabilistically select which state estimates to
broadcast. Consecutive selections of a particular robot index can be separated
by an undesirably long period of time, especially concerning distant robots.
By developing a location-based deterministic algorithm, we can increase the
average rate at which all state estimates of a given time stamp will propagate
throughout a team. In the deterministic case, propagation time is bounded
above by the longest path taken among the estimates. No such bound ex-
ists in the probabilistic case, resulting in a positively skewed distribution of
propagation times and a larger mean.

We propose that each robot maintains a list of counters, [ci1, . . . , cin],
which are initially set to a value of one. Using the probability mass function
in Equation (2), each counter represents the probability that the correspond-
ing index has not been selected. Consider a robot’s first selection, which will
always be its own index. The probability, P ii

Mi
(t), of selecting index i is equal

to one, while all other probabilities, P ij
Mi

(t) subject to j �= i, are equal to
zero. This implies that the counter cii is multiplied by [1 − P ii

Mi
(t)] = 0,

or a zero probability of not being selected, while all other counters, cij , are
multiplied [1 − P ij

Mi
(t)] = 1, or a probability of one. By selecting the index

with the lowest counter value, we are deterministically guiding our method to
behave according to the probability distribution described by Equation (2).
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Fig. 2 This figure shows
the average propagation
time for the location-
based algorithm running
on a 10 × 10 stationary
robot grid. Averages were
taken over 1000 Monte
Carlo simulations. For
small subgraphs (i.e.
2 × 2), update rates of
state estimates increased
with decreasing time
slot lengths. For larger
subgraphs, the optimal
length was around m = 7.

The selected index (in this case i) is removed from the set Mi, and its cor-
responding counter (cii) is reset to a value of one. This process is iteratively
applied to completely fill a time slot with m state estimates, with counters
maintaining their values between frames. The complete deterministic strategy
of O(mn) time is given in Algorithm 1.

4 Simulations and Experiments

We provide insight into the performance of the location-based algorithm in
three ways: we conducted Monte Carlo simulations for 100 stationary robots,
we used real control and wireless hardware to simulate nine robots running a
distributed coverage algorithm, and we implemented this hardware on five fly-
ing and four stationary robots. We first describe the Monte Carlo simulations
used to measure information propagation throughout the robot team. Prop-
agation time is the main performance metric for the algorithm. This metric
depends on the length of the time slot, or in other words, the number of state
estimates communicated during one robot broadcast. We compare these re-
sults to the case when the time slot length equals the number of robots, since
allowing robots to broadcast every state estimate is the simplest multi-hop
scheme. This scheme is referred to as simple flooding.

In a MATLAB environment, we simulated a team of 100 stationary robots
arranged in a 10 × 10 square grid. Each robot, initialized knowing only its
own state estimate, was able to receive broadcasts from its adjacent neighbors
along the vertical and horizontal directions. Each robot ran Algorithm 1 in
distributed fashion. Over 1000 Monte Carlo simulations were executed for
time slots of varying lengths, with each run having a random order for the
time slot assignments. For the 2×2, 4×4, 6×6, and 8×8 subgraphs centered
on the 10×10 graph, we measured the time needed for all subgraph members
to exchange state estimates.
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Fig. 3 Coverage costs are shown for a nine robot system simulated on real hard-
ware running a Voronoi coverage controller. The system has a frame rate of 1.7 Hz
when using a no-hop scheme (m = 1). The system initially performs well, but its
inability to multi-hop state estimates resulted in a suboptimal final configuration.
A simple flooding scheme (m = 9) improved steady state performance, however,
the slow frame rate of 0.2 Hz caused the system to initially oscillate in a high cost
configuration. The location-based algorithm with a time slot of length m = 3 per-
formed the best overall by combining fast update rates with multi-hop capabilities.
The final Voronoi configurations for the algorithm and no-hop simulations are also
shown.

Figure 2 plots average propagation time for the Monte Carlo simulations.
For the smallest subgraph (i.e. 2 × 2), state estimates propagated faster with
smaller time slot lengths. This relationship makes sense since we are maximiz-
ing the frame rate, thus increasing update rates for the local state estimates
of highest importance. As the subgraph size increases, very small time slot
lengths become less effective at propagating estimates, especially between
robots at opposite sides of the subgraph. By using a slightly larger time
slot length, a significant improvement in performance over simple flooding is
obtained; propagation times for all subgraphs decreased by more than 47%
using a time slot length of m = 7. Analyzing such Monte Carlo plots provides
a heuristic technique for selecting an acceptable time slot length for a given
control problem.

We then tested the algorithm in a simulated robot scenario using real con-
trol and wireless hardware. We implemented a Voronoi coverage controller [2]
on nine custom ARM microcontroller modules, each using a 900 MHz xBee
module to wirelessly broadcast state estimates during its assigned time slot.
Each control module simulated the dynamics of a flying robot, creating a
virtual distributed robot team. In addition, a communication range was im-
plemented such that packets from “out-of-range” robots were automatically
dropped. We investigate the performance of the location-based algorithm in a
simple scenario where nine virtual robots were tasked to cover a square area.
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Fig. 4 An example mo-
bile ad hoc network graph
from the quad-rotor fly-
ing robot experiment is
plotted in Google Earth.
For this nine robot sys-
tem, the location-based
algorithm routes state
estimates through the en-
tire team. The bounded
environment from the
downward facing camera
coverage problem is also
shown.

For this scenario the optimal configuration is for the robots to be arranged
in a 3 × 3 square grid.

For the location-based algorithm, a time slot length of m = 3 was selected
using the Monte Carlo technique previously discussed. We also selected the
Euclidean distance function with α = 1 given that the Voronoi coverage con-
troller is linearly dependent on such distance. Each state estimate for the
virtual flying robot is constructed of six 32-bit integers (robot identification,
time stamp, latitude, longitude, altitude, and yaw), resulting in a data size
of 192 bits. Given that the wireless hardware could reliably operate at 3000
baud, the resulting frame rate was about 0.6 Hz. For comparison, the simple
flooding (m = 9) and no-hop (m = 1) schemes ran at about 0.2 Hz and
1.7 Hz, respectively. Figure 3 shows the resulting coverage cost profiles from
these simulations. The location-based algorithm had better initial perfor-
mance than the simple flooding scheme and better steady state performance
than the no-hop scheme. The final Voronoi configurations for the algorithm
and no-hop simulations are also shown.

Finally, we implemented the location-based algorithm on five AscTec Hum-
mingbird quad-rotor flying robots [3] and four stationary robots, thus creating
a nine robot team. Each flying robot was equipped with an AscTec AutoPilot
board capable of capturing GPS, altitude, and yaw positions. The previously
described control and wireless modules were installed on these AutoPilot
boards. In addition, four separate modules were deployed at fixed locations
to represent the stationary robots.

This experimental setup was designed to run a downward facing camera
coverage controller for hovering robots [6]. Since this controller has a spa-
tial dependence similar to the Voronoi coverage controller, the same time
slot length, distance function, and α were used. Figure 4 shows the network
topology of a random deployment configuration prior to starting the coverage
controller. Here we limited the communication range to 30 meters; in previ-
ous experiments we were able to produce links in excess of 100 meters. Figure
5 plots the time stamp of the most current state estimates as received by the
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Fig. 5 This plot shows
the time stamp of the
most current state es-
timates received by the
stationary robot beta.
Estimates of closer, more
important robots are up-
dated more frequently
and tend to be more cur-
rent, which validates the
location-based algorithm.

stationary robot beta, which can be considered the “worst case” receiver since
it is the most remote robot in the team. As previously discussed, beta’s own
state estimate is always considered to be current. Estimates of other robots
are updated as they are received by team broadcasts, whether directly from
the originating robot or indirectly in a multi-hop fashion. Since closer robots
are considered more important in the algorithm formulation, this results in
their state estimates being more current with more frequent updates.

5 Conclusion

In this paper we presented a location-based strategy for exchanging state es-
timates in a distributed robot team. We developed a deterministic algorithm
that, based on an importance function, broadcasts estimates of nearby robots
more frequently than distant ones. Simulations using real control and wireless
hardware show that the algorithm outperforms simple flooding schemes for
large robot networks.

Our experiments consisting of five Asctec Hummingbird quad-rotor fly-
ing robots among four stationary robots showed the successful exchange of
state estimates in a multi-hop fashion. Using the location-based algorithm,
we successfully ran the coverage controller from [6] on five flying robots with
downward facing cameras. Coverage results from this experiment will be pre-
sented in future publications.

We desire to further develop this work to exploit the spatial reuse of time
slots for robots separated by multiple hops. This direction allows for virtually
infinite team sizes and spatial coverage.
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Cooperative AUV Navigation Using a Single
Surface Craft

Maurice F. Fallon, Georgios Papadopoulos, and John J. Leonard

Abstract. Maintaining accurate localization of an autonomous underwater vehicle
(AUV) is difficult because electronic signals such as GPS are highly attenuated by
water making established land-based localization systems, such as GPS, useless
underwater. Instead we propose an alternative approach which integrates position
information of other vehicles to reduce the error and uncertainty of the on-board
position estimates of the AUV. This approach uses the WHOI Acoustic Modem to
exchange vehicle localization estimates — albeit at low transmission rates — while
simultaneously estimating inter-vehicle range. The performance capabilities of the
system were tested using Oceanserver’s Iver2 and the MIT Scout kayaks.

1 Introduction

Localization or navigation of vehicles using only onboard local sensors, such as a
Doppler Velocity Logger (DVL) or Inertial Measurement Unit (IMU), are certain to
experience accumulated positioning error. One can, of course, utilize more precise
sensors to reduce the rate of accumulated error — DVL units with error accumula-
tion rates as low as 0.2% are commercially available. However this approach may
not be satisfactory due to practical, power or financial limitations.

Regardless of the platform used, the accumulation of error and uncertainty is
simply slowed, rather than bounded. The result of this is that an AUV surveying the
ocean floor or a land robot building a street map must be halted on occasion so as to
reset the position uncertainty — either by surfacing for a GPS fix or by repositioning
at a known location. This procedure wastes both energy and time, requires a human
interface and may be unacceptable in many operating environments.

The standard approach for bounding error underwater is Long Baseline (LBL).
Two or more beacons are deployed at known locations — either as buoys on the
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water surface or moored on the seabed. The AUV transmits an acoustic query to
the beacons which reply in a manner which allows the AUV to estimate the bea-
con/AUV range and to then improve its own position estimate. Recent improve-
ments to this system have removed the need for round-trip timing (Synced LBL)
and also allowed for estimation of both range and angle using an array of receiving
sensors (USBL).

While these technologies are now all commercially available, the mobility of the
AUV is restricted as typical coverage is limited to an area within a few kilometers
of the beacon. To relax this restriction an alternative approach considers a system in
which a surface vehicle (with access to GPS) or a submerged vehicle (with accurate
dead reckoning instrumentation) communicates with a fleet of much less accurately
localized vehicles so as to improve the positioning of the latter. One example of this
approach is the Moving Long Base Line (MLBL) navigation proposed by Vaganay
et al. [9], in which typically two surface vehicles serve as mobile beacons for one
or more AUVs. Other related recent research has been performed by Bahr et al. [1],
Eustice et al. [4] and Maczka et al. [5]. It should also be recognized that multi-AUV
navigation falls within the wider problem of multi-robot cooperative localization,
see [6] for a more general introduction to the field.

In this paper, we describe experiments that extend the MLBL approach to situ-
ations in which a single surface vehicle is used to estimate the position of a sub-
merged AUV using range-only measurements. In Section 2 the basic framework of
this technique is discussed. Our algorithm is outlined in Section 3 followed by a
number of modifications which improve performance. Section 4 presents the results
of a combination of simulation and realistic experiments to illustrate the concept.
Finally conclusions drawn from the experiments and the directions of future work
are presented in Section 5.

2 Cooperative Localization under Water

This paper retains the framework for underwater localization previously introduced
in [1] and also used in [4]. We shall assume there to be one surface vehicle providing
the submerged fleet of vehicles with position information while perhaps operating
as a communications moderator — in the dual role of a Communications and Nav-
igation Aid (CNA). Each of the autonomous underwater vehicles maintains a dead
reckoning filter, drawing upon measurements of velocity, heading and depth. Fi-
nally, communication through the water channel is possible using the WHOI Acous-
tic Modem — at transmission rates of the order of 32 bytes per 10 seconds — in a
process which also yields a time-of-flight measurement which can be used to esti-
mate the inter-vehicle range.

There are a number of methods which could be used to integrate the received
position information. Our earlier work, [1], proposed an algorithm which utilized
the on-board dead reckoning estimate of the AUV and a pair of CNA range estimates
to form a complete estimate of the AUV state vector.
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The seabed, the water surface and deep sea thermoclines within the water body
have the ability to cause significant multi-path signal interference and the receipt
of a substantial amount of infeasible outlier measurements. A typical dataset was
illustrated for a regular Long Baseline systems in [8]. For these reasons it would be
reasonable to assume that the received measurement set obtained from the WHOI
modem would contain substantial multi-modality, thereby motivating this approach.

However the advanced processing within the WHOI modem decoder has the abil-
ity to suppress the bulk of these effects, such that the received measurements de-
coded by the modem contain only a moderate amount of noise. For this reason the
proposed approach instead uses an implementation of the Extended Kalman Filter.

A particle filtering approach [3] could also have been considered as this would
have more accurately incorporated the non-linearity of the correction step, however
because we will maintain full control of the CNA’s motion this issue can broadly be
avoided.

Previous proof-of-concept experiments illustrated that the range variance is
broadly independent of range itself, however detailed examination of this was not
carried out [2]. The modem transducer was then directly clamped to the underside
of the kayak. Our more recent experiments have instead hung the transducer 2-3 me-
ters below the kayak hull. We expect less noise interference from the kayak motor
and less reflections from the water surface in this configuration.

Figure 1 illustrates WHOI modem range data plotted versus GPS-derived ‘ground
truth’, as measured in the Charles River adjacent to MIT recently. Because the
ground truth distance between the two vehicles was determined using imprecise
GPS measurements, it is difficult to precisely estimate the distribution of the range
measurements. Other issues, such as the position of the GPS sensor relative to the
modem on the kayak must also be recognized. In the absence of precise ground
truth, we estimate the range variance to be between 4–8m.

3 Single Surface Craft Cooperative Navigation

The configuration we will consider in this work will be of a single CNA supporting
N underwater vehicles1. Each AUV will maintain an estimate of its own position and
uncertainty. This estimate will be propagated using the usual Kalman prediction step
so as to integrate heading, forward and starboard velocity measurements.

As mentioned above, this estimate will be corrected using range and position in-
formation relative to an CNA using the WHOI acoustic modem. At present the 32
byte packet transmitted from the CNA shall contain latitude, longitude, depth and
heading as well as a UNIX time-stamp. Transmission of a packet consists of two
stages: first a mini packet is transmitted to initiate the communication sequence.
The inter-vehicle range can be estimated using this mini packet. Following this, the
information packet is transmitted in a process which lasts approximately 5-6 sec-
onds. In all, it is prudent to reserve 10 seconds per transmission. Simularly the AUV
will transmit a message containing its own position estimate as well the associated

1 Subsequent research will aim to relax the necessity of a dedicated surface vehicle
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Fig. 1 Analysis of range estimates derived from the WHOI Modem. Upper Left: Comparison
of modem range estimate (red dots) and range derived from GPS ‘ground truth’ (blue crosses)
for each fully successful 10 second transmission period. Lower Left: Illustration of the fre-
quency of successful transmissions. Category 0 represents an entirely failed transmission;
Category 1: successful range transmission; Category 2: successful range and packet trans-
mission. Category 2 corresponds to the modem ranges in upper left plot. Right: Histogram
of range error (using estimated range versus GPS ‘ground truth’ range), also illustrated is
a normal distribution fitted to the data (red, r̄ = 0.66m,σr = 7.5m) and the normal distri-
bution used in the experiments in Section 4 with (cyan, r̄ = 0m,σr = 5m). This range data
corresponds to Experiment 1.

covariance matrix which can be used to help the CNA plan its own supporting mo-
tion — also requiring 10 seconds per transmission.

It is envisaged that the MLBL will be integrated within a multi-AUV setup in
which use of the communication channel is shared between many communicating
processes. As a result the transmission rate of a position/range pair is likely to be
substantially below one measurement per 10 seconds. Furthermore only a portion
of transmitted messages will actually be received. For these reasons it is prudent
to optimize the location from which the ASC transmits so as to maximize the ben-
efit achieved from the correction step. Although a basic zig-zag motion plan was
adopted in this work, future work will consider more elaborate motion planning for
the CNA.

3.1 Utilizing Partial Messages

As illustrated in Figure 1, a significant proportion of the (range) mini packets are
received without the information packet — meaning that the usual correction step
cannot be made2

2 For a typical mission in the open ocean inter-vehicle ranges of the order of 1km are ex-
pected, making this an even more significant issue.
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Fig. 2 Compass Bias Correction Example: MLBL position estimate (blue) is corrected to-
wards the ground truth (red) in a consistent direction. The angular correction of the 4 correc-
tion steps, θ1:4, can be used to form an estimate of the bias angle, which is then removed.
Note that multiple iterations of the prediction step take place between each correction step.

By linearly predicting the CNA position using previous position estimates, an
estimate of the CNA at this time can be formed. This estimate can then be used
with the previously orphaned range measurement to allow another correction step to
occur. While post processing of the data from the experiments presented in Section
4 in this manner reduced the average error by approximately one meter, in future we
propose to introduce redundancy into the transmitted messages so as to avoid this
scenario. See Section 5 for more discussion.

3.2 Online Compass Bias Correction

A Bayesian filter - such as a Kalman filter or particle filter - assumes that mea-
surements are formed using unbiased estimators. Heading is however particularly
difficult measurement to estimate properly. Compass accuracy can be effected by
the characteristics of the local region, the magnetism of the vehicle itself and mag-
netic declination. It is particularly severe for imprecise sensors used aboard the CNA
platform. As a result, the compass used in the experiments presented in Section 4
is a dominant source of navigation error. Typically compass bias is corrected using
a calibration process which can be both complex and time consuming. In this sce-
nario, the EKF corrections garnered using the CNA range and position can be used
to estimate the compass bias and to remove its effect.

Between successive corrections of the EKF, the filter will be predicted according
to the dynamical model. The frequency of the prediction step will be much higher
than the correction step. The distance between the posterior estimate of a correction
step at time k1 and the predicted position at time k2 is the estimated relative distance
traveled in that time

�xk̄2|k1
= x̄k2 − xk1 . (1)

where xk1 = [xk1 ,yk1 ] represents the state vector at time k−1. The CNA position and
range measurement are then integrated to correct the posterior position estimate

�xk2|k1
= xk2 − xk1 (2)

If the sensors contributing to the measurement, zk2 , are unbiased the expected value
of the update will be zero. However if there exists a compass bias, the EKF will act
to correct the filter in the direction opposite to the bias
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θk2|k1
= arccos

( �xk̄2|k1
·�xk2|k−1

|�xk̄2|k1
||�xk2|k−1|

)
(3)

Figure 2 illustrates the issue for a sequence of MLBL corrections for a biased
compass. It can be seen that the angle of the correction is consistently in the hypoth-
esized bias direction. However as the CNA consistently maneuvers relative to the
AUV, a closed form expression for the bias angle cannot be formed.

Instead we will propose to successively estimate the bias until this effect is
removed. Consider the net angular correction set of N successive corrections,
(θk−N+1, . . .θk). We assume that the median of this set, given by θ̃k, will be in the
direction of, but less than, the bias angle, i.e. [0 � θ̃k < θbias].

This value is assumed to be an initial estimate of the bias and used to correct the
heading estimate subsequently. After the next N corrections, any remaining bias is
again estimated and added to the running bias estimate. Eventually the bias will be
assumed to be known and can be removed.

4 Experiments

A number of experiments were carried out in the Charles River, adjacent to MIT,
to demonstrate the concept of Moving Long Baseline using the Surface Crafts for
Oceanographic and Undersea Testing (SCOUT) kayaks designed in MIT and the
low-cost Iver2 from Oceanserver (see Figure 4). Each of the kayaks was equipped
with a WHOI modem, a compass and a GPS sensor while the Iver’s basic sensor
suite consisted of only a compass and a WHOI modem. The Iver2’s only velocity
estimate was a constant value of 1.028 m/s (2 knots) specified by the mission plan.

Each vehicle’s onboard computer ran an implementation of the MOOS software
platform [7]. Maintaining an accurately synchronized clock is essential for the esti-
mation of inter vehicle ranges; to do so the Iver2 utilized a precisely synchronized
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Fig. 3 Error (left) and 95% confidence (right) for the MLBL algorithm (blue) and the dead
reckoning alone (green) for Experiment 1 where we have defined %90 confidence in terms of
the largest eigenvalue of the covariance matrix.
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timing board developed by Eustice et al. [4] while the SCOUT kayaks used the
Plus-Per-Second (PPS) contained within its received GPS data messages.

Experiment 1: A single SCOUT kayak designated as the ‘AUV’ completed a
survey-type mission while another kayak maintained a zig-zag pattern behind the
‘AUV’ — taking on the CNA role. The onboard GPS sensor was used to determine
the ground truth position as well as to simulate forward and starboard velocities.
Measurements drawn from the CNA transmissions were used by the ‘AUV’ to re-
duce its uncertainty. The designated ‘AUV’ carried out 1.5 circuits of a rectangle,
covering approximately 1800 metres in total over a period of 37 minutes.

Note the large increase in the error of the position measurement between 22–
26 minutes. This was caused by a combination of poor CNA position estimation
(caused by visibility of just 4 GPS satellites) and the CNA moving close, yet parallel,
to the AUV. It is envisaged that this could have been avoided with the use of a more
accurate GPS unit or by forbidding the CNA from taking such a trajectory.

Fig. 4 Vehicles Used: OceanServer Iver2 (left) and the MIT Scout kayak (right)
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Fig. 5 Results for Experiment 2. Left: Modem range estimates with successful packet trans-
mission (red dots) and modem range estimates but failed packet transmission (black crosses).
Right: 95% confidence for the MLBL algoritm (blue) and the dead reckoning along (green).
Note the two long portions of the run in which ranges were determined but no packet was
successfully transmitted and the resultant growth in position uncertainty.
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Fig. 6 Paths taken by the AUV and CNA during Experiment 1 (upper) and 2 (lower), see
Section 4 for more details. CNA measurements were transmitted from the black dots. Note
that the final 500m of Experiment 1 has been omitted as it overlaps with what is shown.
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The following are a number of metrics for this test: mean error 12.5m, mean
‘AUV’ velocity 0.82m/s, mean CNA velocity 1.08m/s. There were 205 transmis-
sions of which 130 were fully successful, 63 resulted in a failed packet transmission
but a successful range estimate while 12 resulted in complete transmission failure.
The algorithm can be seen to bound the error of the position estimate to approxi-
mately 20m.

Experiment 2: In a second fully realistic experiment, the Iver2 carried out a pre-
defined ‘lawnmower’ pattern running at a depth of 2.4m while again the SCOUT
kayak supported by transmitting its GPS position to the AUV via the WHOI mo-
dem. In addition the Iver2 transmitted its own MLBL position estimate, which was
received by the CNA and used to plan locations from which to transmit.

Figure 6(b) illustrates the path taken by the vehicles. The test lasted 28 minutes
and in total the Iver2 travelled 2 km. The AUV surfaced twice as a safety precaution.
After 9 minutes the AUV first surfaced and received a GPS fix at (-201.6 -242.0) as
shown as a red cross, at that time the front seat filter estimated a position of (-258.7,-
276.5) while the MLBL filter estimate (-208.9,-238.1) giving an error of 66.7m
and 8.3m error respectively. When the Iver surfaced for the second time (after 19
minutes), the corresponding errors were 53.7m and 14.1m. As well as estimating the
AUV position with error, both of these MLBL filter estimates were within a 95%
confidence interval upon surface. Note that after each surface the AUV transited
from the GPS location back to its planned location on the mission path before diving
and continuing the mission.

It should be mentioned that between 4–8 and 12–18 minutes no packets were suc-
cessfully received by the AUV and as a result no MLBL corrections were possible
(See Figure 5). This can be attributed to a number of factors

• The CNA was positioned behind the AUV and as a result churned water from the
AUV propeller is likely to have reduced communication capabilities.

• With each failed transmission the AUV/CNA range grew until about 225m which
is considered long for this experimental river environment 3.

• The presence of a tourist cruise ship nearby.

In future tests, precautions will be taken to avoid these issues.

5 Future Work and Conclusions

The concept of a single surface vehicle supporting the localization of an AUV has
been outlined. Full experimental results with a single CNA supporting an Iver2 were
presented. The resultant position estimate was shown to be substantially more accu-
rate than the vehicle’s own onboard navigation filter. Future work will focus on ex-
tending this framework for testing with three Iver2 vehicles and eventually towards
the scenario in which a set of heterogeneous vehicles are continuously submerged
with only a single vehicle occasionally surfacing to access the GPS.

3 Note that the maximum range of the WHOI modem in the open ocean is estimated to be
of the order of 4–5 times greater than the river environment.
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Secondly, the performance of the algorithm is directly determined by the quality
and frequency of received measurements. We will consider the optimization of the
transmitted messages (and the re-transmission of failed data) so as to reduce the
proportion of useless or partial messages received by the AUV. In this work the path
taken by the CNA was an arbitary zig-zag behind the AUV. Motion planning of the
CNA’s path — so as to transmit messages from the most adventagous location —
will also be carried out in future.
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Multi-Robot Fire Searching in Unknown
Environment�

Ali Marjovi, João Gonçalo Nunes, Lino Marques, and Anı́bal de Almeida

Abstract. Exploration of an unknown environment is a fundamental concern in
mobile robotics. This paper presents an approach for cooperative multi-robot ex-
ploration, fire searching and mapping in an unknown environment. The proposed
approach aims to minimize the overall exploration time, making it possible to locate
fire sources in an efficient way. In order to achieve this goal, the robots cooperate in
order to individually and simultaneously, explore different areas of the environment
while they identify fire sources. The proposed approach employs a decentralized
frontier based exploration method which evaluates the cost/gain ratio to navigate
to target way-points. The target way-points are obtained by an A* search variant
algorithm. The potential field method is used to control the robots’ motion while
avoiding obstacles. When a robot detects a fire, it estimates the flame’s position
by triangulation. The communication between the robots is done in a decentralized
control manner where they share the necessary data to generate a map of the envi-
ronment and to perform cooperative actions in a behavioral decision making way.
This paper presents simulated and experimental results of the proposed exploration
and fire search method and concludes with a discussion of the obtained results and
future improvements.

1 Introduction

Search operations inside buildings, caves, tunnels and mines are sometimes ex-
tremely dangerous activities. The use of autonomous robots to perform such tasks
in complex environments will reduce the risk of these missions. In unknown en-
vironments, search operations are frequently complemented with the environment
exploration.
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Autonomous environment exploration is a very fundamental issue in mobile
robotics. This problem, complemented with map-building, is becoming increasingly
solved in a robust way for single robot systems. Using multiple robot systems may
potentially provide several advantages over single robot systems, namely higher
speed, accuracy, and fault tolerance [1], [2], [3] and [4] . Nowadays, swarm based
exploration and mapping where the robots can be smoothly added or removed to the
operation is an area with increasing interests to the robotics community [5].

This study is integrated in a European project named Guardians1. The Guardians
are a swarm of autonomous robots applied to navigate and search an urban environ-
ment. The project’s central example is search and rescue in an industrial warehouse
in smoke, as proposed by the Fire and Rescue Service of South Yorkshire. The job
is time consuming and dangerous; toxins may be released and human senses can be
severely impaired. They get disoriented and may get lost. The robots warn for toxic
chemicals, provide and maintain mobile communication links, infer localization in-
formation and assist in searching. Map exploration and fire source detection are the
topics in this paper.

The problem of coordination and control of multiple robots for mapping and
exploration has been already addressed through several research approaches. Most
approaches rely on centralized control to direct each vehicle. This centralized ap-
proach has been popular in the robotics community, because it allows near optimal
behaviors in well understood environments. However, its performance decreases in
new unidentified environments. Yamauchi [6] proposed a distributed method for
multi-robot exploration, yielding a robust solution even with the loss of one or more
vehicles. A key aspect of this approach involves sharing map information among
the robotic agents so they execute their own exploration strategy, independently of
all other agents. While this technique effectively decentralizes control, exchange
of map information is not enough to prevent inefficient cooperative behaviors. This
approach also required known starting positions and failed to provide a robust mech-
anism for map merging.

Simultaneous localization and mapping (SLAM) has been a topic of much in-
terest because it provides an autonomous vehicle with the ability to discern and
represent its location in a feature rich environment [11]. Some of the statistical tech-
niques used in SLAM include extended Kalman filters, particle filters (Monte Carlo
methods) and scan matching of range data. But if there is a local or global localiza-
tion system where robots know their relative positions, SLAM techniques are not
required.

Several researchers have suggested stigmergy methods [7] and [8]. Scheidt et.
al. [8] uses stigmergy to achieve effects-based control of cooperating unmanned
vehicles. They accomplished stigmergy through the use of locally executed control
policies based upon potential field formulas. Nevertheless, this method is mainly
useful when there are a lot of small robots working together.

Most of the existing approaches to coordinate multi-robot exploration assume
that all agents know their locations in a shared (partial) map of the environment.

1 http://www.guardians-project.eu
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Effective coordination can be achieved by extracting exploration frontiers from the
partial map and assigning robots to frontiers based on a global measure of perfor-
mance [1], [2], [3] and [9]. Frontiers are the borders of the partial map, between
explored free space and unexplored area [2]. These borders, thus, represent loca-
tions that are reachable from within the partial map and provide opportunities for
exploring unknown terrain, thereby allowing the robots to greedily maximize infor-
mation gain [10]. Compared to the problems occurring in single robot exploration,
the extension to multiple robots poses new challenges, including:

Coordination and cooperation: Since there are several robots working in the same
environment, they must have some kind of cooperation with each other in order to
prevent collisions and share tasks. Effective cooperation can be achieved by having
the robots into different non-overlapping areas [2], [3], [11]. The idea is that at a
given time each robot should be dedicated to exploring one and only one frontier.

Integration of information collected by different robots into a single map: The
main goal of exploration is to build a general map representing the environment.
The robots should integrate all the data into a single map. Map merging is a big
challenge in this field that has been address in several studies [12].

Uncertainty in localization and sensing: The effect of sensor errors (“noise”) and
errors in sensing the gradient of a “resource profile” (e.g., a nutrient profile) should
be considered. Several researchers have illustrated that the agents can forage in noisy
environments more efficiently as a group than individually [5], [13].

Decision making, reasoning, task sharing and navigation: Decision making for
each robot in an unknown environment is a very complex problem. Since nobody
knows what lies beyond the frontier of an unexplored area, there is no unique op-
timum algorithm that is completely reliable. In each situation, a robot should make
a decision to progress exploration task based on a partial existing map and also the
other robots’ positions and objectives.

Most of the studies in multi-robot exploration do not address unknown environ-
ments. Moreover, most of the research in this field is based on centralized control
of the robots. For example, in [14] and [6], the robots share a common map which
is built during the exploration. Singh and Fujimura [14] presented a decentralized
online approach for heterogeneous robots. Most of the time, the robots work inde-
pendently. When a robot finds a situation that is difficult to solve by itself, it will
send the problem to another robot which is likely to be able to solve the situation.
The candidate robot is chosen by trading off the number of areas to be explored,
the size of the robot and the straight-line distance between the robot and the tar-
get region. This technique generates a grid geometric map; therefore, the accuracy
of the map depends on the grid size. Moreover, all the robots need to have a huge
memory to keep the entire map. In the approach of Yamauchi [6], the robots move to
the closest frontier according to the current map. However, there is no coordination
component which chooses different frontiers for the individual robots.
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Our approach, in contrast, is specifically designed to coordinate the robots so
that they automatically do not choose the same frontier, so multiple robots can try
to explore the same area. Additionally, our approach employs a topological map, so
the robots only exchange environmental features. Topological map need much less
memory capacity. As a result, this method needs significantly less time to accom-
plish the task.

The objective in this research is to generate the map of an unknown environ-
ment and also localize all the fire sources in the area. In fact, the final future goal
is to create a fire risk map of an unknown environment with multiple robots, but
this problem is not addressed here. A centralized global map is a requirement of
Guardians project, but ideally the robots should be able to explore even with lack of
communication, and in the case of nun-updated map.

During the exploration process, if there is a fire source, robots should detect it.
The authors have addressed this issue in previous papers [15], [16], [17] and [18].
The last achievement of that research is kheNose. The kheNose is a device devel-
oped by the authors to sense olfactory information through the use of gas sensors,
anemometers, a temperature and humidity sensor [19]. In the current study, the last
version of kheNose has been used to detect the fire sources.

Collision avoidance between the robots during the exploration is a considerable
issue that has not been addressed pragmatically in the previous studies. In this study,
we propose a new practical method for multi-robot unknown environment explo-
ration with fire source detection which takes “collision avoidance” and “task shar-
ing” into consideration. This method has been tested in the real world and also in
simulation. The effect of complexity of the environment and also the numbers of
robots are the main parameters that have been studied in this paper.

2 The Proposed Method

This section explains the concept of the proposed multi-robot cooperation tech-
nique. This method is illustrated in the schematic diagram of Fig. 1. As shown in the
diagram, the method includes three main tasks: navigation and exploration, decision
making, and fire source detection. These tasks are briefly described below.

2.1 Decision Making

The main goal of the exploration process is to cover the whole environment in the
minimum possible time. Therefore, it is essential that the robots share their tasks
and individually achieve the objectives through optimal paths. In an unknown envi-
ronment, the immediate goals are the frontiers. Most of the time, when the robots
are exploring an area, there are several unexplored regions, which poses a prob-
lem of how to assign specific frontiers to the individual robots. We want to avoid
sending several robots to the same frontier, which may result in collision concerns.
Another issue is that we do have a base station, but the robots should be able to



Multi-Robot Fire Searching in Unknown Environment 345

Fig. 1 Exploration and fire searching fluxogram

Algorithm 1. Map exploration algorithm - Decision making method

Receive map from server()1
while there is at least one unexplored link in the map do2

do Follow the potential field algorithm until (getting a different feature in the environment)3
Receive map from server()4
if the new node exists in the map then5

Update the map’s data with new information.6
Send map to the server()7

else8
Add new node to map()9
Send map to the server()10

if the current node has any unexplored link then11
Calculate direction gain of taking each unexplored link, based on the position of the other robots and12
get the higher gain direction to follow
else13

Determine the best not-assigned unexplored frontier, based on their gain / cost.14
Assign the frontier to the robot.15
Calculate the best path to take, based on the A* algorithm and get that direction to follow.16

End of algorithm17
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Algorithm 2. Collision avoidance between the robots (and increasing efficiency of collaborating)

Calculate a confined circular area around the robot1
if any other robot is inside the circle then2

Determine if the robots are in a collision pattern3
if there is a possibility of being in a collision pattern then4

//Follow the rules of engagement:5
if they are in a direct collision path then6

reevaluate their goals.7
else8

if they are both currently exploring frontiers OR they are both moving inside explored9
area then

give priority to the one which has lowest ID.10

else11
Give priority to the one that is exploring a frontier.12

else13
Continue exploration algorithm.14

End of algorithm15

explore autonomously. To address these problems, the proposed method is based on
a decision-theoretic exploration strategy.

The frontier is selected based on the cost of reaching it and the utility it can
provide to the exploration. The cost is calculated through the A* method which
simultaneously determines the optimal path to reach the frontier and its distance.
The utility depends on the number of the robots and their proximity to the frontier,
which means that if there are several frontiers at similar distances, a given robot will
go to the one that has higher utility. This procedure will make the robots disperse
and explore the environment in a efficient way.

2.2 Task Sharing and Map Generation

The cooperation between the robots is based on the exchange of data allowing for
task sharing and, consequently, an efficient distributed exploration. During the ex-
ploration, there is only one global shared map in the system. This map is in a base
station that sends and receives the map to the robots whenever they request it. Within
this map, besides having some information regarding the kind of nodes and their po-
sition, it also has data describing the location of the robots and their frontier target,
as can be seen in Fig. 2. Through this data, a robot can see which frontiers are
unexplored, their position and if any robot has targeted them as its objective, thus
allowing a distributed efficient exploration (see Algorithm 1 and Fig. 1).

While dealing with multiple robots in one environment, collision between robots
is a very important aspect. For instance, two robots might be in a narrow corridor
with different directions and they may want to pass but cannot because they are
facing each other or they may even treat each other as a dead end. This type of
problems is avoided with a set of rules that prevents the robots to follow by the
same corridor in facing directions (see Algorithm 2).
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Fig. 2 Example of topological map data Fig. 3 Khepera III and kheNose

2.3 Fire Source Detection

During exploration and navigation, the robots are simultaneously acquiring infor-
mation from the environment (see Fig. 1). All the robots are equipped with a set of
sensors developed by this research group, which integrates temperature and chemi-
cal sensors named kheNose (Fig. 3).

When the robots are mapping the environment, they are constructing the map
and verifying if the current node they have acquired is not already on the map, thus,
assuring the coherence of the map and making the merging process simple, where
most of the time it is only necessary to add new nodes to the global shared map.

An eight element thermopile array sensor is used in order to measure the absolute
temperature as well as the ambient temperature on the robot to be able to distin-
guish the heat values. When the sensor detects hot-spots or areas with a temperature
above a defined threshold, a heat source is identified and a pattern of motions is
implemented in order to localize the position of that heat source.

3 Experiments

The algorithm has been tested in real world and also in a simulation world. For op-
timizing the exploration algorithm and measuring its performance, the Player/Stage
simulator was used [20]. In the real world, there are several constraints that do not
allow for testing the proposed method very easily. It is not effortless to build various
test plans with different scales for testing and developing the method. Since there is
no reliable simulator for fire and smoke in Player/Stage, the whole system has been
tested in the real world.

3.1 The Real World Experiments

The proposed method was tested in different maze-like environments, like the one
shown in Fig. 4, using three Khepera III robots equipped with KheNose sensing
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Fig. 4 Real maze experiment Fig. 5 Visual positioning application screen-
shot

boards. The KheNose has multiple sensing capabilities, namely: an electronic nose,
a gas sensing array, an anemometer array, and a thermal radiation array [19].

The localization of the robots is out of the scope of this work. This problem is
solved with a ceiling camera. A network camera is mounted on the top of the envi-
ronment and an image processing computer program is able to track and locate each
robot. Each robot has two colored labels on the top that can be seen by the camera.
The camera is connected to the network and an image processing program tracks
the robots’ position and provides the absolute position of each robot via wireless
network. Image processing program is an object tracking application developed by
the authors. By recognizing the center of each colored label and calculating the line
crossing from these two centers, the orientation of the robot can be computed. The
program is written in C++. Fig. 5 shows a screen shot of this program.

In terms of feature extraction, based on values measured by sonar and infrared
sensors, the robot recognizes the features and should take an action and modify the
shared map; it will save this data in the map structure as a new node, and will also
update the data related to the previous feature. For each feature, the robot saves the
data in the topological map, including the area of influence of that node and some
other information (Fig. 2).

The system has been tested with different start positions for the robots in different
maze structures. There is a small candle acting as a heat source in the environment
which robots try to locate.

Fig. 4 shows two robots exploring a small maze and finding a fire source. Both
robots started from the same point but not at the same time. We intentionally ran
one of the robots a few seconds after the first one. The darker footprint shows the
first robot’s path and the lighter footprint is related to the second robot. As shown,
the first robot found the fire source. For an example of the coordination algorithm,
when the second robot reached the junction it figured out that the path in the front
was already explored and it chose the right path.

Another parameter for evaluation of the method is the exploration time. The pro-
posed method has been tested with a different number of robots in different mazes.
The environment shown in Fig. 5 that is a 3.5 x 4 meters maze is tested by one,
two and three Khepera robots separately. One robot could explore the environment
in 412 seconds. This environment has been explored by two robots in 254 seconds.
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Fig. 6 A maze with 34
nodes

Fig. 7 82 nodes Fig. 8 135 nodes

The exploration time for the same maze with three Kheperas was 212 seconds. Each
result is the average of five similar tests. Different tests with constant conditions had
similar results with about seven percent variance. The maximum speed of the Khep-
eras is kept constant in all the tests.

In the real experiment the robots could locate the fire sources during the explo-
ration. The performance of fire source detection has been addressed in previous
studies [17], [19].

3.2 Simulation

Since there is no accepted standard benchmark, measuring the performance of a
behavioral based multi-robot unknown area exploration algorithm is a very difficult
job. One of the possible ways to do that is to compare the proposed method with a
optimal method. But the issue is that there is no optimal method for exploring an
unknown world. However, there is an optimal solution for minimizing the travelling
path if the world (maze) is completely known before exploration.

The algorithm has been tested with different number of robots in specific mazes.
The models of those mazes are also given to the optimal method and then we
compared the results of the proposed algorithm with the optimal results. Since the
optimal method has the world’s model but the proposed method is exploring the un-
known world, it is obvious that the results of the proposed method are always worse
than the optimal but this can be a good criteria for evaluating the method.

The number of repeated nodes during travel can be another good parameter for
measuring the performance of the method. A repeated node is a node that robots
pass more than once. Fig. 9 shows the number of nodes that have been repeated
more than once in the optimal method as well as in the proposed algorithm for the
maze shown in Fig. 6. A good conclusion from the graph in Fig. 9 is that there is a
trade-off between the number of robots and the size of the world. It shows that the
proposed approach is acceptably comparable with the optimal method.

The mazes shown in Fig. 6, Fig. 7 and Fig. 8 have been tested separately with
one, two, three and four robots and the results are shown in Fig. 10. The graph
shows the average of five tests for each data. The variance was less than one per-
cent. It is obvious that the exploration time improves with higher number of robots.
Another conclusion from the graph is that having more robots is more advantageous
in a complex maze than in a simple maze. This also proves that the cooperation
algorithm in this approach is efficiently functional.
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4 Conclusions and Future Works

A proposed method for multi-robot unknown environment exploration has been im-
plemented and experimented in realistic reduced scale scenarios. The robots are able
to cooperate and create a shared topological map of the unknown environment. Co-
operation between the robots is done by sharing information in the shared map. The
algorithm has been tested against a large variety of configurations in Player/Stage
simulation program. The exploration algorithm is merged with fire source detec-
tion algorithm and has been tested in the real world. The effect of the number of
the robots on exploration in different type of environment has been analyzed and
discussed. The results show a high efficiency and reliability of this method.

In terms of implementation, more accurate sonar sensors should be installed on
the robots.

Optimizing the searching process by integrating sensing cues in the frontiers se-
lection can be another improvement of this research.
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Using Virtual Articulations to Operate
High-DoF Inspection and Manipulation Motions

Marsette Vona, David Mittman, Jeffrey S. Norris, and Daniela Rus

Abstract. We have developed a new operator interface system for high-DoF articu-
lated robots based on the idea of allowing the operator to extend the robot’s actual
kinematics with virtual articulations. These virtual links and joints can model both
primary task DoF and constraints on whole-robot coordinated motion. Unlike other
methods, our approach can be applied to robots and tasks of arbitrary kinematic
topology, and allows specifying motion with a scalable level of detail. We present
hardware results where NASA/JPL’s All-Terrain Hex-Legged Extra-Terrestrial Ex-
plorer (ATHLETE) executes previously challenging inspection and manipulation
motions involving coordinated motion of all 36 of the robot’s joints.

1 Introduction

Due to their application flexibility, robots with large numbers of joints are increas-
ingly common: humanoids with 20 or more DoF are now available off-the-shelf,
many-link serpentine robots have been demonstrated with a wide range of locomo-
tion modalities, and assemblies of modular and self-reconfiguring hardware have
been constructed with many 10s of concurrently active joints. This flexibility is
especially attractive for interplanetary and Lunar exploration contexts, where the
extreme costs of transportation from Earth are balanced by maximizing versatility,
reusability, and redundancy in the delivered surface system hardware. Such consid-
erations have been a prime motivation for NASA/JPL’s development of the 36-DoF
All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE) [13], with which
astronauts will collaborate in our planned return to explore the Moon (figure 1).

Mission cost also dictates that we need operator interface systems that can rapidly
and efficiently expose the maximum hardware capability to the humans that direct
these robots, whether they are on-site astronauts or ground-based operators. This is
a challenging problem in the high-DoF case: there are usually many ways the robot
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Fig. 1 NASA/JPL’s All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE).

could move to achieve the task, and some may be better than others due to secondary
goals. Sometimes a human operator can quickly visualize the desired motion, but till
now the expression of this motion to the operations system has often been a tedious
bottleneck. In this paper we present the design, implementation, and experimen-
tal results for a new operations system for high-DoF robots which employs virtual
articulations to address this issue.

In our system, which we call the mixed real/virtual operator interface, the op-
erator is presented with a graphical model of the robot and a palette of available
joint types (figure 2, left). To constrain motion for a particular task, the operator
instantiates virtual joints from this palette and interconnects them to the links of the
actual robot and/or to new virtual links, constructing arbitrary virtual extensions to
the actual robot kinematics. Virtual joints can be erected to parametrize specific task
DoF; for example the long prismatic virtual joint in figure 4 parametrizes the length
of a trenching motion. By closing kinematic chains, virtual articulations can also
constrain whole-robot motion, thus narrowing the space of possible motions for a
redundant task to those that satisfy the operator’s intentions. The virtual Cartesian-3
joint in figure 4, which allows three axes of translation but no rotation, constrains
ATHLETE’s deck to remain flat, even while moving to extend reach for the primary
trenching task. Virtual links can serve as interconnection points for more complex
constructions of virtual joints—the chain of two prismatic and two revolute virtual
joints in figure 4 is interspersed with three virtual links—and can also model task-
related coordinate frames or world objects (figure 3).

Once virtual articulations are constructed for a task, the operator can move any
joint or link (e.g. with the mouse), and the system interactively responds in real-
time with a compatible motion for all joints which best satisfies all constraints. For
example, in the trenching task, the operator can effectively command “trench from
-0.9m to +0.4m” by operating the corresponding virtual prismatic joint, or they may
simply drag the constrained end effector with the mouse. We validate these motions
in simulation and then execute them on the hardware.
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Our system is generally applicable to kinematic operations in articulated robots
of any topology, handling both open- and closed-chain constructions as well as
both over- and under-constraint. In this paper we focus on our recent results op-
erating new ATHLETE motions at JPL, but in other work we have also begun to
demonstrate the usefulness of our approach in specifying motions for modular re-
configurable robots which can be assembled in arbitrary topologies. We expect that
applications to other high-DoF kinematic motions, including in humanoids and in
serpentine robots, will also be both useful and direct.

We describe related work next. Then we explain the architecture of our mixed
real/virtual operator interface and detail the handling of under- and over-constrained
cases, a key aspect of our system. Next we show several inspection and manipulation
tasks on the ATHLETE hardware that would have been challenging with prior oper-
ator interfaces, including an experiment where we combine our virtual articulation
interface with a direct-manipulation input device that mimics one ATHLETE limb.
We developed this device, the Tele-Robotic ATHLETE Controller for Kinematics
(TRACK), in prior work [6]. We conclude by summarizing known limitations of
our approach and possible future directions.

2 Related Work

We see our new method of operating high-DoF robots using virtual articulations
as filling a gap between existing low-level methods, including forward and inverse
kinematic control, and existing high-level methods such as goal-based motion plan-
ning and programing-by-demonstration.

Bare kinematic control without higher-level goals or constraints is potentially te-
dious in the high-DoF case given the high dimension of the joint space. Task prior-
ity and task space augmentation approaches [7] can support high-DoF motion using
holonomic constraints, but do not themselves offer any particular way to specify
those constraints. Our virtual articulation approach addresses this with a concrete
framework in which holonomic constraints can be constructed by an operator.

Goal-based motion planning, e.g. the classic “piano moving” problem of achiev-
ing a target configuration among obstacles, is typically not directly applicable in
cases where the operator would also like to specify more detailed or continuous
aspects of the motion. If we want such scalable motion specification, to constrain
motion “on the way” to a primary goal configuration, we need something more. Vir-
tual articulations are one language that does permit such scaling: the operator can
constrain motion as much or as little as desired.

Programming-by-demonstration allows more specific motion specification, but is
hard to apply when the robot topology diverges from preexisting systems and biol-
ogy. Thus it has been used with some success for humanoids , or when mimicking
hardware is available, as in our prior work with the TRACK direct-manipulation
hardware interface. But, short of building a full 36-DoF scale model, how to apply
the technique to the whole ATHLETE mechanism, or in general, for arbitrary topol-
ogy robots? Virtual articulations are not tied to any particular topology. Further,
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in section 4 we show that an integration of TRACK with our virtual articulations
system can have some of the advantages of both.

Though we don’t find any prior authors using virtual articulations to build a
general-purpose operations interface as we have done, there have been some re-
lated ideas. Virtual reality operator interfaces (e.g. [3]) have been explored where a
model of the robot and its surroundings is provided to the operator for pose manipu-
lation; we go beyond this by allowing the operator to virtually change and augment
the kinematic structure. Our approach was motivated in part by past work with geo-
metric constraints in graphics and animation [8, 12]; we show that a homogeneous
model of only links and joints is sufficient in some practical applications.

Finally, we note that CAD constraint solvers [5] and physics simulators [10] have
similar capabilities to our system. CAD solvers usually don’t permit over-constraint,
and typically use heuristics to infer constraints in under-constrained cases, which
may or may not be what the operator intended; our system usefully handles both
under- and over-constraint without heuristics. Physics simulators can also be prob-
lematic in over-constrained cases, and the need to specify physics parameters such
as mass and friction properties could make the process of building virtual articula-
tions much more tedious. Our current approach is purely kinematic, so constructing
virtual articulations only requires posing them in space and connecting them. Pratt
et al explored a dynamic correlate to our virtual articulation approach which they
called virtual model control [9] for some applications in legged locomotion.

3 The Mixed Real/Virtual Operator Interface

The key advance that differentiates our system from prior approaches is that we
permit the operator to interactively construct virtual links and joints both to con-
strain and parametrize the primary task and also to constrain coordinated whole-
robot motion. In this section we give an overview of the architecture of our system
and explain how we address handling of under- and over-constrained cases, which
are both common and important. Due to space constraints we omit our approaches to
a number of other issues which do need to be considered in a full implementation,
including: joint pose representation, handling of joint motion limits, efficient and
accurate Jacobian computation, joint inversions and re-grounding, model complex-
ity management, automatic decomposition of the model into independently solvable
pieces, adaptive step size and damping, and graphics/UI features.

Figure 2 shows our system’s architecture. There are three categories of inputs: (1)
robot models are loaded into the system from standard file formats such as VRML;
(2) the operator may add and remove virtual articulations on-line with a variety of
topological mutators; and (3) the operator may move joints and links, either virtual
or actual, by a variety of means including mouse and keyboard actions, waypoint
sequencing and interpolation, or by using special-purpose input hardware.

These inputs determine the evolution of both topological and numeric models that
include the actual robot kinematics plus any virtual articulations. The topological
model is a kinematic graph where the edges correspond to joints and the vertices to
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Fig. 2 Joint catalog and architecture of the mixed real/virtual operator interface. Arbitrary
topology open- and closed-chain articulated robots are modeled with the set of 11 joints
at left. Virtual articulations, such as adding or suppressing joints, are applied on-line with
a set of topology mutation operations. Finally, the resulting mixed real/virtual structure is
kinematically operated by the mouse or other input devices.

links. The numeric model consists of the current pose of each joint as well as the
joint constraints, motion limits, and several kinds of goals, as described below.

The main action of the system is to compute feasible whole-robot motions in
response to the operator’s requests to move joints and links. Our approach is iterative
local linear optimization based on the damped least squares Jacobian pseudoinverse
and nullspace projection. This well-known approach has long been used in robotics;
we apply a multi-priority formulation recently presented for a graphics application
in [1]. The per-iteration time complexity of this formulation, typically dominated
by a nullspace projection step, is quadratic in the number of joints. Nevertheless our
implementation achieves real-time (several 10s of ms) response to operator motion
gestures for the 50+ joints comprising the ATHLETE model plus various added
virtual articulations. As with any local optimization approach, local optima must be
avoided by higher-level means—the system is more of a controller than a planner.
In our work thus far these global planning tasks are handled by the operator.

As feasible motions are computed they drive the two main outputs of the system:
an interactive 3D graphical display of the robot plus any virtual articulations, and
trajectories of the robot’s joints that can be sent to the hardware for execution.

In general the space of feasible motions may be continuous (under-constrained
case), discrete (well-constrained), or empty (over-constrained). Since the well-
constrained case requires an exact balance of freedom and constraint, the under-
and over-constrained cases are more common, and we give them special attention.

Handling Under-Constraint. When the operator adds a virtual joint closing a kine-
matic chain the dimension of the feasible configuration space can be reduced. This is
the first of three ways that we address under-constrained (aka redundant) problems:



360 M. Vona et al.

the operator may intentionally construct virtual articulations to express specific mo-
tion constraints and thus reduce redundancy.

The second way we handle redundancy is by exposing two levels of joint pose
goals to the operator: targets and postures. A target in our system is the pose to
which the operator has specifically manipulated (e.g. by mouse or keyboard interac-
tion, or by waypoint interpolation) a joint or link.1 A posture models a default pose;
for ATHLETE operations we typically set joint postures according to the “standard
driving pose” (figure 1). The system solves first for motions which best attain all
targets, and within the set of motions which do, the system second tries to attain
postures. Target and posture are both optional for each DoF of each joint.

Goal attainment is prioritized in our system by structuring the solvers according
the formulation presented in [1], which we call prioritized damped least squares
(PDLS). In this formulation there are an arbitrary number of priority levels, each
containing an arbitrary set of constraints. The constraints at the highest priority level
are solved first, and the solution for each subsequent level is projected onto the
nullspace of the levels above it.

The least squares aspect of PDLS provides the third and ultimate means of han-
dling under-constraint.2 The least squares solution to an under-constrained problem
will select a shortest step in joint space at each iteration, resulting in incrementally
minimal motion: at a fine scale, the system will produce direct straight-line moves
from one configuration to the next. In the under-constrained case a roundabout tra-
jectory might also satisfy the constraints and maximize goal attainment, but would
doubtless be surprising to the operator.

Priority Levels and Handling Over-Constraint. The least-squares nature of PDLS
also means that within a priority level, over-constraint will result in a solution which
minimizes the squared error across all constraints in the level. This is useful and
can produce intuitive behavior from the operator’s perspective. Another important
feature of PDLS in over-constrained cases is the prioritization: satisfaction of con-
straints at a lower priority level will not compromise satisfaction at higher levels,
even when the constraints conflict.

There are four priority levels in our system:

1. Joint invariants are solved at the highest priority level. For example, a spherical
joint permits no translation, so when closing a kinematic chain it induces three
invariant goals expressing that its three translation components must be zero.

2. Lock goals model joints that have been “frozen” by the operator: each DoF of
such a joint must remain as it was when the joint was first locked.

3. Target goals model intended joint and link poses as described above.
4. Posture goals model default poses, also described above.

1 To model pose goals on a link l we transparently introduce a virtual general (unconstrained
6-DoF) joint j connecting l to the world frame, and set the goals on j.

2 And to complete the terminology, damping refers to the well-known technique of numeric
stabilization at near-singular configurations by introducing a damping factor.
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It would also be possible to insert other (differentiable) optimality criteria, such
as manipulability maximization or joint limit avoidance, as new priority levels.

To see how priority levels help in cases of over-constraint, consider the spherical
object inspection task in figure 3. In this case we use TRACK to pose the limb hold-
ing the inspection camera. But there is also a virtual spherical joint constraining the
camera, and TRACK has no haptic feedback. So, while the operator will generally
try to pose it near to a feasible configuration, invariably this will diverge from the
strict spherical constraint surface, over-constraining the limb. The spherical joint
constraint is modeled at the invariant level, and TRACK’s pose is modeled at the
target level, so the system will automatically sacrifice the latter for the former. The
overall effect is as if the virtual spherical joint was physically present and rigidly
constraining the motion, and as if there were an elastic connection between TRACK
and the motion of the actual limb.

4 Operating ATHLETE with Virtual Articulations

The object inspection task is one of four hardware experiments we present. All show
the ability of our mixed real/virtual interface system to help design specific motions
which are rapid for human operators to conceptualize but difficult to express in prior
operations interfaces, including several other software systems under development
within NASA [4, 11] as well as our own TRACK device used alone [6].

For the object inspection task, the operator designs a motion where a limb-
mounted camera inspects a roughly spherical object while maintaining a constant
distance. The operator directly models this constraint using a virtual spherical
joint connecting the object (itself represented as a virtual link) and the camera.
A secondary goal is to extend the space of reachable viewpoints by using the five
other limbs to lean the hexagonal deck, but because the deck often carries a payload,

Fig. 3 ATHLETE inspecting an object using both the mixed real/virtual interface and
TRACK, a special-purpose input device that mimics one limb.
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Fig. 4 ATHLETE performing a trenching motion (mixed real/virtual interface view inset).

Fig. 5 ATHLETE panning and tilting a fixed-mount camera with whole-robot motions.

we need to maintain its orientation. This is expressed by a virtual Cartesian-3 joint
connected between the deck and the world frame.

After configuring the virtual articulations the operator can drag the camera with
the mouse to scan the object. As described above, in this case we also integrated our
TRACK hardware interface, which simplified motion specification. To save cost—
total materials cost for TRACK was under $500 USD—we opted not to include hap-
tic feedback in TRACK, potentially making it less applicable for constrained tasks.
This example shows that constraint prioritization can mitigate the issue somewhat.

Figures 4, 5, and 6 give three additional examples: (1) a trench is inspected,
with the support legs moving the deck to extend reachable trench length; (2) a
rigidly mounted side-facing camera is made to pan and tilt with the motion both
parametrized and constrained by virtual revolute joints; and (3) two limbs execute a
pinching maneuver with the pinch distance and angles controlled by virtual prismatic
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Fig. 6 ATHLETE performing a bimanual pinching motion.

and revolute joints. For the bimanual experiment the robot was partially supported
by an overhead crane as simultaneously raising two limbs is not supported on the
current hardware. The crane served as a safety-backup in the other experiments.

In our current implementation we design all virtual articulations and motions in
simulation, export them as joint space waypoint sequences, typically generating a
new waypoint whenever any joint moves at least 2◦. We then check the sequences in
a previously validated simulator and execute them as position-controlled trajectories
on the hardware. We performed each of the four experiments at least twice, though
such repeatability is actually a property of the hardware, not our interface system.

5 Limitations and Future Work

A next step for this work will be to perform measured usability experiments; for
those to be meaningful we should implement a few additional critical usability fea-
tures including snap-dragging [2] and undo. We will also implement a more self-
documenting drag-and-drop UI for constructing virtual articulations. We envision
measuring both the operator learning time for our system vs. existing systems at
JPL, and also the time required to design a complex motion in each system. The
comparison may be indirect as our system is higher-level than the others.

Our purely kinematic implementation applies only to fully-actuated cases; we are
developing quasi-static extensions for some underactuated tasks. Some constraints,
for example helical motion, cannot be modeled with the current set of joints in the
system. Possible extensions could increase the set of representable constraints.

6 Summary

Our mixed real/virtual interface implements virtual articulations as a rapid graphical
operator interface for coordinated manipulation and inspection motions in high-DoF
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articulated robots. This new method fills a gap between existing lower- and higher-
level interfaces. It is topology-independent, supports scalable motion specification,
and usefully handles both under- and over-constraint.

We used our interface to experimentally demonstrate four new classes of coor-
dinated motion for NASA/JPL’s 36-DoF ATHLETE, all of which would have been
difficult using prior methods, and we used constraint prioritization to combine our
inexpensive direct manipulation device with virtual motion constraints.
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Field Experiment on Multiple Mobile Robots
Conducted in an Underground Mall

Tomoaki Yoshida, Keiji Nagatani, Eiji Koyanagi, Yasushi Hada, Kazunori Ohno,
Shoichi Maeyama, Hidehisa Akiyama, Kazuya Yoshida, and Satoshi Tadokoro

Abstract. Rapid information gathering during the initial stage of investigation is an
important process in case of disasters. However this task could be very risky, or even
impossible for human rescue crews, when the environment has contaminated by
nuclear, biological, or chemical weapons. We developed the information gathering
system using multiple mobile robots teleoperated from the safe place, to be deployed
in such situation. In this paper, we described functions of the system and report
the field experiment conducted in a real underground mall to validate its usability,
limitation, and requirements for future developments.

Keywords: Search and Rescue, Teleoperation, Field Robotics, Mapping.

1 Introduction

Confined spaces such as underground cities, subways, buildings, and tunnels pose
the maximum risk to first responders during urban search and rescue missions. Their
advanced equipment and materials have the following objectives:

1. reduce the risk to personnel by using equipment instead of human for performing
critical tasks;

2. perform tasks that humans can not execute; and
3. support personnel for rapid and sure execution of the task.

The responders will use robots and related technologies as advanced equipment to
achieve these objectives.
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Fig. 1 Field experiment conducted in
underground mall “Santica”

The Ministry of Economy, Trade and Indus-
try of Japan (METI) has investigated important
issues that are required to be resolved in or-
der to strongly promote robot applications, and
they have designed a roadmap for the same.

In order to promote the development of dis-
aster response robots, METI and New Energy
and Industrial Technology Development Or-
ganization (NEDO) have set up “Project for
Strategic Development of Advanced Robotics
Elemental Technologies, Area of Special En-
vironment Robots, RT System to Travel
within Disaster-affected Buildings.” The mis-
sion statement is as follows:

1. Gather information rapidly at the first stage
of the disaster

2. Increase efficiency and accuracy of re-
sponse by quick and distributed sensing.

3. Use RT (robot technology) in order to eliminate the risk of possible secondary
disaster to human responders.

To meet the above demands, we have launched an industry-government-academia
research project in collaboration with five universities, two national institutes, and
three companies. The objective of the project is to develop an RT system for use in
search and rescue missions; it consists of (1) highly maneuverable multiple robots,
(2) a scalable communication system for long distance teleoperation of robots, (3) an
intelligent remote control system for the robots used for assisting human operators,
and (4) a 3-D mapping technology in no GPS environment and an environmental
information management system for locating victims and aid rescue crews strategi-
cally. Disaster areas such as underground malls may be contaminated with nuclear,
biological, or chemical weapons due to which they might be very dangerous for hu-
man responders during the initial stage of investigation. We have been developing
the above RT system since 2005, which consist of multiple tracked vehicles, and
have conducted a field experiment in an actual underground mall “Santica” located
in Kobe, Japan. Fig.1 shows Kenaf moving toward simulated victims during the field
experiment.

In this paper, we have described the RT system in brief. Then we have reported
the results of the field experiment conducted to validate our RT system’s usability
and limitations, and identify requirements for future developments.

2 Fundamental Functions

RT systems used in search and rescue missions are required to consist of
highly maneuverable robots, teleoperating system, a positioning system, and a
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Fig. 2 Architecture of controller components

communication system. In order to integrate these systems and evaluate their per-
formances, we have developed 10 tracked vehicles that serve as a research platform
named “Kenaf.” The fundamental mechanism and functions of Kenaf are introduced
in the following sections.

2.1 Highly Maneuverable Mobile Robots

Kenaf has a pair of full-body main tracks, and two pairs of sub-tracks (flippers)
whose end pulley is larger than the hub pulley. Each flipper can change its orienta-
tion. It has a simple and tough ladder frame structure. The resulting total weight of
the basic configuration is 20 [kg]. Heavy components such as batteries and motors
are placed in the lower position of the robots to maintain a low center of gravity.
This, in turn, ensures that Kenaf with the basic configuration, does not fall over until
its roll angle exceeds 80[◦], in theory. The main tracks are driven by a 90[W] brush-
less DC motor with a dedicated dual channel motor controller. The orientation axis
of each flipper is driven by a 50[W] motor. The maximum running speed is approx-
imately 0.8 [m/s] when a standard gear reduction ratio is employed and it increases
to 2.5 [m/s] with a high speed configuration of gear reduction ratio.

2.2 Control Architecture

Kenaf has three Renesas SH2 embedded controllers as the motor controller and
an AMD Geode-based low-power-consumption board computer as the main con-
troller(Fig.2). Each motor controller is responsible for controlling the speed of the
two motors. The controller used for the motor driving the main track employs 3D
odometry (described in Section 2.4) and controls the trajectory of the robot so that
it follows a given target line. The main controller coordinates with all the motor
controllers by communicating over CAN. It has a certain degree of autonomy in
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terms of avoiding obstacles (Section 3.1), following the given path (Section 3.2),
stopping in case of emergencies, and controlling the flippers (Section 3.3).

The main controller runs on Linux using a Gentoo Live CD that is highly cus-
tomized for use with the PC installed on-board Kenaf. All read-only files are stored
in a read-only filesystem (squashfs), and other files, including configuration files,
log files, and some components of Kenaf are stored in tmpfs that is initialized and
created from the read-only file on each boot. This configuration ensures that no
permanent damage is caused to the filesystem in case of sudden power failure. A lo-
comotion controller named kenafLocoServer accepts motion commands and status
queries via CORBA. Status information used for executing on-board processes is
also available on the shared memory to avoid communication overhead in CORBA.

2.3 Basic Operator Interface

Fig. 3 Operator console with basic
configuration

As a baseline remote control function, we have
developed a basic operator interface that can
be used to control each 6DOF motion of the
robot using a simple game pad and it can be
used to monitor parameters such as battery volt-
age, pressure, and temperature. The operator
console and Kenaf communicate over an IP
network, which can be unreliable. To avoid a
critical situation wherein the operator can not
transmit a stop command to Kenaf, the opera-
tor console communicates with a dedicated re-
mote control server via UDP instead of CORBA
IIOP. If communication is not restored within a certain time period, the remote con-
trol server will disables all the actuators on Kenaf for safety.

The operator makes decisions on the basis of Kenaf’s camera view and its tilt
status. Even though some various camera configurations are available, the primary
camera configuration employed for basic teleoperation consist of a wide-view-angle
(134[◦] vertical, 103[◦] horizontal) look down camera placed on top of a pole(Fig.1).
The operator can perceive not only the surroundings but also the condition of Kenaf
using this camera. Fig.3 shows images observed at the basic operator interface using
the look down camera, and front camera.

2.4 3-D Odometry Using 3DOF Gyroscope

Generally, realizing an odometry system with tracked vehicles is difficult, because
the turning motion of the vehicle generates positioning errors. Moreover, eliminat-
ing the positioning errors in our system is very important to transmit the position of
the robot to the operator and to map the target environment. Therefore, we have pro-
posed a novel odometry method for the position estimation of tracked vehicles with
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gyro sensors used in a 2-D environment tracking into account the slip characteristics
of the tracked vehicle. The method is described in [7] in detail.

2-D odometry can not be used to provide accurate 3-D position information of
our robots, and the temperature drift of the gyroscope is also a serious problem.
Therefore, we have extended the above method for use in 3-D environments and
have appended a drift cancellation function [8]. A preliminary experiment was con-
ducted in an environment consist of standard stairs, and 60[cm] errors on an average
were detected during 25[m] up-down navigation of the stairs. Other results were de-
scribed in [8] in detail. These results are reasonable for our application, and this
method was successfully implemented on all our robots.

2.5 Communication Network

Fig. 4 Hybrid mesh network system

Remote control of the communica-
tion system in an RT system is one
of the major challenges. In Japan,
the antenna power of wireless LANs
is limited to 10 [mW]; therefore,
its coverage area is in the range
of 50 to 100 [m]. Moreover, in-
creased traffic causes network con-
gestion in communication infrastruc-
ture such as cellular networks at the
time of disasters. Using cables or
wireless mesh networks are inade-
quate in such situations. Cables ex-
hibit better performance in terms of bandwidth and latency as compared to wire-
less networks, but they hinder robot motion owing to their weight and tendency to
coil up.

Therefore, we have designed and developed a hybrid mesh network system con-
sisting of a cable network and a wireless mesh network (Fig.4). The traffic between
the wireless mesh nodes of this system is controlled using the Rokko Mesh Router
designed by Thinktube Inc., which also serves as a 50 [m] network cable reel. The
physical layer of the network complies with IEEE802.11g in the case of the wire-
less network and 100base-TX in the case of the cable network. The mesh network
is based on the AODV routing protocol. A cable deployment robot is used to de-
ploy the cables and wireless mesh nodes every 50 [m]. The other robots are then
connected to the operator via the hybrid mesh network.

3 Operator Assistance Functions

3.1 Obstacle Avoidance Function

Using our RT system, operators manually control the robots on the basis of vi-
sual sensor data (described in Section 2.3). However, in situations where some
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evacuees obstruct the path of the robots, an autonomous obstacle avoidance function
can prove advantageous for reducing the operator’s work load. Therefore, we have
appended a simple obstacle avoidance function on Kenaf which uses the sensor data
acquired by a laser range finder (Top-URG UTM-30LX, Hokuyo Corp.). An impor-
tant feature of the function is that it generates a path such that a certain distance is
maintained from the moving obstacles for safety.

Fig. 5 Sensor data obtained by laser
range finder and generated path

Fig.5 shows the actual momentary sensor
data and the path generated in the case of
a human standing in front of the robot at a
distance of 4 [m]. First, the robot obtains 2-
D range information (red dots in the figure).
Then, possible paths for the robot are gener-
ated (green segments in the figure), and, fi-
nally, taking into account the boundary of the
obstacles, the pink segment is selected as the
robot’s path. The autonomous obstacle avoid-
ance function is run on a realtime basis by re-
peating the above procedure every 1/10 [s].

This obstacle avoidance function can any-
time be replaced with conventional manual
control.

3.2 Pointing Navigation Function

Teleoperating a mobile robot over long distances is a tough and tedious task for
human operators. We have developed an operator interface for operating robots in
flat and large areas, which reduces interaction between the robot and the operator.
The interface accepts a target path expressed in terms of a sequence of waypoints,
and the robot moves along the path autonomously. Thus, even in the case of long
communication latency between the operator console and the robot, robot motion
does not get affected.

Fig. 6 Left: Robot’s camera view. Right: Bird’s-eye view.

We have setup two
view modes for the op-
erator. One is the local
map mode that shows the
sensor data obtained from
a horizontal laser range
finder(Fig.6, right), and
the other is the camera
video mode that shows
images that are obtained from the on-board camera and that are superimposed by
the sensor data(Fig.6, left). The operator can switch between these modes anytime
during operation. Two cameras focused diagonally forward from left to right are
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used in addition to the standard look down camera for wide field of view. The oper-
ator clicks on these views to specify the waypoints.

The operator can interrupt the autonomous motion of the robot and switch to the
manual control mode anytime during operation. Further, when obstacles are detected
along the path, the operator can switch to the obstacle avoidance mode, which is
described in the previous section.

3.3 Autonomous Flipper Control System for Operator’S
Assistance

Flippers (sub-tracks) greatly assist robots in traversing large steps and rough ter-
rains. However, it is challenging for an operator, particularly for one who does not
possess necessary skills, to control such flippers remotely without a direct view of
the actual environment.

To assist the operation of the tracked vehicle “Kenaf,” we have been developing
two autonomous flipper control systems based on different approaches. The com-
mon strategy of both the systems is to control each flipper angle on the basis of the
sensor data to traverse bumps on the ground. The operator is required to indicate the
direction to the robot for navigation.

One approach is on the basis of the contact detection of flippers to the ground, and
the gap detection under main tracks. The contact of flippers is detected by measuring
each flipper’s motor torque, and the gaps under main tracks are obtained from PSD
range sensors attached to the front and rear of Kenaf. Details are described in [1].

The other approach is to use two laser range finders to obtain the terrain shape
information [6]. The two laser range finders are located on both side of Kenaf. Their
sensing surfaces are perpendicular to the ground so that the ground shape in the
vicinity of the two front flippers can be perceived. Fig.7 shows the locations of the
sensors used to obtain the terrain information.

Both systems have been successfully implemented on Kenaf, and some prelimi-
nary experimental results have validated the usefulness of both systems. Fig.8 shows
Kenaf traversing steps using the former autonomous flipper control system.

Fig. 7 Location of laser range sensors

0[sec] 2[sec]

4[sec] 6[sec]

Fig. 8 Traversing random step fields under
autonomous flipper control
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4 Environmental Information Gathering Functions

4.1 3-D Mapping Using Laser Range Finder

Fig. 9 3-D scanner named TK-
scanner.

3-D maps are very useful to rescue crews for strate-
gizing. One of the features of a 3-D map is that it
can be viewed in multiple modes, such as a bird’s-
eye view, which is a big advantage for strategizing
rescue plans.

The simplest method to obtain a 3-D map using
a robot is to fix a laser range finder on the upper
position of the robot. It directed upward to obtain
distance information leftward, upward, and right-
ward of its body. 3-D information is then obtained
by moving the robot in the forward or backward di-
rection. This is a very simple and effective method
to obtain 3-D information. However, the quality of
the map depends largely on the accuracy of the es-
timated position of the robot.

To obtain detailed 3-D environmental information, we have developed another
small-sized, wide-view, and lightweight 3-D scanner named TK-scanner [2] (Fig.9)
using a 2-D laser range finder and a pan-tilt mechanical base. The TK-scanner spun
the tilted 2-D laser range finder to obtain a set of 3-D information in 10 [s]. To
obtain a consistent 3-D information, the robot must keep still while TK-scanner is
scanning.

4.2 Geographic Information System

Information sharing is the most fundamental and important issue in managing rescue
operations in case of disasters. Because mobile rescue robots and devices provide
only fragments of information, we need a database system to store and integrate
them. Further, because this information is location and time-sensitive, the database
system should be similar to a geographic information system(GIS).

We used DaRuMa (DAtabase for Rescue Utility MAnagement) [5] as the GIS to
gather and integrate the sensor data obtained from our robots. DaRuMa is one of the
MISP (Mitigation Information Sharing Protocol) [3, 4] server implementation sys-
tems, and it serves as a database middleware. MISP provides functions to access and
maintain a geographic information database over networks. The protocol consists
of pure and simple XML representations; this facilitate the development of systems
that can handle this protocol. The entire system based on MISP forms a client-server
system wherein the server is the database and clients are data providers and/or data
requesters. Client programs can communicate with DaRuMa using MISP, and all
registered/queried data are transferred to/from a SQL server through DaRuMa. Our
robots can directly transmit their sensor data to DaRuMa through the hybrid mesh
networks.
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(a) 2-D view. (b) 3-D view.

Fig. 10 Integrated sensor data of laser range finders installed on several robots

5 System Integration and Field Experiment

The experiment was conducted on 11/6/2008 at 2:30 AM in “Santica” underground
mall located in Kobe, Japan, to validate the integrated system in a real environment.

The starting position of three of the Kenaf robots was set close to the operator
station in front of several blocks of random step field which simulate uneven terrain.
The fourth robot was placed at a distance of 550 [m] from the station. All the four
Kenaf robots were teleoperated from the operator station.

Because we only had a limited time to use the site, the network infrastructure for
this experiment was set up by human in advance, instead of using cable deployment
robot. It was 12 wireless nodes connected by 50 [m] LAN cables in serial.

The first robot with the basic configuration was teleoperated to travel as much
distance as possible. The second robot employs intelligent operator assistance func-
tions, and it was used to explore the environment in the vicinity of simulated vic-
tims. This robot was normally teleoperated using the pointing navigation interface,
and the operator switched to the obstacle avoidance mode or the manual control
mode as and when required. All the other robots were teleoperated using the basic
operator interface with the video stream obtained from the look down camera in-
stalled on each robot. To verify the reliability of the operator assistance functions, a
group of people was used to simulate evacuees in the real environment.

The third robot which was equipped with TK-Scanner (Fig.9), also was used
to explore and obtain detailed 3-D information regarding the environment in the
vicinity of the simulated victims simulated victims. Fig.11 shows a resulting 3-D
map obtained using TK-Scanner. All the 3-D data measured by each Kenaf robot
was input to the DaRuMa server.

The role of the fourth robot was to monitor the first robot, and to add more traffic
load on the network for network performance test. The reliability of the network
system was verified monitoring the network traffic from these four robots.

In general, the experimental results indicate that the integrated system shows
good performance. The first Kenaf robot traversed a corridor and reached a dead
end at a distance of 683 [m] from the starting point. The hybrid network system
successfully provided coverage even when each robot used 4 [Mbps] of bandwidth
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Fig. 11 The Kenaf with TK-Scanner in action and a resulting 3-D map.

for transmitting the video stream and control signal. An automatic cable deployment
was one of the key technology to succeed in our scenario, but it was not used in this
experiment. We will apply our developing cable deployment robot in our future field
experiments for setting up the network infrastructure.

The GIS system worked successfully in the case of the four robots. The robots
were operated for approximately 1 [h], and the GIS system could register and inte-
grate more than five million data points during this time. Fig.10-(a) shows the exam-
ple point data around starting point registered by two robots. Fig.10-(b) also shows
3-D viewer application, called DaRuMa Viewer, viewing all data points which was
obtained by a fixed laser range finder on the first robot. Anyone can explore and in-
teract collected data in the DaRuMa server with this viewer even when the operators
operate robots at the same time.

On the basis of the experimental results, we have found that the current version
of the DaRuMa server does not scale well because the data entry process could
handle only one registration request at once. The function used for registering and
handling the data is required to be modified in the next version. All the information is
registered on a coordinate frame designed for each robot. The relationship between
each coordinate frame was configured in advance on the basis of the initial position
of each robot. However, the accumulated positioning error of each robot caused
distortion in the resulting 3-D map. Since each map from each robot are generated
independently from other map from other robot, there were some inconsistencies
in resulting united 3D map. We propose to use the SLAM technique to refine the
resulting map in our future experiment.

The intelligent operator assistance functions were very helpful in a particular sit-
uation. In case the simulated evacuees moved toward Kenaf in walking speed, the
obstacle avoidance function successfully avoided the collision of the robot with the
evacuees. Nevertheless, when evacuees moved toward Kenaf in running speed, it
failed in avoiding collisions. In reality, a more intelligent function may be required.
The pointing navigation function worked well when there were only a few obstacles
in front of the robot. However, in other cases, manual navigation was effective in
controlling the robot. This was because the paths could not always be determined in
advance. In case of moving or large number of obstacles, the operator has to deter-
mine paths using imprecise, and incomplete information, which is not easy or even
possible. This problem might be solved if an advanced obstacle avoidance function
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is integrated into the pointing navigation function. The two flipper control systems
were successfully integrated in two of the Kenaf robots. Both systems drastically
decreased operator interactions in the presence of a stairs and random step fields.

6 Conclusions

In this paper, we have presented the results of a field experiment conducted using
a remote controlled multiple mobile robot system as an advanced tool for assisting
first responders during an urban search and rescue mission. Four mobile robots were
simultaneously successfully operated using a realtime video stream of the environ-
ment. Data such as 3-D information of the environment, location of the victims, and
trajectory of each robot was input to GIS DB server, and this data could be used
to design a unified map. Further, we are attempting to enhance the hybrid network
system so that it can operate 10 robots by using IEEE 802.11n.
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Learning to Identify Users and Predict Their
Destination in a Robotic Guidance Application

Xavier Perrin, Francis Colas, Cédric Pradalier, and Roland Siegwart

Abstract. User guidance systems are relevant to various applications of the service
robotics field, among which: smart GPS navigator, robotic guides for museum or
shopping malls or robotic wheel chairs for disabled persons. Such a system aims
at helping its user to reach its destination in a fairly complex environment. If we
assume the system is used in a fixed environment by multiple users for multiple
navigation task over the course of days or weeks, then it is possible to take advantage
of the user routine: from the initial navigational choice, users can be identified and
their goal can be predicted. As a result of these prediction, the guidance system
can bring its user to its destination while requiring less interaction. This property is
particularly relevant for assisting disabled person for whom interaction is a long and
complex task. In this paper, we implement a user guidance system using a dynamic
Bayesian model and a topological representation of the environment. This model is
evaluated with respect to the quality of its action prediction in a scenario involving
4 human users, and it is shown that in addition to the user identity, the goals and
actions of the user are accurately predicted.

1 Introduction

Robots are more and more present in the daily life, not only in the industry but also
at home as toys or as service robots such as vacuum cleaners. There is also a grow-
ing demand in the health-care domain for smart assistive device such as intelligent
wheelchairs. The present paper is focused on an intelligent system designed to help
the elderly or disabled people in their daily activities. For these people, moving in
their houses or passing through doorways may represent challenging tasks. We de-
veloped a semi-autonomous robot for improving user mobility while minimizing the
required input, i.e. having an interaction process adapted to low throughput devices
such as single switches, sip and puff systems, brain machine interfaces, or simple
voice recognition. More precisely, at each crossing, the robot proposes a direction of
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travel to the user who will then either agree or disagree. The better the propositions
are, the faster and easier the human-robot interaction is.

In this work, a dynamic Bayesian network (DBN) is used in order to learn the
habits of multiple human users of a robotic helper. By habits, we mean the suc-
cession of navigational tasks one executes in a known environment: in a retirement
home for instance, one resident wakes up in his bedroom, goes to the bathroom, then
to the common room where the breakfast is served, and then goes to other rooms for
his daily activities. Another resident will have other preferred locations for his own
activities. All these accumulated additional information allow the robotic assistant
to help its current human user from the first movements of a new travel until the
destination. From the system’s point of view, the actual identity of its user is not a
relevant information. A user is merely defined by his activity pattern.

In the next section, we describe related works in recognition techniques for goal,
user, or activity. In section 3, we detail the developed DBN, represented as a graph-
ical model. Section 4 presents experiments in simulation as well as with a real robot
and their results. The final discussion appears in section 5.

2 Related Works

Our aim is to ease the navigation of users, therefore we will consider activity recog-
nition only from the point of view of navigation. In this case, inferring the user’s
intention requires techniques for plan recognition, which are used in a broad variety
of domains, such as motion prediction, speech understanding, video surveillance,
and so on. Uncertainty is inherent in plan inference, as the robot does not know in
advance the intended destination of a user. Furthermore, many ways can lead to the
same destination while one way can lead to several places. Probabilistic reasoning
techniques are used in almost all works (review in [1]), as they help to express and
maintain the beliefs in the possible goal destinations.

In the particular domain of intention recognition for navigation, two aspects were
studied recently: local intention recognition (immediate action or location in the
vicinity of the wheelchair from uncertain input) and global intention recognition
(goal destination from local decision). Our work focuses on this latter issue, assum-
ing that the recognition of the immediate intention is solved. In our test, this will be
achieved by an interaction device with low uncertainty, such as a joystick or a reli-
able speech recognition. Inferring a global intention requires the ability to localize
the robot on an available map of the environment. In a discrete environment repre-
sented by adjacent cells, Verma and Rao [12] described a Dynamic Bayesian Net-
work (DBN) in the form of a graphical model composed of a Partially Observable
Markov Decision Process (POMDP) enhanced with the notion of goal locations. Re-
lying on reinforcement learning techniques, the agent explores how it should behave
in order to reach three possible goals. Based on this acquired knowledge, the system
could infer the most probable goal from a set of possibly noisy observations. Taha et
al. [10] achieved similar results by fusing the robot position and the possible goals
as the new state definition in a common POMDP. Vasquez [11] described a growing
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hidden Markov model algorithm dedicated to continuous learning, clustering, and
making inference about car motions in a parking lot or people motions in a hallway.

Topological maps were successfully used in the works of Taha [10]. This envi-
ronment representation is compact and matches the human’s natural description of
a path better than metric representations [7] (e.g. “go on the left at the second cross-
ing” instead of “go straight for 100 meters, then turn left”). Many techniques exist
for the map construction, e.g. the generalized Voronoi diagram, and applications
based on imprecise human drawings have also been reported [9].

User models are often used in computer applications (e.g. intelligent help) or
online search or e-commerce sites (e.g. book recommendation based on other cus-
tomer’s choices) [8]. Based on databases containing information from numerous
users and some observations from the current user activity, reasoning techniques in-
fer the next user action and try to help him. With the aging population, some research
domains are focused on the activity recognition in so-called smart environments, i.e.
environments where sensors have been installed in order to monitor the activity of
human beings. The accumulated data are used to train algorithms which later serves
to determine human activities, supervise the user’s condition and medication, or de-
tect anomalies [2, 4, 6, 13]. Some researches try to further determine the attributes
(coffee drinker, smoker) of multiple users based on their location [3, 5].

As a summary, the studies on activity recognition perform well in capturing the
user habits, but they can only monitor ongoing activities, not help the user to per-
form a task. On the other hand, the studies on intention recognition for facilitating
the user’s motion do not try to learn the typical user’s daily habits. In this article,
we propose a system that learns the habits of multiple human users controlling a
robot and exploit this knowledge for the navigational control of the robot. In case
of an unknown user, the same system first infers the identity of the user from the
first movement in the environment before being able to exploit this knowledge for
helping its user specifically. The robotic system is given a topological representa-
tion of the environment a priori. While incrementally learning the global intentions
of a known user, it anticipates the user’s destination and proposes better actions, as
regular patterns of actions are performed day after day by the same user.

3 Model Description

The graphical model shown in figure 1 represents the dynamic Bayesian network
which composes the core of the system. Our DBN is an extension of a Markov De-
cision Process (MDP), with the agent’s State St and the Action At (lower part). The
state St is the observed pose of the robot, in terms of position in a given topological
map (a node) and orientation. 1 The action At is among the repertoire: forward, left,
right, u-turn, and stop. An action always connects to nodes of the map. The MDP is
enhanced by the notion of Goal state Gt , indicating the current global goal, and the

1 In relatively small and not too dynamic environments as the ones considered for this work,
localization can be considered as a solved issue.
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Fig. 1 Our dynamic Bayesian model for learning the habits of multiple users.

variable Goal reached Rt , a Boolean value indicating whether the agent’s current
state St is a goal state or not (P(Rt |Gt St) = 1 iff Gt = St ).

The term P(At |St Gt Rt) is specified separately according to whether or not the
goal is reached. First, when Rt = 0, P(At |St Gt) is the action model leading to each
goal Gt from any state St as deduced from the topological map (i.e no reinforcement
learning technique used). Then, when Rt = 1, the probability of staying still P(At =
stop) is higher than the other actions, so that the user can easily stop when it reaches
a goal location. The last term of the MDP, the transition model P(St |St−1 At−1), is
also deduced from the topological map.

With the goal of learning the user habits for multiple users, we added two more
variables. First, the user is symbolized with the variable Ut . Second, the variable
Glast , representing the last visited goal, makes possible the learning of the succession
of place visits, as will be shown later. Both the goal model P(Gt |Gt−1 Rt−1 Ut−1 Glast)
and the user model P(Ut |Ut−1 Gt−1 Glast) result from submodels, where predefined
terms related to the persistence of a goal (keeping the same goal or switching to an-
other one), resp. the persistence of a user, are combined with terms learned online
representing the knowledge acquired by the system. These submodels are described
in details in the appendix. When reaching a goal during an online supervised learn-
ing phase, the known user and the particular Gt and Glast are used for updating the
histograms of the probability distributions of the goal and user models.

From the model shown in figure 1, we compute at each time step several proba-
bility distributions. After the learning phase, the user is not known any more. Never-
theless, given the known variables St−1, At−1, and Glast , we can infer his identity by
computing P(Ut |St−1 At−1 Glast) using Bayes’ rule and the law of total probability:

P(Ut |St−1 At−1 Glast) (1)

=
1
Z ∑Gt−1

⎧⎪⎨⎪⎩
P(Gt−1) ∑

Ut−1

[P(Ut−1) P(Ut |Ut−1 Gt−1 Glast)]

× ∑
Rt−1

[P(Rt−1|Gt−1 St−1)P(At−1|Gt−1 St−1 Rt−1)]

⎫⎪⎬⎪⎭
where the term 1

Z corresponds to a normalization factor. For a guidance robot, we
also want to infer the goal the robot should be aiming to or the action it should
propose to the unknown user. These two distributions can be computed as follows:
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P(Gt |St−1 At−1 Glast) (2)

=
1
Z ∑Gt−1

⎧⎨⎩P(Gt−1) ∑
Rt−1

⎡⎣P(Rt−1|Gt−1 St−1)P(At−1|Gt−1 St−1 Rt−1)
× ∑

Ut−1

{P(Ut−1)P(Gt |Gt−1 Rt−1 Ut−1 Glast)}
⎤⎦⎫⎬⎭

P(At |St−1 At−1 Glast) (3)

=
1
Z∑St

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(St |At−1 St−1)

× ∑
Gt−1

⎡⎢⎢⎢⎢⎢⎢⎣

P(Gt−1)

× ∑
Rt−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P(Rt−1|Gt−1 St−1)P(At−1|Gt−1 St−1 Rt−1)

× ∑
Ut−1

⎡⎢⎢⎣
P(Ut−1)

×∑
Gt

⎧⎨⎩
P(Gt |Ut−1 Gt−1 Rt−1 Glast)

×∑
Rt

[
P(Rt |Gt St)
×P(At |Gt St Rt)

] ⎫⎬⎭
⎤⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
If the user is known by the robot (e.g. through manual or visual identification), we
can use a Dirac distribution for P(Ut−1) and recompute all the above equations with
this additional information, the system giving back the learned user habits.

4 Experiments

We run experiments of our multi-user guidance robot in our laboratory environment,
using a differential-drive robot (fig. 2a). Figure 3 shows that the topological decom-
position of the environment is made of goal nodes and connecting nodes. The former
ones represent either people’s desks (D1-D6) or common rooms like the cafeteria
(C), the printer room (P), the robot lab (RL), or the bathroom (B). Four users share
the robot, each with a particular desk and typical sequence, all starting from the
entrance E. User 1 executes the sequence D3-D4-P-C-D3-D2-D3, user 2 D4-RL-C-
D3-D4-RL-D4, user 3 D2-C-D2-D3-D2-P-D2, and user 4 D6-RL-C-D4-D6-RL-D6
(fig. 4a–d). Additionally each user goes to the bathroom at a random point in his se-
quence. These sequences are repeated 20 times during the learning phase. In order
to speed up this process, we used a simulation. However, for the tests on the 21th

(a) (b)

Fig. 2 (a) The differential drive robot used in our experiments. (b) Example of action pro-
posed to the user, who then either agrees of disagrees orally (use of a speech recognition
software).
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Fig. 3 Topological map of our laboratory used for the experiments with an entrance (E),
desks (D1-D6), a printer room (P), a cafeteria (C), a robot lab (RL), and toilets (T).

day, a real robot was used. 2 In a second phase, the real robot was used by each of
the user, the robot having no preliminary knowledge about the current user. At each
time step, the system computes the probability distribution over the user, the goal,
and the action with, respectively, equations 1, 2, and 3. This last distribution is used
to propose an action to the user (see fig. 2b), who can confirm or not. In this precise
experiment, this was achieved through a speech recognition system. 3

Results of the user recognition are shown in figure 5, which present the evolution
of the user probability distribution during a trial of the test phase. Starting from
a uniform distribution, the actual user is correctly inferred as soon as a revealing
action, mostly leading towards his desk, is executed. In the scenarios, the different
user habits shared some common goals, or even some common sequences of goals.
These similarities can be seen in figure 5, where the probability in the most probable
user decreases and the one(s) for other user(s) increases (e.g. fig 5b, the sequence
between goals D3 & D4 is shared by users 1 & 2). We can also notice that when
a user goes to the bathroom, his inferred probability decreases slightly. As every
user can go to the bathroom at any time, this is not a discriminant observation, the
models tending thus slightly to a uniform due to the transition in the user submodel.

For quantifying our model, we compare the model prediction of the user, the
goal, and the action with the real values. Based on their distributions computed at
each time step, we can check if its maximum is the actual user, intended goal and
proper action proposition. We thus introduce a measure μmax, being the mean of the
number of times the max of a distribution matches the real value. For example, the
formula for the goal is μmax = 1

N ∑
N
t=1 δ (Ĝt ,argmaxGt P(Gt |St−1 At−1 Glast)) , with

N the number of steps, Ĝt the intended goal, and δ (a,b) the Kronecker function.
The results are displayed in table 1. As can be seen when comparing with fig-

ure 5, the user are properly recognized, the differences being explained by the
amount of steps until a revealing action. Concerning the goals and the actions, their
probabilities are related to the learned habits of the users and are also influenced by
the geographical location of the visited goals. As an example, user 3 visited three

2 In simulation, the robot moves instantaneously to the next node, the inputs to our DBN
St−1, At−1, and Glast being identical to when using the real robot.

3 The software performed well enough to assume a perfect recognition of the user agreement
(“Yes”) or disagreement (“No”).
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(a)

(b)

(c)

(d)

Fig. 4 Habit description of the four users. The succession of visited places is marked with
increasing numbers. Each user visits the bathroom (B) at random among the sequence.

goals on the right when leaving his office, while the fourth one was on the left. Ac-
cordingly, the probability of going right, resp. of the three right goals were higher
than going left to the bathroom. Furthermore, we can notice that the action inference
is much better than the goal inference. Indeed, most of the time, the goal confusion
is between two nearby goals that share a part of the sequence. As a consequence,
the goal could be erroneously inferred during the first steps of the travel, while the
action inference will be wrong only at a branching node.

Finally, we want to assess the robustness of our system. To this end, we run
scenarios where two users took over the robot when user 2 reaches the cafeteria (C).
First, the results with user 3 are displayed in figure 6a. As can be seen, while leaving
C, the robot thought user 2 was going to D3, but also increased the probability in
user 1, 3, and 4 as they all go in that direction after being in C. At each revealing
action, the probability in specific users changes. But when reaching D2, user 3 starts
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(a)

(b)

(c)

(d)

Fig. 5 User probability when (a) user 1, (b) user 2, (c) user 3, (d) user 4 was steering the
robot. The dotted lines indicate the steps where a user stopped at a goal.

Table 1 Model performance for the user, goal, and action predictions of each of the four
single user scenarios (left columns) and the two taking-over scenarios (right columns).

Standard usage Robot taken from user 2 Random
μmax User 1 User 2 User 3 User 4 User 3 User 4
User 0.89 0.91 0.94 0.96 0.76 0.56 0.25
Goal 0.64 0.63 0.57 0.84 0.54 0.52 0.09

Action 0.94 0.93 0.94 0.96 0.89 0.92 0.20

being the most probable one. The increasing probability of user 1 is explained by
the shared common goals with user 3, and starts to decline as soon as user 3 comes
back to D2. In figure 6b, the results when user 4 takes the robot from user 2 are
displayed. As user 4 first goes to the desk of user 2, this sequence is not revealing
enough because only the former action differs from the habit of user 2. Then, going
to the toilets does not bring any information about the user’s identity. Finally, when
user 4 reaches his desk, the remaining sequences are specific enough for the system
to infer its user correctly. Overall, despite a performance loss in both goal and user
recognition, table 1 shows that the actions proposed to the user are still relevant.
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(a)

(b)

Fig. 6 Scenarios where (a) user 3 and (b) user 4 take the robot from user 2 in the cafeteria.
The user probability is displayed. The dotted lines indicate the steps where a user stops at a
goal. The black region indicates when a new user is steering the robot.

5 Conclusion

In this paper, we introduced a probabilistic model able to learn the daily habits of
different users of a guidance robot. When the robot accumulated enough knowledge
about a particular user, it is able to actively help its user to reach a goal destination.
As shown in the experiments starting with an unknown user, the same model is able
to infer the identity of the user after just a few revealing actions have been made, or
specific goals have been reached. Having then a high confidence in a particular user,
the system is again able to actively help its user. Furthermore, experiments where
a different user takes over the guidance robot from an initial user have shown the
ability of the system to recognize the switch between the users.

We tested our system with a reasonable environment size and user number, but
it would be interesting to test its robustness to an increased user number or to com-
plexer user patterns. If leading to pattern overlaps, the system should still be able
to help the users as they would go to the same location. However, the extreme case
would be if there is a uniform distribution on the goals when leaving a particular one
(e.g. the bathroom). For these cases, discretizing the user sequences over different
periods of the day or increasing the history length should help.

Acknowledgements. This work has been supported by the Swiss National Science Founda-
tion NCCR ‘IM2’ and by the EC-contract number BACS FP6-IST-027140. This paper only
reflects the authors’ view and funding agencies are not liable for any use that may be made
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Appendix: Submodels for the Goal and User Models

In this appendix, we first describe the submodel used for building the goal model
in the main system, then the submodel for the user model. In the goal model
P(Gt |Gt−1 Rt−1 Ut−1 Glast), the goal at time t is dependent from a lot of variables
issued from the previous time step. Some relations, e.g. between Gt and Glast , are
user-dependent and some others, e.g. between Gt and Rt , can be predefined. A sub-
model is a Bayesian model on his own, with specific relation among the variables,
which is then used in order to infer the probability distribution over some variables
given some other known variables. In the case of the goal model, our submodel is
defined as follows:

P(Gt Gt−1 Rt−1 Ut−1 Glast) = P(Gt−1 Rt−1) P(Gt |Gt−1 Rt−1) P(Ut−1 Glast |Gt)

We have P(Gt−1 Rt−1) which is a uniform distribution. Then, P(Gt |Gt−1 Rt−1) de-
fines the persistence of a goal: if a goal is not reached, the probability of having the
same goal in mind is much higher than changing, whereas when the user reaches a
goal, the other places become equally probable with a preference of staying in the
current place. This term is predefined. Finally, the P(Ut−1 Glast |Gt) distribution is
derived from a histogram learned by the system when a user stops at a goal location.
From this model, we compute the probability distribution P(Gt|Gt−1 Rt−1 Ut−1 Glast),
which is then used in the main model as the goal model, as follows:

P(Gt |Gt−1 Rt−1 Ut−1 Glast) ∝ P(Gt |Gt−1 Rt−1)P(Ut−1 Glast |Gt)

The user model is build in a similar manner than the goal model and is the following:

P(Ut Ut−1 Gt−1 Glast) = P(Ut−1) P(Ut |Ut−1) P(Gt−1 Glast |Ut)

Again, P(Ut−1) is a uniform distribution. P(Ut |Ut−1) describes the persistence of
the human user, i.e. keeping the same user is more probable than switching between
users. P(Gt−1 Glast |Ut) is also derived from a histogram, which is also learned when
a user reaches a goal location. The probability distribution computed in order to
build the user model is P(Ut |Ut−1 Gt−1 Glast):

P(Ut |Ut−1 Gt−1 Glast) ∝ P(Ut |Ut−1)P(Gt−1 Glast |Ut)
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Long Term Learning and Online Robot
Behavior Adaptation for Individuals with
Physical and Cognitive Impairments

Adriana Tapus, Cristian Tapus, and Maja Matarić

Abstract. In this paper, we present an online adaptation approach and a long-term
learning approach for socially assistive robotic (SAR) systems that aim to provide
customized help protocols through motivation, encouragements, and companionship
to users suffering from physical and/or cognitive changes related to stroke, aging and
Alzheimer’s disease.

1 Introduction

A recent trend in robotics is to develop a new generation of robots that are capable
of moving and acting in human-centered environments, interacting with people, and
participating in our daily lives. This has introduced the need for developing robotic
systems able to learn how to use their bodies to communicate and to react to their
users in a social and engaging way. Social robots that interact with humans have
thus become an important focus of robotics research.

Research into Human-Robot Interaction (HRI) for socially assistive applications
is in its infancy. Socially assistive robotics [4] is an interdisciplinary and increas-
ingly popular research area that brings together insights from a broad spectrum of
fields, including robotics, health, social and cognitive sciences, and neuroscience,
among others.
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University of Southern California,
Computer Science Department, Los Angeles, USA
e-mail: mataric@usc.edu

A. Howard et al. (Eds.): Field and Service Robotics 7, STAR 62, pp. 389–398.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

adriana.tapus@ensta.fr
crt@google.com
mataric@usc.edu


390 A. Tapus, C. Tapus, and M. Matarić

It is estimated that in 2050 there will be three times more people over the age
85 than there are today [1]. Most of the ageing population is expected to need
physical and/or cognitive assistance. As the elderly population continues to grow,
new research has been dedicated to developing assistive systems aimed at promot-
ing ageing-in-place, facilitating living independently in one’s own home as long
as possible, and helping caregivers and doctors to provide long-term rehabilitation/
cognitive stimulation protocols. The first efforts towards having socially assistive
robotic systems for the elderly have been focused towards constructing robot-pet
companions aimed at reducing stress and depression [5], [12], [7], [6], and [8]. In
addition to the growing elderly population, other large user populations represent
ideal beneficiaries of socially interactive assistive robotics. Those include individ-
uals with physical impairments and those in rehabilitation therapy, where socially
assistive technology can serve to improve not only mobility [13], [2] [3] but also for
outcomes in recovery. Finally, individuals with cognitive disabilities and develop-
mental and social disorders (e.g., autism [9]) constitute another growing population
that could benefit from assistive robotics in the context of special education, therapy,
and training.

In order to be able to aid the target user populations, an effective socially interac-
tive assistive robot must understand and interact with its environment, exhibit social
behavior, and focus its attention and communication on the user in order to help the
user achieve specific goals. Social behavior plays an important role in the assistance
of people with special needs. An adaptive, reliable and user-friendly hands-off ther-
apist robot can provide an engaging and motivating customized therapy protocol to
participants in laboratory, clinic, and ultimately, home environments, and can estab-
lish a very complex and complete human-robot relationship. Therefore, such robots
must be endowed with human-oriented interaction skills and capabilities to learn
from us or to teach us, as well as to communicate with us and understand us. Hence,
the work proposed here will focus on robot behavior adaptation to user’s personal-
ity, preferences and disability level, aiming toward a long-term customized therapy
protocol for stroke rehabilitation and other elderly specific application domains.

This paper presents two learning approaches, one based on on-line adaptation
and the other based on long-term learning, for socially assistive robots designed for
helping stroke patients and people suffering of age-related cognitive impairments
(i.e., dementia). The rest of the paper is structured as follows. Section 2 illustrates
the robotic test-bed. Section 3 describes the online learning and behavior adaptation
approach and its validation in a rehabilitation-like context and Section 4 describes
the long-term learning approach and its validation in a study with patients with
dementia. Section 5 concludes the paper.

2 Experimental Platform

The experimental testbed used was a custom-designed humanoid torso robot
mounted on a mobile robot base (Figure 1). The mobile base was an ActivMedia
Pioneer 2DX robot equipped with a speaker, a Sony Pan-Tilt-Zoom (PTZ) color
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Fig. 1 Robot test-bed: Bandit II humanoid torso mounted on the Pioneer mobile base

camera, and a SICK LMS200 eye-safe laser range finder. The anthropomorphic
setup involved a humanoid Bandit II torso, consisting of 22 controllable degrees
of freedom, which included: 6 DOF arms (x2), 1 DOF gripping hands (x2), 2 DOF
pan/tilt neck, 2 DOF pan/tilt waist, 1 DOF expressive eyebrows, and a 3 DOF ex-
pressive mouth. All actuators were servos allowing for gradual control of the phys-
ical and facial expressions. We are interested in utilizing the humanoid’s anthro-
pomorphic but not highly realistic appearance as a means of establishing user en-
gagement, and comparing its impact to our prior work with non-biomimetic robot
test-beds [11].

3 Study 1

3.1 Robot Learning and Behavior Adaptation to User Personality
and Preferences

The main goal of the first implemented methodology was to develop a robot be-
havior adaptation system that allows for dynamically optimizing three main inter-
actional parameters (in our case: interaction distance/proxemics, speed, and vocal
content) so as to adapt to the user’s personality toward improving the user’s task
performance. These parameters defined the behavior (and thus personality) of the
”therapist” robot. Task performance is measured as the number of exercises per-
formed in a given period of time; the learning system changed the robot’s person-
ality, expressed through the robot’s behavior, in an attempt to maximize the task
performance metric.

A learning algorithm based on policy gradient reinforcement learning (PGRL)
was developed. The n-dimensional policy gradient algorithm implemented for this
work starts from an initial policy π = {θ1,θ2, . . . ,θn} (where n = 3 in our case).
For each parameter θi we also defined a perturbation step εi to be used in the adap-
tation process. The perturbation step defined the amount by which the parameter
may vary to provide a gradual migration towards the local optimum policy. The use
of PGRL required the creation of a reward function to evaluate the behavior of the
robot as parameters changed to guide it toward the optimum policy. The algorithm
consisted of the following steps: (a) parametrization of the behavior initial policy
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π ; (b) approximation of the gradient of the reward function in the parameter space;
(c) movement towards a local optimum.

The reward function was monitored to prevent it from falling under a given
threshold, which would indicate that the robot’s behavior at the time did not pro-
vide the user with an ideal exercise scenario. This triggered the activation of the
PGRL adaptive algorithm phase to adapt the behavior of the robot to the continually-
changing factors that determined the user’s task performance. More details about
this work can be found in [11].

3.2 Experimental Design for Learning in the Physical Exercise
Context

We endeavored to develop an experimental design for a study involving stroke pa-
tients, and validate it first with non-patients, in a lab setting, in order to test the adap-
tation algorithm. In the experimental design, the participant stands or sits facing the
robot. The experimental task is a common object transfer task used in post-stroke
rehabilitation and consists of moving pencils from one bin on the left side of the par-
ticipant to another bin on his/her right side. The bin on the right is on an electronic
scale in order to measure the participant’s task performance. The system monitors
the number of exercises performed. The participants are asked to perform the task
for a fixed amount of time (15 minutes for healthy adults, 6 minutes for stroke pa-
tients), but they can stop the experiments at any time. At the end of each experiment
session, the experimenter presented a short debriefing. Before starting the experi-
ments, the participants are asked to complete two questionnaires: (1) a general in-
troductory questionnaire in which personal details such as gender, age, occupation,
and educational background were determined and (2) a personality questionnaire
based on the Eysenck Personality Inventory (EPI) for establishing the user’s per-
sonality traits.

The learning algorithm is initialized with parameter values that are in the vicinity
of what is thought to be acceptable for both extroverted and introverted individuals,
based on the user-robot personality matching study described in [10]. The PGRL
algorithm evaluates the performance of each policy over a period of 60 seconds.
The reward function, which counts the number of exercises performed by the user
in the past 15 seconds is computed every second and the results over the 60 seconds
“steady” period are averaged to provide the final evaluation for each policy. The
threshold for the reward function that triggers the adaptation phase of the algorithm
is adjusted to account for the fatigue incurred by the participant. The threshold and
the time ranges are all customizable parameters.

In the post-experiment survey, the participants are asked to provide their prefer-
ences related to the therapy styles or robot’s vocal cues, interaction distances, and
robot’s speed from the values used in the experiments.

We designed four different scenarios for extroverted and introverted personal-
ity types; the therapy styles ranged from coach-like therapy to encouragement-
based therapy for extroverted personality types and from supportive therapy to
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nurturing therapy for introverted personality types. We chose to use pre-recorded
speech and selected words and phrases for each of these scenarios in concordance
with encouragement language used by professional rehabilitation therapists. The
challenge-based therapy script is composed of assertive language (e.g., “Keep go-
ing!” and “You can do more than that!”). Extoversion is also expressed with higher
speech volume and faster speech rate. The aggressiveness of words, volume, and
speech rate are adjusted to diminish along with the robot’s movement towards the
nurturing therapy style of the interaction spectrum. In contrast to the challenge-
based script, the nurturing therapy script contains empathetic, gentle, and comfort-
ing language (e.g., “I’m glad you are working so well.”, “I’m here for you.”, “Please
continue just like that”, “I hope it’s not too hard”). The speech uses lower volume
and pitch. The transition from one personality-based therapy style to another is done
smoothly (see algorithm above) in order to avoid any jarring influence on the human-
robot interaction. We chose a set of three interaction distances and speeds for each
introverted and extroverted personality type.

3.3 Experimental Results for the Physical Exercise Context

We performed the above-described experiment in a lab-like setting, with 12 non-
patient, healthy adult participants (7 male, 5 female). The participants ranged in age
between 19 and 35; 27% were from a non-technological field, while 73% worked in
a technology-related area.

As shown in Figure 2, the robot adapted to match the preference of the participant
in almost every case. The only exception was the interaction with participant 8.
Despite the fact that the time spent in the preferred training style of that participant
was smaller than the time spent in other training styles, the robot converged to it at
the end of the exercise period. This was caused by the fact that the initial state of the
robot was in a training style that was furthest from the participant’s preference.
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Fig. 2 The percentage of time that the 12 participants interacted with each of the four therapy
styles of the robot. The crosses represent the participants’ preferences.
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The pilot results we obtained support our hypothesis that the robot could adapt
its behavior to both introverted and extroverted participants. Further details about
this work can be found in [11].

4 Study 2

4.1 Robot Learning and Behavior Adaptation to User
Ability/Performance

The second learning and robot behaviour adaptation methodology was designed
for the interaction between the robot and a user with dementia and/or Alzheimer’s
disease, with the main goal of helping users improve or maintain their cognitive
attention through encouragements in a music-based cognitive stimulation game.

This approach consists of two parts: supervised learning and adaptation. The
robot models the level of game challenge that can be: (a) Difficult: no hints; (b)
Medium: when the song excerpt starts say “push the button” but do not indicate
which button to push; and (c) Easy: when the song excerpt starts say which button
to push. The supervised learning system learns the Accepted Variation Band (AVB)
for each game level and for each disability bucket (mild, moderate, and severe),
as a function of the user’s task performance. The learning phase is followed by an
adaptation phase, where the robot adapts its behavior so as to minimize the user’s
reaction time and maximize the correctness of the user’s answers. If the user’s task
performance is below the Accepted Variation Band, the user is performing better
than during the learning phase. The user is then promoted to the next level of game
difficulty (if not already at the Difficult level). If the user’s task performance is above
the Accepted Variation Band, the user is not performing well enough. The user is
then helped by having the game difficulty level decreased (if not already at the Easy
level).

4.2 Experimental Design for Cognition Exercise Context

The experiment consists of repeated sessions, during which the user and the robot
interact in the context of a cognitive game. The first session is the orientation, in
which the participant is ‘introduced’ to the robot. The robot is brought into the room
with the participant, but is not powered on. During this introduction period, the ex-
perimenter or the participant’s nurse/physical/music therapist explains the robot’s
behavior, the overall goals and plans of the study, and what to expect in future
sessions. The participant is also asked about his/her favorite songs from a variety
popular tunes from the appropriate time period; those songs are later used in the
subsequent sessions. At the end of the session, the Standardized Mini-Mental State
Examination (SMMSE) cognitive test is administered so as to determine the partic-
ipant’s level of cognitive impairment and the stage of dementia. This test provides
information about the cognitive (e.g., memory recall) level of impairment of the
participant for use in initializing the game challenge level. The data determine the
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participant’s initial mental state and level of cognitive impairment, and serve as a
pre-test for subsequent end-of-study comparison with a post-test.

This experiment is designed to improve the participant’s level of attention and
consists of a cognitive game called Song Discovery or Name That Tune. The par-
ticipant is asked to find the right button for the song, press it, say the name of the
song, and sing along. The criteria for participation in the experiment (in addition to
the Alzheimer’s or dementia diagnosis) include the ability to read large print and
to press a button. The participant sits in front of a vertical experimental board with
5 large buttons (e.g., the Staples EASY buttons). Four buttons correspond to the
different song excerpts (chosen as a function of the user’s preference) and the last
button corresponds to the SILENCE or no song excerpt condition. Under each but-
ton, a label with the name of the song (or SILENCE) is printed. The robot describes
to each participant the goal of the game before each session, based on the following
transcript: “We will play a new music game. In it, we will play a music collection
of 4 songs. The songs are separated by silence. You will have to listen to the music
and push the button corresponding to the name of the song being played. Press the
button marked “SILENCE” during the silence period between the songs. The robot
will encourage you to find the correct song.” Each participant is first asked by the
music therapist or the robot to read aloud the titles of the songs and to press a button.
Some additional directions are given. The participant is also directed to press the SI-
LENCE button when there is no music playing. After a review of the directions, the
participant is asked by the robot to begin the music game. The music compilation is
composed of a random set of song excerpts out of the four different songs that form
the selection and the silence condition. The entire music compilation lasts between
10 and 20 minutes, and is based on the user’s level of cognitive impairment: the
larger the impairment, the shorter the session. A song excerpt can be vocal, instru-
mental, or both. The order of song excerpts is random. The experiment was repeated
once per week for a period of 8 months in order to capture longer-term effects of the
robot therapist. A within-subject comparison was performed to track any improve-
ment over multiple sessions. No between-subject analysis was done due to the small
sample size and large differences in cognitive ability levels.

4.3 Experimental Results for the Cognitive Exercise Context

The initial pilot experimental group consisted of 9 participants (4 male, 5 female),
from our partner Silverado Senior Living care facility. All the participants were
seniors over 70 years old suffering of cognitive impairment and/or Alzheimer’s dis-
ease. The cognitive scores assessed by the SMMSE test were as follows: 1 mild, 1
moderate, and 7 severe. Due to the total unresponsiveness of 6 of the severely af-
fected participants, only 1 severely cognitively disabled participant was retained for
the rest of the study, resulting in a final participant group composed of 3 participants
(all female).
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Fig. 3 Human-robot interacting during the music game: the robot gives hints related to the
music game, the user answers, and the robot congratulates and applauds the correct answer

We constructed the training data and built a model for each cognitive disability
level and for each game level. The participants played each game level 10 times
(stages) in order to construct a robust training corpus.

The results obtained over 6 months of robot interaction (excluding the 2 months
of learning) suggest that the elderly people suffering of dementia and/or Alzheimer’s
can sustain attention to music across a long period of time (i.e., on average 20
minutes for mildly impaired participants, 14 minutes for moderately impaired par-
ticipants, and 10 minutes for severely impaired participants) of listening activity
designed for the dementia and/or Alzheimer’s population. Figures 4a, 4b, and 4c
illustrate the evolution of the game difficulty over time, as well as response incor-
rectness and reaction time for user id 1.

Outcomes are quantified by evaluating task performance and time on task. Based
on the results we obtained, it can be concluded that the SAR system was able to
adapt the challenge level of the game it was presenting to the user in order to en-
courage task improvement and attention training. Figure 4a shows the evolution in
time of the game level for user id 1. The participant started at the easy game level
and remained there for several sessions. The participant then started to perform bet-
ter and diminished the reaction time and reduced the number of incorrect answers,
which, in turn, resulted in a game level evolution from the easy level to difficult.
Starting from the 22nd trial, the participant consistently remained at the highest
level of difficulty in the game (see Figure 4a). Figures 4b and 4c depict the evolu-
tion of the reaction time and the number of incorrect answers. The decrease of those
metrics indicates improvement on the task. Similar improvement was observed for
all participants.

The participants recognized the songs and identified the silence periods with the
same probability. Hence, the analysis of the “no answer” situation among our el-
derly participants provides us with additional information. From our experiments,
we noticed that the average rate of absence of response to silence was higher than
the average rate of absence of response to songs, and that this phenomenon in-
creased with the severity of the cognitive impairment. Our conjecture is that music
stimulates the interest and responsiveness of the participants. Another interesting
observation that deserves more study is the users’ ability to participate simultane-
ously in different tasks (multitasking): the participants were able to sing and push
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(a) (b)
//

(c)

Fig. 4 Results: (a) Game Level Adaptation and Evolution Over Time (6 months) for User
Id 1; (b) Incorrectness Evolution Over Time (6 months) for User Id 1; (c) Reaction Time
Evolution Over Time (6 months) for User Id 1

the correct buttons at the same time. This is notable in particular for participants
with cognitive disability, since multitasking requires dividing attention.

In summary, our social robot was able to improve or maintain the cognitive at-
tention of users with Alzheimer’s Disease in a specific music-based cognitive game.
The robot’s capability of adapting its behavior to the individual user’s level of dis-
ability helped to improve the user’s task performance in the cognitive game over
time.

5 Conclusions

This research has aimed to develop adaptation and learning methods for socially
assistive therapist robots that can provide customized physical rehabilitation and/or
cognitive stimulation. We have presented results from two different adaptation and
learning approaches, validated with healthy adults as well as with elderly users with
Alzheimer’s Disease. Our results are encouraging in light of our pursuit toward cre-
ating personalized socially assistive technologies that aim to improve human quality
of life.
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Swing Trajectory Control for Large Excavators

A.W. Denman, P.R. McAree, M.P. Kearney, A.W. Reid, and K.J. Austin

Abstract. There is a strong push within the mining sector to automate equipment
such as large excavators. A challenging problem is the control of motion on high in-
ertia degrees of freedom where the actuators are constrained in the power they can
deliver to and extract from the system and the machine’s underlying control system
sits between the automation system and the actuators. The swing motion of an elec-
tric mining shovel is a good example. This paper investigates the use of predictive
models to achieve minimum time swing motions in order to address the question
what level of performance is possible in terms of realizing minimum time motions
and accurate positional control. Experiments are described that explore these ques-
tions. The work described is associated with a project to automate an electric mining
shovel and whilst the control law discussed here is a much simplified form of that
used in this work, the experimental study sheds considerable light on the problem.

1 Introduction

An electric mining shovel (EMS) is a large electro-mechanical excavator commonly
used in open-cut mining to load haul trucks . They are critical production units at
most open-cut mine sites and there is an ongoing need to improve their productivity
through automation of the loading process. These machines are actuated by DC
motors, have three primary degrees of freedom used for excavation and achieve
mobility through crawler tracks. CRCMining and the CSIRO have been working
together on the development of an automation system for mining shovels.

An automation system replacing the operator must necessarily implement a po-
sition servo capability. Our particular interest in this paper is in achieving position
control for the swing motion. Control of this freedom presents challenges because (i)
the rotational inertia of the machine house about the swing axis is very large relative
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to the effective inertia of the swing motors (ii) the rates at which the swing motors
can deliver/extract energy to the swing motion are sufficiently constrained that they
become important influences on the control problem and (iii) in dealing with the
issues that arise because of (i) and (ii), the existing control system for swing mo-
tion has a hybrid structure that must be accommodated for in the automation layer
control system. The last of these points emphasizes the challenge of working with
multi-layered control systems where various parties develop and support the differ-
ent layers. In this problem the automation layer control system must be removable
so that the machine can be operated by a human operator. To achieve this and for
reasons of safety integrity, the automation layer produces outputs that feed in at the
same point as the references provided by the operator joysticks.

The strategy we explore in this paper considers the swing motion in isolation
from the other degrees of freedom and looks to develop an approximate minimum
time controller that is inspired by the Pontryagin minimum principle [5]. The con-
trol law uses a model of the swing motion with the input being the joystick reference
and the output being the swing angle in a receding-horizon framework to determine
switching points for the joystick references that deliver near minimum-time trajec-
tories. The model of the swing motion control system has been described previously
in Ref. [6].

The paper has the following structure. Section 2 summarizes the characteristics
of the control system and electric drive dynamics for the swing drive. Section 3
discusses the state-space model formulation and the application of this modeling
technique to command the shovel to a desired swing angle. In Section 4 we provide a
demonstration of the use of these models for trajectory control using the Pontryagin
inspired framework control system.

2 Swing Drive Dynamics

The shovel used in this study has an ABB DCS/DCF600 Multi-Drive controller to
regulate motor speed, armature current and field current in the swing DC motor.
The controller is made up of four integral components; a PID or PI motor speed
control loop, an armature current saturation limiter, a PI current control loop and an
EMF-field current regulator.

The swing drive uses a combination of torque control and bang-bang speed con-
trol, whereby the swing joystick position generates a piecewise speed reference
and an armature current saturation limit. A schematic of the swing drive model
is shown in Figure 1. The difference between the reference and actual swing motor
speed feeds the Proportional-Integral-Derivative (PID) speed controller incorporat-
ing derivative filtering. The output of the speed controller is scaled into a reference
armature current that is the limited proportionally according to the amplitude of the
swing joystick reference. The error between the limited current reference and the
actual armature current feeds into a PI current controller that outputs an armature
voltage to the swing motor. The swing motor has a constant field current with the
DCF600 maintaining the field voltage at a steady level.
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Table 1 Nomenclature

Category Notation Description

Model Inputs f coulomb friction (N)
I f field current(A)
j joystick reference
T gravitational torque load (Nm)
ωd desired motor speed (rad/s)

Model States eω motor speed error in the speed controller (rad/s)
eI armature current error in the current controller (A)
I armature current
Id reference armature current prior to saturation (A)
Θ motor position (rad)
ω motor speed (rad/s)

Controller Parameters G describing function gain
Kω speed controller proportional gain
KI current controller proportional gain
KT I speed to current scaling
T i
ω speed controller integration time constant (s)

T d
ω speed controller differential time constant (s)

T f
ω speed controller filter time constant (s)

T i
I current controller integration time constant (s)

DC Drive Parameters b drive damping coefficient
J drive inertia resolved to the motor (Nm/s)
KT motor torque constant (Nm/A)
Kem f motor back EMF constant
L motor armature inductance (Henries)
R motor armature resistance (Ohms)

Subscripts s swing drive

Fig. 1 Swing drive model schematic
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Due to its hybrid nature, modelling the shovel swing drive effectively requires a
means for incorporating the non-linear saturation effects seen in the motor armature
currents. To include these effects into the prediction models a sinusoidal input de-
scribing function is used [6]. The describing function has been used for the study of
limit cycles in non-linear dynamic systems [2, 3] and is used here for armature cur-
rent saturation. The basic idea of the describing function approach is to replace each
non-linear element in a dynamic system with a quasi-linear descriptor or describing
function equivalent gain whose magnitude is a function of the input amplitude.

The drive prediction model is presented as continuous, linear state space systems
with the form

ẋ = Ax + Bu (1)

The input vector u, contains the reference motor speeds generated from the joy-
stick signals, the static torque load on the motor due to gravitational effects and a
coulomb friction disturbance input. The state vector x, contains armature current,
the motor speed, the motor position, the integrals of the error in the speed and cur-
rent controllers and the additional state of swing reference armature current prior to
the saturation limit . This state arises from the derivative component in the swing
motor speed controller. The full state space model for the swing drive is given in
equation 2 [6]. The coulomb friction component is neglected in this work.
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3 Near-Minimum Time Control Law

The state space model for the swing drive is used to design a control loop to replace
operator joystick input with the aim of minimum time swing motion between two
points. To achieve as close as possible to minimum time, ’bang-bang’ control ac-
tion, using the Pontryagin minimum principle [5] was used to achieve time optimal
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(a) (b)

Fig. 2 (a) Swing drive controller. (b) Switch point determination.

motion via computation of an optimal switching point. This principle relies on the
fact that solution, using on the maximum and minimum extremes of control input,
must be time optimal. The integration of the state space model forwards in time in-
cludes the effect of the swing drive rate limiting. The drive is rate limited to 250%/s,
such that transitioning between input extremes (±100%) takes 0.8s. This approach
also required the addition of a terminal controller to achieve zero steady state error.
The controller is presented in figure 2(a).

The switching point is defined as the moment where the input changes between
maximum to minimum (or vice versa) such that the desired state is reached (zero
position error and velocity). The state space model is used in two ways. Firstly,
prior to reaching the switching point, the model is used to check that a desired
decelerating swing joystick reference (to be time optimal, this reference would be
90 - 100%) would bring the swing drive to rest prior to reaching the target swing
point (figure 2(b)).

Once the switching point is reached, the state space model is then used to com-
pute what decelerating swing joystick reference is required to bring the swing drive
to rest. The solution of this problem is obtained through the bisection method. A
joystick reference is computed and applied at 10Hz to ensure real-time behavior of
the controller.

As the capture region is entered (figure 2(b)), the state space model predictive
controller is augmented by the feedback capture controller. The capture controller
is added to account for any uncertainties that exist within the open loop state space
model predictive controller. The capture controller contains terms for proportional,
derivative and integral control with various anti-windup strategies. As the swing
drive reached zero velocity, the contributions to the swing drive input from the
model predictive controller are removed and the capture controller was left to main-
tain swing angle.

4 Demonstration of Swing Control

This section presents the results of the application of the prediction models for
rope shovel trajectory control using model predictive controller alone. For the swing
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drive, we use the a model of the plant to be controlled to predict the future behaviour
of the plants output. This feed-forward characteristic allows for future demands to
be incorporated into the present control input, enabling control action to bring the
shovel to rest to take place prior to attainment of the goal point. Feedback control
alone would only allow for control action to occur once the goal point is attained
while not at rest. The model is propagated forward in time using a stiff first order
implicit integrator with a time interval of 0.05 seconds.

Here we present the results of requesting a 90o and 120o change in swing an-
gle, beginning at rest. The swing angle of the shovel is sensed through a resolver
attached to the swing drive transmission, with known gain, and the swing velocity
is obtained through differentiation of the swing resolver output with time. Figure 3
shows change in swing angle against the change in swing velocity.

It can be seen that the desired changes in swing angle are faithfully reproduced,
however, the swing drive is unable to come to a complete rest. It was expected that
the open loop nature of this controller would struggle to bring the swing drive to rest.
During the initial swing cycle, the swing drive accelerates under a constant swing
reference of 50% (these trajectories will not be time optimal) until the switching
point is reached. This choice of swing reference, however, still sees the machine
reach close to it’s maximum rotational speed of 14.4o/s (see figures 3 and 6(a)).
As the input switching point is reached, the prediction models are used to compute
a reference that will bring the shovel to rest at the desired swing angle with the
reference applied once it is computed. It can be clearly seen that as the switching
point is reached, and a decelerating reference is applied, the shovel decelerates faster
than expected. This conclusion is reached because after the initial deceleartion, the
shovel speed decreases its deceleration rate. At the next time sample the model
then predicts that a lesser decelerating reference is required to compensate. In the
concluding stages of the swing cycle, the effects of mechanical backlash and the
sensitivity of the predictive controller joystick reference output to small remaining
swing angles results in the oscillatory behaviour seen in figure 3.
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Fig. 3 Swing angle versus swing velocity for near-minimum time controller
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4.1 Feedback Capture Control

The previous section demonstrated that the use of a predictive controller is not
sufficient to bring the swing drive to rest. As indicated in the overall swing drive
controller design in figure 2(a), a feedback capture controller is added. This con-
troller becomes active once the measured swing angle enters the capture region
(figure 2(b)). Proportional (P, Kp) , Proportional Derivative (PD, Kp, Kd , τ) and
Proportional Integral (PI, Kp, Ki) controllers were examined for their suitability to
this application.

A number of anti-windup strategies for the integrator within the capture con-
troller were investigated due to the potential for the control input to saturate (and
’windup’ the integrator) because of the limitiations in the existing control system
and the swing drive. The discrete strategies investigated were reseting the integrator
when saturation was detected (Reset), and holding the value of the integrator con-
stant when saturation occurs (Hold-Reset). A feedback anti-windup strategy, where
the difference between the unsaturated and saturated outputs of the controller ( zero
when there is no saturation) is fed back to the integrator to ensure that the integrator
does not wind up was also used (Inner-Feedback).

The capture controller performance was evaluated on the research shovel from
both a stationary and non-stationary initial condition. The resulting swing drive
speeds and swing angle were measured. The results presented in figure 4 are for
step inputs of positive 10o from a stationary position and a variable step input to
bring the shovel to 0o from a non-stationary position. This replicates how the cap-
ture controller would have to behave as the shovel enters the capture region in the
overall control strategy. Each capture test was done independently as the parameters
governing the controllers were explored. Table 2 summarizes the parameters that
were used.

Figure 4(a) plots the response of the controllers for a 10o change in angle from a
stationary initial condition. The P and PD capture controllers perform best by min-
imizing the overshoot of the target angle, which is important when avoiding colli-
sions with load devices, but are limited in the steady state error by the mechanical
backlash present in the machine transmission. The backlash has been determined
previously to be of the order of ±4o. Adding an integral term added additional over-
shoot to the solution profile and the introducing different anti-windup strategies had

Table 2 Capture controller parameters

Condition Type Kp Ki Kd τ Anti-windup

1 P 200 - - - -
2 PI 200 20 - - -
3 PI 200 20 - - Reset
4 PI 200 20 - - Hold-Reset
5 PI 200 20 - - Inner-Feedback
6 PD 200 - 50 0.1 -
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Fig. 4 Capture controller test results on research shovel

negligible effect amongst themselves while adding more oscilation. Cases 1, 4 and 6
(table 2) were also investigated for a non-stationary initial condition to more closely
resemble how it would operate in the overall swing control. The results are given in
figure 4(b). Here, again, the P and PD capture controllers performed the best.

4.2 Near-Minimum Time Controller with Feedback Capture

This section presents the results of the application of the prediction models for
shovel swing trajectory control using the near-minimum time controller and its cap-
ture with feedback control. The capture controller used is the P controller (Case 1)
detailed in table 2. Figure 6(a) shows change in swing angle against the change in
swing velocity as a result of requesting a 90o and 180o change in swing angle, be-
ginning and ending at rest. The initial behaviour of the swing speed versus swing
angle profile is highly dependent on whether or not the transmission was perfectly
meshed when started. If the transmission were not perfectly meshed it is possible
for swing speed to increase without any change in swing angle as the backlash is
taken up (see 90o swing angle of figure 6(a)).

As was observed in Section 4, the swing drive accelerates under a constant swing
reference of 50% until the switching point is reached. As the input switching point is
reached, the prediction models’ joystick references are applied to bring the shovel to
rest at the desired swing angle. After the switching point the effects of unmodelled
friction are again observed. Unlike the results of Section 4, here, when combined
with the capture controller, the shovel swing drive is brought to rest at the desired
swing location within mechanical backlash tolerances.

Figure 5 plots the computed swing joystick reference profile against swing angle
for both cases presented in figure 6(a). Both profiles commence with an initial ref-
erence of −50% to move the swing angle towards the target. As the switching point
is determined, the reference become positive to decelerate the swing motion. From
this point on until the capture region is encountered (within 10o of the target), the
joystick reference is computed by the state space prediction model.
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Fig. 6 (a) Swing angle versus swing velocity for near-minimum time controller and capture
(b) Simulation of swing angle versus swing velocity for various decelerating references

There is clearly large variation in the applied joystick reference (±10%) during
the decleration stage outside of the capture region. The reasons for this are twofold.
Firstly, the sample rate of 10Hz, chosen to maintain realtime behavior while solving
the bisection problem, appears to be too low. However, the behaviour of the shovel
as seen in figure 6(a) indicates that the overall system is not susceptible to these
variations in control input. The second reason lies in the sensitivity of the predicted
swing angle at zero speed to the applied joystick reference. Figure 6(b) shows this
behaviour. Clearly, when operating in the region where Js > 50%, a 20% change
in joystick reference results in a comparitively small stationary swing angle value.
This behavior can be understood conceptually by understanding that the joystick
reference is essentially a torque with it having an inverse relationship to the total
angular displacement over which it is applied.

As the capture region is encountered, the capture controller output is added to
that of the predictive controller (figure 5). Initially, the capture controller acts to
reduce the decelerating reference. This decrease is not incorporated in the predictive
controllers calculations and it acts to increase the decelerating reference in the next
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prediction, leading to the initial oscillitary profile in joystick reference. Any other
spikes in decelerating reference, particularly in figure 5(a), are believed to be due to
model inaccuracies but this does not make it unfit-for-purpose. As the target swing
angle is reached and the swing drive becomes stationary, the predictive controller
input is stopped, leaving only the capture controller to regulate position.

5 Conclusions

This paper has presented an exploration of near-minimum time control on the swing
drive of an electric mining shovel. While the state space model deals only with the
dominant effects of the hybrid structure of the base machine controller, the main
outcome of the paper has been to show that it is possible to achieve positional con-
trol within a predictive control framework. The single-input single-output structure
of the controller limits its application for the broader automation problem which
requires coordinated motion of all degrees of freedom. However, this work has es-
tablished that a fit-for-purpose control structure can be implemented.

Acknowledgements. The authors would like to thank the Australian Coal Association Re-
search Program (ACARP) and CRCMining for funding project under which the work pre-
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The Development of a Telerobotic Rock Breaker

Elliot Duff, Con Caris, Adrian Bonchis, Ken Taylor, Chris Gunn, and Matt Adcock

Abstract. This paper describes the development of a tele-robotic rock breaker de-
ployed at a mine over 1000kms from the remote operations centre. This distance in-
troduces a number of technical and cognitive challenges to the design of the system,
which have been addressed with the development of shared autonomy in the con-
trol system and a mixed reality user interface. A number of trials were conducted,
culminating in a production field trial, which demonstrated that the system is safe,
productive (sometimes faster) and integrates seamlessly with mine operations.

1 Introduction

A rockbreaker consists of a large serial link manipulator arm having 4 DOF that is
fitted with a hydraulic hammer and used throughout the mining industry to break
oversized rocks. CSIRO has been contracted by Rio Tinto Iron Ore to install a tele-
robotic control system to the primary rockbreaker at the West Angelas mine, situated
over 1000km north-east of Perth in Western Australia. Figure 1a shows the rock-
breaker installation at the ROM (Run of Mine) bin. The bin is fitted with horizontal
bars at the bottom that prevent oversized rocks from entering the crusher below (see
Figure 1b). This arrangement is commonly referred to as a grizzly. Haul trucks car-
rying ore from a nearby quarry dump their load into the ROM bin. Any oversize
rocks in the bin are crushed using the rockbreaker arm. Until now, an operator has
had to step out of a control room adjacent to the bin and use a line-of-sight remote
control to operate the arm. The rock breaking strategy in this context is determined
from a quick visual examination of the rock (i.e. centre hit to shatter the rock, nibble
the sides of the rock, or nudge the rock to let it fall through). The available time is
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Fig. 1 Rock breaker (a) at rest over ROM bin (b) breaking a rock on grizzly.

limited by the level of ore in the hoper below the grizzly and the number of trucks
queueing at the bin (typically less than a minute). If the rock cannot be broken in
time, it must be pushed to the side and the arm returned to its rest position.

The objective of this project was to demonstrate the feasibility of effective and
safe telerobotic control over long distances, as part of RioTinto’s long term plan
to tele-operate their mining operations. This distance introduces a number of tech-
nical (communications bandwidth and latency) and cognitive (lack of spatial and
situational awareness) challenges that can be addressed by developing technologies
at both the local and remote ends of the system. Improving the intelligence of the
control system at the remote end (i.e. Cartesian motion, collision avoidance) can
mitigate the effects of latency, whilst the development of mixed reality user inter-
faces (with a combination of live video and 3D computer visualization) can improve
the situational awareness for the operator.

Mixed reality arises as a hybrid solution that attempts to overcome the weak-
nesses of the two extremes: direct visualisation of the environment by cameras
and synthetic visualisation of a software model of the environment by computer
graphics. Cameras provide a direct representation of the real world which includes
all visible features, but typically only from a limited range of viewpoints. Virtual
representations are very flexible with respect to viewing parameters and manipula-
tion, but can only include information that is represented in the software model of
the environment, and only to the limit of accuracy to which the dynamics of the real
environment can be sensed. Thus, an interface that mixes the two paradigms for vi-
sualisation can take advantage of the best features of each, while overcoming some
of the disadvantages. In practice, both paradigms provide situational awareness me-
diated by technology, and so are subject to failures of various sorts. Providing mul-
tiple streams of awareness incorporates a level of redundancy that protects against
some failure modes.
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This paper is divided as follows: Section 2 provides a brief background to tele-
operation over the Internet and its applications to the mining domain; Section 3
describes the implementation of the tele-robotics system to a mining rock breaker
in a production environmnet; Section 4 describes the results of the field trials; and
Section 5, concludes with a discussion and proposal for future work.

2 Background

Tele-operation has been an active field of research and commercial activity for a
number of years as it offers a means of isolating an operator from hazardous or un-
inhabitable environments while retaining the reasoning powers of the human opera-
tor. It has a long history, dating back over sixty years to a “master-slave” system[5].
Many systems have subsequently been developed for underwater, radioactive, vol-
canic, and outer space environments.

During the late 1990s there was a great deal of interest in tele-robotics appli-
cations over the Internet [7]. One of the first Web-based tele-operation projects[6]
involved a mock-up of an archaeological site situated in a radioactive area. Users
could join a queue to take control of a 2.5DOF manipulator, searching for ‘relics’.
This work later evolved into a “tele-garden’” system in which users could remotely
tend to a garden. To avoid latency induced instability both systems used supervisory
control to specify a position in space[14]. Around the same time, researchers de-
veloped a Web-controllable, 6-axis robot that allowed operators to stack toy blocks
by controlling the gripper and Cartesian position of the arm (again using supervi-
sory control) [16]. This system was subsequently converted to a ‘tele-laboratory’
allowing students to perform parts of their coursework.

With respect to mining, Ballantyne et al. [1, 8] investigated the use of virtual
reality displays for excavator tele-operation. The display enabled the operator to
pre-set no-go areas for the excavator and to also mark areas of the excavation site in
which the terrain was perhaps too dangerous for the excavator to navigate. Several
Japanese groups have also been investigating tele-operation of mining and construc-
tion equipment [15, 10, 9]. Although research was conducted to develop a virtual
reality system for the mining industry [2] this technology was never commercially
realized. The reasons for this failure is unknown, but at this time, the technology
was immature and probably did not provide the appropriate level of immersion and
interaction necessary for control (i.e. due to latency and bandwidth issues).

Advances in our ability to develop autonomous systems have extended the pos-
sibilities for very high-level task specification, moving tele-operators from manual
control to a role which is much more tactical or supervisory[12]. These layers of au-
tonomy introduce different requirements for the human machine interface [4]. One
of the main criticisms of tele-robotics is that it does not provide sufficient situational
awareness [13] to the human operator to sustain the previous manual levels of pro-
duction. This is being addressed by a number of research labs across the world (eg.
NASA’s Robonaut) and has become a significant research activity within CSIRO.
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3 Implementation

The rockbreaker system architecture (see Figure 2) is based around two main com-
ponents : the Remote Control System (RCS) located at the West Angelas mine and
the Telerobotic User Interface (TUI) more than 1000kms from the Remote Opera-
tions Centre (ROC) in Perth, Western Australia. The RCS includes:

• CANBus tilt sensors fitted to the boom, jib and hammer and absolute encoder
fitted to the slew axis (see Figure 3b);

• two analogue PTZ cameras and a fixed wide angle camera mounted diagonally
across ROM bin, connected to three high speed video compression units;

• two pairs of Firewire megapixel stereo cameras, mounted 80cm apart and several
metres above the ROM bin (see Figure 3a);

• industrial Ethernet I/O to generate voltages to drive solenoids and measure state
of hydraulic control pack;

• a safety PLC that monitors the access in the rockbreaker workspace, and actuates
safety relays that provide power to the control unit;

• a Linux PC to run control software and an XP machine to run stereo acquistion
software. Both machine were connected to the mine site Intranet.

The control software is based upon our DDX (Dynamic Data eXchange) mid-
dleware [3]. It is split into a number of specialized modules. At the top is a com-
munications layer that provides a simple web interface to the controller, and UDP
communications for outgoing state information and incoming demands. The advan-
tage of UDP is that it provides the lowest communications latency (which is an
important consideration in this application) at the expense of reliability. At the next
layer is the trajectory planner, which accepts the incoming demands and plans the
arms trajectory (i.e. it is able to convert Cartesian demands into a sequence of joint
space velocity demands). Below this is the boom controller which has PID loops
on four joints and is able to detect and alert the operator to the joint limits. At the
bottom is the boom server which sends the control signal to the Ethernet IO, which
in turn generates the control voltages for the proportional directional control valves

Fig. 2 System architecture showing components at the (a) remote and (b) local locations.
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Fig. 3 Installed hardware: (a) cameras (b) tilt sensors and (c) calibration targets in ROM bin.

(solenoids) at the base of the rock breaker. These solenoids cannot be actuated by
the computer without explicit control from the Safety PLC. Such control will not
be given unless a number of fail-safe steps are taken, including; latching the access
gates, a heartbeat from the control computer, and selecting “Computer Enable” in
the control room. The Safety PLC also provides access into the site Citect system
(which controls the crusher).

Particular care was taken to select hardware that could survive in the harsh min-
ing environment. In summer, the ambient temperature can exceed 50 deg C, and
drop below zero at night. The iron ore dust is particularly abrasive and can easily
damage electronics. Since the arm dimensions were known, it was possible to use
the estimated position of the hammer tip itself to measure the dimensions of the
ROM bin (which were different from the mine plan). These dimensions were then
used to place visual markers (see Figure 3c) in the ROM bin that were then used to
calibrate the seven cameras. This meant that the arm, cameras and ROM bin were all
measured in the same frame of reference. This frame of reference was used by the
collision detection module (using openGL) to detect collisions between the model
of the ROM bin and the arm.

Nodding lasers were initially proposed to acquire the 3D surface of the rocks in
the ROM bin, but after discussions with the operators, we found that they rely heav-
ily on the texture and colour of the rocks when deciding upon a breaking strategy.
A second computer was used subsequently to acquire and process high resolution
stereo images. A 3D surface was generated from advanced photogrammetry tech-
niques (commercial product developed by CSIRO called Sirovison). To reduce the
effects of stereo shadow a second pair of cameras was mounted diagonally across
the ROM bin. To cope with the extreme lighting conditions (dark shadows across
the bin in the morning and evening) contrast enhancement was achieved with ex-
posures bracketing. In practice, the system is able to generate 3D surfaces with cm
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Fig. 4 Three video screens and augmented virtuality of rock breaker overlaid with 3D rock
surface.

resolution. Once the 3D surface has been acquired it is converted to X3D and sent to
the TUI for rendering onto the 3D virtual screen (see Figure 4). One future advan-
tage of using this photogrammetry software is that it also has the ability to recognize
joint sets and fracture surfaces - a valuable feature for future automation.

One of the shortcomings of the previous work has been the ad-hoc nature in
which the user interfaces have been developed. Whilst components based robotics
(such as Player/Stage, ORCA and Microsoft Robotic Studio) and Web-based tool-
boxes for LabView and Matlab have moved to the mainstream, the user interfaces
have not provided the level of immersion necessary to provide sufficient situational
awareness to control dangerous and expensive equipment in remote and unstruc-
tured environments. Some researchers have proposed a framework based upon gam-
ing technology [11] which we have (i.e. using Second Life to control a simulation of
the rock breaker) and will continue to look into (i.e. Unity). The proposed solution
for this project has been to use AJAX3D which merges X3D and AJAX techniques.
X3D is an ISO standard for real-time computer graphics that can be viewed with
the appropriate viewer (eg. Flux from Mediamachines). Multimedia streams can
be placed onto surfaces in the environment (e.g. video onto billboards). The X3D
viewer can support audio, stereo displays and haptic devices. Being an open stan-
dard there are a number of CAD systems that are able to export drawings to X3D.
With AJAX calls to the DOM (Document Object Module) or SAI (Scene Authoring
Interface) it is possible to partially load parts of the scene (i.e. update the world) or
reload features of the scene (i.e. a joint angle on the rock breaker).
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A photograph of the TUI in operation at the ROC is shown in Figure 2b. In front
of the operator there are two screens: on the right is the Citect system that is used
to monitor the movement of the ore from the crusher down to the stacker/reclaimer;
on the left is the user interface designed for the rock breaker control. It consists of
the four windows (see Figure 4): three video screens and an augmented virtuality
(a 3D computer graphics scene that includes some elements captured directly from
the real world).1 The operator is able to control the rock breaker with the mouse and
the gaming joystick (Logitec RumblePad). Projected onto a screen above the two
monitors are four video streams from various locations around the rock breaker:
one to monitor approaching trucks and another to monitor the state of the secondary
crusher. Speakers on either side of the screen reproduce the sounds made at the rock-
breaker. This is a very important indicator of the state of the machine: the operator
is able to hear the sirens that indicate that the machine is powered; and the sound of
the hammer can also be used into indicate whether the hammer is making contact
with the rocks (i.e. dry firing). Access to the mine communication systems (RF ra-
dio) is provided via a microphone/headset. With this the operator is able to inform
the fleet management system of the availability of the crusher.

Once the user has established network communications with the RCS, most com-
mands are accepted through the RumblePad. The right hand trigger button is used
as a command validation switch (deadman). The movement of the arm being dis-
abled when the switch is off. The left hand button over-rides the collision detection
system to allow the operator to move the arm close to the ROM bin. This is typ-
ically used for the cleanup operations. When hydraulic pressure is requested, the
RCS expects a heartbeat at 10Hz. The RCS will disable hydraulics after a specified
number of heartbeats are missed (in this case, 20 heartbeats or 2 seconds).2 In the
TUI, the operator is able to select different modes of control. They can select in
either velocity or position mode in joint, Cartesian or backhoe space (a combination
of joint and Cartesian). The two joystick controls on either side of RumblePad are
used to control the motion of the arm. The arm can also be sent to pre-configured
set points (i.e. Home, Park etc.) or requested to move to a selected location on the
3D rock surface. The user interface is designed around the principal that there is
only one primary view that determines the behaviour of the controls. For example,
when the PTZ video is the primary display, then the arrow buttons (top left of the
RumblePad) are able to pan and tilt the camera. However if the primary screen is
the virtual screen, the arrow keys move you up and over the ROM bin (eg. jet-pack
mode). The selection of primary screen is controlled by the numbered buttons.

1 The system was designed so that the layout and size of the screens could be modified
upon request. In the trial, rather than the original design of a primary screen with three
thumbnails, the operator preferred four screens of equal size with minimal decoration.

2 Measured over several days, the average round trip time was 56 milliseconds with a stan-
dard deviation of 3 milliseconds. On average, there were 3 pings per day that lasted more
than 300 milliseconds. The video compression (IndigoVision) ranged in bandwidth from
339 Kbps to 1238Kbps at 25fps 4SIF. The state and demand UDP traffic consumed little
bandwidth.
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4 Field Trials

Field trials were conducted in mid December 2009. The trial consisted of three 12–
hour shifts over 3 days during normal production runs. Two of the shifts started at
4am to allow for testing in night conditions. We used two operators, one at each
end of the system. The operator based at the ROC in Perth had not been trained
or introduced to the TUI prior to commencing the trials. A second operator was
present in the control room at the mine site to supervise the rockbreaker operation
and intervene in case of emergency.

During the field trials we were able to remotely replicate the work flow of the
local human operator. When the operator is alerted to the presence of a large rock,
the operator is presented with an overview of the rockbreaker from a wide-angle
video stream and augmented virtuality (see Figure 4). The remote operator is able to
“walk around the rockbreaker to inspect the rocks from different angles. Once they
have established the appropriate breaking strategy, the operator is able to deploy the
arm with the joystick. As the arm is commanded to move, the motion of the arm
is replicated in the 3D scene. Simultaneously both PTZ cameras follow the tip of
the hammer. When the operator is ready to break the rock, they can switch their
attention to the live video stream, which they can use to monitor the breaking of the
rock. Once complete, the arm can be automatically sent to the rest position.

Within half an hour of introducing him to the TUI, the operator based at the ROC
in Perth, was breaking rocks. At first, the operator was unsure/sceptical of the game
like controls, however after some experience with the new interface they were happy
to accept the device. At the end of the trial the operator expressed the opinion that
the deployment of the arm was faster for breaking “simple” rock configurations, but
difficult to deal with complex rock configurations (where rocks are packed on top of
one another). The operator made several useful suggestions for changes to the user
interface that would address this problem (i.e faster 3D update of rock profile, and
manual over ride of zoom control). Over the three days the operator was able to deal
with all of the rocks without measurable disruption to production. However there
were two safety incidents. In one case, there was a communications dropout, and
in a second incident the operator moved the arm into the wall as a result of using
a forth camera mounted on a hill over 200m away (this camera was not part of the
rockbreaker system) and became confused with motion of the arm. At no time was
any damage done to the arm or the ROM bin.

5 Discussion and Future Work

Perhaps the most significant comment made by the operator was when we asked
what was the difference between local and remote operations. His reply was “‘In
local operations, I can concentrate on the task at hand, and my peripheral senses
deal with everything else. When I’m remote, I’m forced to redirect my attention to
each screen/window that is front of me. This distracts me from what I am doing.” .
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The current generation of control room used in the mining industry contains a
number of custom built user interfaces: typically one for each mining process that
needs to be monitored. To reduce the cognitive load of switching from one interface
to another, we believe that the operator should be presented with a single interface.
This interface should be highly immersive, interactive and reconfigurable.

The primary goal of our future work is the development and delivery of a Mixed
Reality Framework that will provide a unified user interface for accessing and in-
teracting with key areas of the mining operation. The intention of this work will
not be to replace the existing remote control systems but to provide a portal to
access various third-party systems via the Mixed Reality Framework. To use the
web-browser metaphor, which is used to move from one web page to another, this
system will provide a Mixed Reality Browser that will enable personnel to browse
the state of various mining processes in a 3D context in conjunction with existing
2D interfaces.

In the context of teleoperation, “mixed reality” can be used to refer to interfaces
that mix the different pathways to visualisation - direct visualisation via video and
synthetic visualisation derived from a dynamic software model of the state of the
world. Further, for this mixing to be effective, it must be based on information about
the relationship between the pathways. In particular, the cameras themselves (and
mobile camera platforms) must be modeled in some way, and the camera models
may also be dynamically updated from sensor information. We refer to the com-
bination of all these models, and the relationships between them, as the compos-
ite situation model. Several things need to be modelled in software as part of the
process of situation representation. These models may exist on the same computer
as the user interface, or they may be accessed from a centralised world model ‘in
the cloud’.

Situation awareness through visualisation is only one aspect of teleoperation. The
actual operation and control of the remote machine must also be supported through
the interface. A mixed reality interface creates opportunities for control paradigms
based on direct selection and manipulation of objects within the interface. This in-
cludes real objects that have been visualised directly or synthetically, or virtual ob-
jects that have been added explicitly for the purpose of interaction. In each case,
the same selection and manipulation techniques could be used. Just as a mixed re-
ality interface incorporates a mixture of pathways for situation visualisation, it will
also incorporate a mixture of operation pathways: direct operation (for example, the
position of a joystick controls the degree of opening of a valve), and indirect or
synthetic operation (for example, a virtual version of the arm is moved to a posi-
tion, then commands are sent to move the real arm to that position). Mixed Reality
Interaction represents a fertile area for investigation.
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Camera and LIDAR Fusion for Mapping of 
Actively Illuminated Subterranean Voids 

Uland Wong, Ben Garney, Warren Whittaker, and Red Whittaker1 

Abstract. A method is developed that improves the accuracy of super-resolution 
range maps over interpolation by fusing actively illuminated HDR camera im-
agery with LIDAR data in dark subterranean environments. The key approach is 
shape recovery from estimation of the illumination function and integration in a 
Markov Random Field (MRF) framework. A virtual reconstruction using data col-
lected from the Bruceton Research Mine is presented. 

1   Introduction 

Mine accidents including those at Quecreek, Sago and Crandall Canyon highlight 
the urgency of estimating accurate 3D geometry in mines. Systems have been em-
ployed to map mines, from virtual reality systems for training rescue personnel [1] 
to automated survey robots and post accident investigation [2]. While many of 
these systems use state-of-the-art direct range measurement sensors, LIDAR sen-
sors alone cannot meet the resolution, size, power or speed requirements to pro-
duce quality mine maps in a practical amount of time.  

This research combines absolute range sensor data with high-resolution CCD 
imagery in a novel manner to achieve a quantitative increase in range data accu-
racy and density. In particular, the method targets application in artificial subter-
ranean voids where assumptions can be used to constrain the image formulation 
problem. As both color and geometric information are of interest, cameras and 
range sensors commonly exist on modeling platforms [2]. Integration of the 
method presented here requires only calibration and low processing overhead. 

The results from field experimentation in a working mine are discussed in de-
tail. A dense visualization technique enabling mesh quality models to be displayed 
and updated in real-time on GPU hardware is explored. Lastly, a generalization of 
the method to similar domains in field robotics is made. 
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2   Prior Work 

The fusion of range and imaging sensors to improve 3D model quality has been 
studied in depth [3,4,5,6]. A general model for fusing raw LIDAR and image data 
into super-resolution range images using a Markov Random Field (MRF) was ex-
plored in Diebel and Thrun’s seminal paper [4]. MRFs are undirected graphs that 
represent dependencies between random variables and have been used extensively 
in computer vision for noise removal, feature matching, segmentation and inpaint-
ing (see [3]). The popularity of the MRF stems from the ability to model complex 
processes using only a specification of local interactions, the regular grid nature of 
CCD images and the maximum a posteriori (MAP) solution requiring only direct 
convex optimization in many cases.  

Diebel and Thrun surmised that higher resolution intensity (color) data could be 
used to texture range images and increase the range accuracy of interpolated points. 
The results in a uniformly and sufficiently illuminated regular office environment 
are quite compelling. Cameras are able to turn LIDAR scans into dense range im-
ages with very low computational overhead. However, the assumption that an im-
age provides relative range information, even locally, is tenuous in unstructured 
environments. Generating 3D geometry from a general 2D projection is an ill-
posed problem. The ability of Diebel’s method to smooth point clouds using areas 
of flat image information was convincingly shown, but the converse of enhancing a 
point cloud using image texture was not. Recent research in range/camera fusion 
using MRFs include [5,6]; all of which also target indoor application. 

This research extends MRF-based super-resolution to subterranean environ-
ments such as mines, caves, lava tubes and sanitary pipes. These environments 
have unknown but slowly varying albedos with a dominant diffuse reflectance 
term. These naturally-dark, enclosed spaces also require active illumination to im-
age, enabling the use of calibrated lighting. With these assumptions we are able to 
provide a stronger depth estimate for texturing the interpolated LIDAR data.  

3   Markov Random Field Framework 

A range image is used as the common representation for fusion. The 3D range 
cloud data is registered to the pinhole of the camera, forming a range map (R) via 
projection of distances onto the n m×  image plane at equivalent resolution. Many 
pixels in the range map will not contain range measurements; these holes are filled 
from nearby data through bilinear or nearest neighbor interpolation. The color im-
age data can be then converted to intensity values or used as a raw RGB vector 
( I ). A lattice MRF is formed where there is a single range and intensity meas-
urement associated with each node. We propose an MRF fusion method similar to 
that documented in [4] that numerically integrates the image gradient. 

The range map potential (3.1) promotes agreement between the estimated vari-
ables and the interpolated range data. The smoothness prior (3.2) regularizes large 
changes in the range estimate and like the image potential (3.3) connects potential 
transfer from a node to its neighbors. 
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The image gradient is a reasonable predictor of depth change across neighbor-
ing pixels. However, integrating the gradient to produce depths over a large  
locality is prone to drastic shape distortions. The range estimate can be used to 
regularize numerical integration of the intensity gradient. The weights α  and β  

are relatively scaled by an interpolation distance uncertainty (σ ) for some 
weights 2w  and 3w  (3.4). σ can be generated from the range image during in-

painting by using the Matlab command BWDIST, for example.  

 ( )( )1 1
2( | , , ) expZp x R I σ = − Ψ +Ω+Φ  (3.5) 

 arg min ( )MAP xx f= Ψ +Φ +Ω  (3.6) 

Solving for the MAP of the distribution requires running a gradient descent al-
gorithm on the target variables x in 3.5-3.6, where Z is the partition function [4].    

4   Structure from Shading 

The image gradient ijI∇  in (3.3) can apply to either raw pixel data or better esti-

mates of depth from the camera. As scene geometry cannot be ascertained from a 
single image without assumptions, often no better estimate exists. Definite recon-
struction requires knowledge of image formation parameters like light field,  
surface reflectance (BRDF) and albedos. However, if assumptions like those com-
monly made in Shape-from-Shading are valid, the number of unknowns is greatly 
reduced. 

The illumination and reflectance assumptions are appropriate for subterranean 
environments. Most dry underground mines and caves are located in Lambertian 
rock and many coal mine interiors are additionally covered with diffuse material 
like Shotcrete [7]. Low amounts of metallic meshing, industrial equipment, water 
and retro-reflectors are present, but the contribution of these specular surfaces can 
be reduced using the method documented below and in [10]. Robots in these natu-
rally dark environments can be fitted to carry small area light sources for photog-
raphy which produce simple light fields.  

The MRF image observation ( I ) is estimated using Shape-from-Shading given 
the above assumptions. A lightness-based direct normal estimation method which 
uses range information is given below, but other techniques exist [8,9]. This 
method factors range information to allow varying albedos and trades accuracy for 
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feature preservation. The effect of the light source’s irradiance fall-off is first re-
moved from the raw image data ( 0E ). We assume the following irradiance correc-

tion model for small area sources (4.1): 

 0( ) n
unbiasedE E Rγ= ⋅  (4.1) 

The radiometric function ( γ ) maps pixel values to irradiance, ( R ) is the inter-

polated depth estimate and ( n ) is the irradiance fall-off factor. For ideal point 
sources 2.0n = , while 2.0n <  for near-field area sources. The experimental 
setup described below exhibits an empirical decay of 1.265n = . The corrected 
image ( cE ) is devoid of a near-field illumination intensity bias.   

Converting RGB color into a single intensity value provides compactness and 
symmetry, and also minimizes chromaticity effects. Color space transformations 
such as CieLAB or YCbCr are often used to heuristically isolate the lightness 
component of an image, discarding chromaticity and albedo. Zickler’s SUV trans-
formation [10] describes a class of physics-based specular-invariant color spaces 
produced by rotating the RGB space such that a single channel is aligned with the 
illuminant color vectors. This method has produced excellent results with single-
source images and enables many Lambertian algorithms to handle a large set of 
environments with specularities. The specular invariant image, as defined in eqs. 
4.2-4.3, is used in experimentation: 

 ( ) ( ) ( ) ( )[ , , ] , ,
TT r g b

r unbiased unbiased unbiaseds u v R E E Eθ ⎡ ⎤= ⋅ ⎣ ⎦  (4.2) 

 2 2
invE u v= +  (4.3) 

( )rR θ  is defined as a (3 3)×  rotation matrix that aligns the red channel of an 

{ , , }r g b  triple with the source color. The magnitude of the { , }u v  components is 

taken to be the diffuse image.  
An albedo map is subsequently generated from the diffuse image using Blake’s 

method for lightness computation [11]. Perceived intensity is a multiplicative rela-
tionship between surface slant angle and reflectance. The log image separates 
these components into additive terms. Scene albedos can be recovered from the 
gradient of the log diffuse image by thresholding to remove small changes and in-
tegrating. It is noted that the problem can be recast as finding the log albedo map 
(δ ) that minimizes the following [11]: 

 ( ) ( ) 22
arg min log loginv invx x y yT E T Eδ σ σδ δ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂− + −  (4.4) 

where ( Tσ ) is the threshold function. Exponentiating (δ ) with the proper constant 

of integration produces the albedo values (4.5). The constant can be estimated 
from the range data to minimize depth discrepancy in the reconstruction.  

 exp( )est cρ δ= +  (4.5) 
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 ( )cosinv nlE n lρ θ=  (4.6) 

 ( )arccos inv

est

E
nl ρθ =  (4.7) 

The polar estimates ( nlθ ) are combined with azimuth estimates (φ ) from the 

range image and converted to gradients for integration in the MRF. 

5   Experimental Results 

The experimental setup uses both a continuously rotating planar LIDAR scanner 
and an 8 megapixel DSLR camera mounted to a mine robot. A small area light 
source is also mounted along the same axis to minimize cast shadows in the im-
age. This replaces the normal flood lighting for the imager. The scanner has a 
practical throughput of ~40,000 points per second. The points are aligned along 
concentric rings with 0.5° angular separation in a 180° hemisphere in front of the 
unit. The camera takes hemispherical images using a constant angular resolution 
fisheye lens with a 182° field of view. The sensor mounting configuration and ex-
ample data are shown in Fig. 1 below.  

 

Fig. 1 (Left) Experimental setup with 1. LIDAR scanner. 2. Fisheye Camera, 3. Light 
Source. (Center) Raw fisheye imagery. (Right) Ground truth range image.  

Thirty complete datasets consisting of LIDAR scans, High Dynamic Range 
(HDR) imagery and robot odometry were collected from the Bruceton Research 
Coal Mine in Pittsburgh, PA. LIDAR scans averaged 600,000 points. HDR images 
were each generated from a series of 5 images corresponding to exposures times 
of {¼, ½, 1, 2, 4} seconds using the method described in [12]. The 1.0 second ex-
posure image was used as the Low Dynamic Range (LDR) reference image for 
analysis. An additional 16 datasets of LDR-only imagery were also collected.  

A ground truth range map was generated for each LIDAR scan using the full 
point cloud. Multiple measurements mapping to the same pixel were averaged. 
The scans were subsequently down-sampled to 25,000 points and interpolated into 
a range image for testing the method. The datasets were further partitioned into 25 
test sets and 5 training sets. Optimal weighting factors were learned using a sim-
plex search on the training set, while validation occurred in the test set.  

The proposed method was compared against Diebel’s method and raw interpo-
lation. The mean per-pixel L1 norm (Manhattan distance) between the  
reconstructed range map and the ground truth map was used as a benchmark for  
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Fig. 2 Reconstruction Improvement vs. Raw Interpolation.  

comparison. Ground truth data points outside the convex hull of LIDAR values in 
the interpolated map were discarded due to skew in scoring extrapolated points. 
The usable pixel area is determined for each scan by the number of saturated  
pixels, the range image convex hull and removal of high-gradient probable error 
values. 

The results of the experiment are summarized in Table 1 and Fig. 2. Fig. 3 and 
Fig. 4 show an example reconstruction from a single view point. The scene fea-
tures a yellow nylon mine curtain on the left side, wooden cribbing stacks on the 
right and aluminum meshing integrated into a mostly exposed ceiling.  

Additional data of two corridors were also collected at the Bruceton Mine along 
evenly spaced intervals roughly 3 meters apart. Using robot odometry and  
 

Table 1 Summary of Results 

Quantity Details 

Total Test Datasets 41 

 {HDR, LDR-only} Datasets {25, 16} 

Interpolation Improvement  

 Mean 12.2% 

 Max, Min 19.2%, 3% 

Density Statistics  

 LIDAR downsample 25,000 points 

 Ground Truth LIDAR 669,834 points 

 Mean Resultant 1,045,358 points 

 Mean Increase 41.8 x 

Image Usability Information  

 LDR Saturated 3.17% of total pixels 

 HDR Saturated 4.20 x 10-2 % of pixels 

 HDR Accuracy Increase 20.5% over LDR-only 

 HDR Density Increase 51.5% over LDR-only 

 



Camera and LIDAR Fusion  427
 

 

Fig. 3 Point Cloud of Cribbing. Low resolution cloud (left) and high resolution reconstruc-
tion from algorithm (right) showing stacked timbers supporting the roof. 

 

Fig. 4 Colorized 3D Reconstruction. Full scene (left) and mine curtain detail (inset and 
right). 

Iterative Closest Point (ICP) alignment, multiple scans were up-sampled using the 
proposed technique, fused together and color/illumination compensated. These 
models represent some of densest, most comprehensive mine reconstructions to 
date using a mobile robot. The results appear below: 

Table 2 Corridor Modeling Statistics. 

Model # # of Scans # of Images # Points 

1 4 16 5,543,451 

2 8 32 9,680,105 

The results are displayed using a hole-filling method similar to the multi-scale 
push-pull technique in [13]. This display system is adapted to benefit from high 
density clouds generated using super-resolution methods. Point clouds are ren-
dered with push-pull interpolation in image space. A min-depth check and kernel 
density estimator are used to resolve edge discontinuities and remove occluded 
background measurements. The utilization of texture in-painting for both color in-
terpolation and depth reconstruction provides the viewer with graphical continuity 
as well as proper occlusions, which standard point displays lack. In addition to fast 
rendering of huge datasets, the renderer allows the model to be updated in real  
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Fig. 5 Mine Corridor ICP model. (1) External view. (2) Internal view with rail tracks.   

time as new data arrives without costly re-meshing operations. The system can 
generate real-time (>30Hz) imagery at 1080p HD resolution on commodity (Ge-
Force GTX 260) hardware with point clouds of greater than 5 million points 

6   Analysis 

The results show that the method increases interpolation accuracy by up to 20% 
on the Bruceton Mine data, with an average improvement of 12%. The fisheye-
spinner setup features density increases up to 70 fold, with an average of 40x in-
crease in density (Table 1). Of note is that real resolution is created where LIDAR 
beam physics dictate a maximum angular resolution. This is apparent in 3D scan-
ning mechanisms that actuate a planar sensor, where an increase in data collection 
time results in diminishing resolution returns.  

To validate that true information is being stored in the interpolated values, a 
sliding-window 15x15 pixel Pearson correlation was performed. As shown in Fig. 
6, the shaded image provides significant information about the ground truth that is 
not contained in interpolation. The fused range map correlates more than either 
source individually, concurring with the error estimation benchmark. While  
Diebel’s method shows a numerical increase in accuracy, it is not statistically sig-
nificant. This is corroborated by almost equal amounts of strongly negative and 
positive correlation in the raw image data. 
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Fig. 6 (Left to right) Roof supports covered in Shotcrete, Image to ground truth correlation, 
Shaded image to ground truth correlation, and Reconstruction error reduction. Scale is 
brown to white over [-1, 1] for correlation and navy blue to red over [-0.025m, 0.05m] for 
error reduction. 

The method encounters several drawbacks that prevent the fused result from 
achieving the same accuracy as LIDAR scans of equivalent density. Resulting 
range images are vulnerable to artifacts typical of raw interpolation, although to a 
lesser degree. Most reconstruction error occurs at occlusion edges where 
neighboring LIDAR points have large disparities. Regularization terms tend to 
over-smooth these edges and shading cues are ill-behaved due to cast shadows, 
among other reasons [9,11]. Attempting to isolate these specific edges in the im-
age is difficult due to image noise, lighting and material specific effects and is not 
addressed in this research (see [5,14]). 

7   Conclusion 

A method was presented that fuses actively illuminated CCD imagery and LIDAR 
data. The method demonstrates increases in range accuracy of up to 20% on ex-
perimental data over interpolation and increases in measurement density of up to 
70x using the experimental setup. The improvements are a result of calibrated im-
aging using additional knowledge of the image formulation model to reconstruct a 
3D observation of the scene. This research demonstrated the efficacy of multi-
sensor mapping systems as well as calibrated imaging for field robots. 

Perhaps the greatest argument for range/image super-resolution is that it is eas-
ily bootstrapped to existing systems. Subterranean robots already require light 
sources for photography as well as range sensors for mapping and many high-
throughput commercial scanners feature co-located cameras. The general use of il-
lumination information for super-resolution is also applicable to other domains in 
field robotics. Planetary robots are likely to encounter highly diffuse environments 
(i.e. Mars) or characterizable reflectances on bodies lacking scattering atmos-
pheres (i.e. moon, asteroids). Such development is likely to increase the safety of 
exploration and prospecting on the moon, where sensing is secondary to payload 
and comes at a premium cost. 

In future work, agile and high accuracy applications will benefit from one or 
more actuated sensors. With an actuated camera, the technique can be used to 
zoom in on regions of interest and selectively up-sample a scan. With an actuated 
range scanner, such as a focal plane array LIDAR with variable optics, a static 
camera may be used to reconstruct rough low frequency data from a preliminary 
scan and detect areas of high frequency, while a second LIDAR pass focuses  
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specifically on these areas. This setup can drastically compress the amount of data 
taken and reduce time required while producing an optimal reconstruction given 
certain throughput constraints. 
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A Communication Framework for
Cost-Effective Operation of AUVs in Coastal
Regions

Arvind Pereira, Hordur Heidarsson, Carl Oberg, David A. Caron,
Burton Jones, and Gaurav S. Sukhatme

Abstract. Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanog-
raphy. Most high-endurance and long-range AUVs rely on satellite phones as their
primary communications interface during missions for data/command telemetry due
to its global coverage. Satellite phone (e.g., Iridium) expenses can make up a signif-
icant portion of an AUV’s operating budget during long missions. Slocum gliders
are a type of AUV that provide unprecedented longevity in scientific missions for
data collection. Here we describe a minimally-intrusive modification to the existing
hardware and an accompanying software system that provides an alternative robust
disruption-tolerant communications framework enabling cost-effective glider oper-
ation in coastal regions. Our framework is specifically designed to address multiple-
AUV operations in a region covered by multiple networked base-stations equipped
with radio modems. We provide a system overview and preliminary evaluation re-
sults from three field deployments using a glider. We believe that this framework can
be extended to reduce operational costs for other AUVs during coastal operations.

1 Introduction and Motivation

Autonomous Underwater Vehicles (AUVs) are revolutionizing oceanography. They
have been widely used for in-situ measurements which would be difficult, ex-
pensive, and, in some cases, impossible to obtain by using traditional ship-based
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Fig. 1 (a) Basestation locations (current and planned) surrounding the Southern California
Bight (SCB), (b) The Slocum glider, (c) Hardware modifications to the glider

sampling techniques [1]. AUVs typically use thrusters, rudders and fins as actu-
ators [5]. Gliders [6, 3] are specialized AUVs that rely on buoyancy control and
shifting center of mass for propulsion, to fly in the ocean - an energy-efficient tech-
nique that results in long mission times (3-4 weeks) at sea.

Table 1 shows several popular AUV platforms, and their primary modes of com-
munication. The usual operation of AUVs involves the creation of a mission file
during the mission planning stage (onshore). Most of the vehicles in Table 1 use
a radio link (WiFi, radio modem) for operator-vehicle communications when the
vehicle is near the operator. This typically occurs during the mission upload phase.
Once deployed, AUVs typically communicate with a basestation onshore (or on a
ship) using an acoustic modem or a satellite phone.

While satellite phones have the advantage of being usable at almost any ocean
surface location, they are plagued by very low data-rates (e.g., 2400 bps maximum
for Iridium) and high costs for transmitted data or call time. Slow data rates imply
longer times spent at the surface for data transfer. This is a safety concern in areas
with high marine traffic such as the Southern California Bight (SCB), our region
of interest and operation (the SCB is the oceanic region contained within 32◦N to
34.5◦N and 117◦E to 121◦E). Satellite phone communications are expensive. We
estimate the nominal communication cost for Iridium usage to be approximately
USD 2400 for a 3 week glider mission or approximately half of the total expendible
cost of the deployment. Others [6] report their Iridium communications cost to be
approximately USD 180/day which translates to approximately USD 3500 for a 3
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Table 1 AUVs

Name Manufacturer Endurance Radio Acoustic Satellite

Bluefin-12 Bluefin Robotics 10-23 h Yes Yes Yes
HUGIN 1000 Kongsberg 17-24 h WiFi Yes Yes
REMUS 600 Hydroid 20-45 h WiFi Yes Yes
Gavia Hafmynd 24 h WiFi Yes Yes
SAUV II Falmouth Scientific Unlimited Yes Yes Yes
Slocum Electric Glider Webb 4 weeks Yes No Yes
Spray Glider UCSD months No No Yes
Seaglider iRobot months No No Yes

week mission for a single glider. These limitations imply that during a surfacing,
experimenters using satellite phones are often forced to transmit subsets of data
from the AUV, instead of the entire dataset. The Iridium plan used in this work, is
based on call time.

One strategy to mitigate the shortcomings of satellite phones is to use acoustic
modems [9, 4, 2] or combined acoustic/optical strategies [8]. The obvious advantage
is that AUVs need not surface to communicate if they are using acoustic modems.
However, data rates on acoustic systems are typically low, they also have a high one-
time cost and suffer from multi-path interference in shallower coastal regions. Op-
tical techniques are typically shorter range and unsuitable for operations in deeper
waters.

We remark that radio modems (e.g., the FreewaveTM) used on AUVs (e.g., the
Webb Slocum glider (Table 1)) are rated for a range of 60 miles line-of-sight. Their
use need not be restricted to dockside operations for mission upload; it could be
extended to large near-coastal regions (e.g., the SCB). A multi-AUV deployment
over an extended time period in a region as large as the SCB could see significant
cost reductions if the primary mode of communication with the AUV was a radio
modem instead of a satellite phone. Our experimental platform, the Webb Slocum
Glider, is primarily designed to communicate using a Iridium satellite modem dur-
ing missions. When the operator is within Freewave range, the modem is typically
used for launch, retrieval, data transfer, and maintenance of the vessel. In the course
of a typical mission, the Freewave is used infrequently, and mostly at the dockside.
This is because its effective range to the operator is rather small since it is rare to
obtain line-of-sight connectivity between vehicle and operator during a mission due
to occlusion.

Can the effective range of the radio modem be extended so that a region the size of
the SCB would be effectively ’covered’ thus rarely necessitating the use of a satellite
phone for operator-AUV operations ? Here we report on the encouraging progress
towards answering this question in the affirmative by 1. designing and augmenting
coastal communication infrastructure (radio modems onshore at elevated sites for
better line of sight connectivity to the vehicles), and 2. designing, implementing
and testing protocols for data-transfer using radio modems.



436 A. Pereira et al.

To exploit the radio modem to its fullest potential we make the observation that
the Southern California region has several HF-Radar (CODAR) sites at elevated
locations. These provide accurate ocean surface current data, and are always instru-
mented with an internet connection. This infrastructure is a cost effective way to set
up a network of radio modem shore stations to provide radio modem connectivity to
vehicles on near-coastal missions. Elevated locations provide greater line-of-sight
with the vehicle.

We contend that with a minimal modification of the vehicles and a small addition
to existing shore locations it is possible to build a network of this kind that scales
with multiple vehicles at limited cost. This paper describes the design and imple-
mentation of such a system. We report on communication tests using Webb Slocum
gliders in the SCB, with the expectation that this strategy can pave the way for a
similar use of a reduction in the communication costs for coastal operation of other
AUVs.

2 The Webb Slocum Glider Communications System

The glider is a specialized robot driven by buoyancy which can fly in the ocean
for extended periods of time at the expense of speed and maneuverability. Glider
designers have devoted significant effort to power consumption minimization.
The glider’s navigation and communications are handled by a low-power micro-
controller called the PersistorTM. This computer performs standard navigational
tasks and runs a modified version of PicoDOSTMcalled GliderDOSTMwhich con-
tains glider-specific software.

In normal glider operations, the glider’s Freewave modem is configured as a slave
to connect to only a single master Freewave modem at the operator’s end. The other
side runs software from Webb Research called the DockServerTM. The glider can
also be operated via any terminal client since it provides a human-readable interface
via ASCII strings. There is no inherent packetization of data being performed on
the glider since it assumes that it is always connected to a single computer via either
of its two links (Freewave or Iridium). This situation, coupled with the fact that
the Freewave modems do not have a mode of operation which can independently
handle hand-offs between modems, means that it is difficult to build a reliable end-
to-end system to communicate with a glider without using packetization for the
identification of sources and destinations. Any disruption in communication due to
loss of a link or a reconnection of the glider via a new link, results in data corruption.

3 System Design

Our system consists of three main components. At the glider level, we have the
communications module that handles the radio communications on the glider. At
shore, we have the internet connected basestations which have the radio and antenna
to communicate with gliders deployed in the ocean. Finally, we have the control
server, a central data-aggregation and command/control server. This overall system
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design, illustrated in Fig.2 adds more high-level control to the glider operations than
currently possible which in turn facilitates autonomous re-tasking of the gliders on
mission.

3.1 Communication Module and Protocol

The communications module is a combination of hardware and software to handle
communications between the glider and shore. The hardware is specific to the robot
platform (in this case a glider), and the software has some general building blocks
as well as a platform-specific interface devoted to interaction between the commu-
nications code and the control software on the robot itself. We have implemented
this module on a Webb Slocum glider, and this paper describes experiments with
that particular AUV, but the module can easily be added to most other AUVs.

The basestations and gliders communicate through our own light-weight com-
munication protocol. Each basestation can store and forward certain information
between specified nodes (gliders in this case). We treat the Freewave modems as
a serial link, and have incoming and outgoing packet queues which provide feed-
back to vary both the inter-packet delay as well as Freewave packet-sizes. Freewave
modems make a ”best-effort” delivery attempt on these packets, which can be frag-
mented into smaller pieces in the event of poor connections. This protocol (which
we will describe in more detail in a future paper), also supports guaranteed delivery
as well as a non-guaranteed mode of transmission. The packet structure contains 14
bytes without payload data, and allows several applications to multiplex data, such
as file transfers, status packets, data packets, terminal commands and so on. We use
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a Selective-Acknowledgement communications scheme with a fixed window which
works well in regions with persistent line-of-sight between antennae.

On our Slocum gliders, the communication module hardware consists of a Gum-
stix computer and the aforementioned software. Adding the Gumstix between the
glider’s control computer and the Freewave is a minimally intrusive way of adding
new communication capabilities to the glider. Using a separate computer to inter-
face with a vehicle abstracts the interface between higher-level communications and
lower level vehicle control cleanly and can also be used in the future to handle glider
re-tasking.We chose a Gumstix because, besides its small size, it is a fully functional
Linux-based computer, consumes very little power (<120mA @5V, 400MHz), and
has good interfacing capabilities. Fig.1(c) shows the physical modifications to the
glider due to the addition of the Gumstix. We need to make only 5 modifications to
the glider to allow the glider to communicate with an external computer. Although
the Gumstix consumes more power than the persistor alone, we have designed the
system such that the Gumstix is powered up along with the Freewave modem - a
feature that ensures that it gets automatically turned on at the water surface, while
staying shut off when the glider is diving.

The platform-specific software on the glider intercepts all messages to and from
the glider persistor and the Freewave modem, parses the ASCII strings from the
glider and follows the basic control flow displayed in Fig. 3. It also sends necessary
status information to shore using our packet protocol, gathers sensor data files from
the persistor, compresses them and sends them to the shore station. If communica-
tion with the main server via Freewave is unavailable, the glider falls back to Iridium
to call in.

3.2 Base Stations

The basestations are the shore stations that handle direct communication with the
gliders. The hardware consists of an internet-connected computer, running Ubuntu
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Linux Server, a Freewave radio and an antenna. The computer runs our commu-
nication software which essentially relays datagrams between the gliders and the
control server. Communications between these basestations and the control server
take place via TCP/IP. If the basestation loses connection to the control server it
turns of its Freewave to ensure gliders connect to another basestation or fall back to
Iridium for communication.

3.3 Control Server

The control server is the orchestrator of the overall system. It is written in C++ and
runs on Ubuntu Linux Server and utilizes a MySQL database for storing data. It
maintains a connection to each of the basestations, keeps track of the state of the
system and is in charge of issuing commands to connected gliders. It also notifies
the end users of events via email. All data it receives is logged to a database. On
top of the control server, we have a web based user interface, written in JavaTMwith
Google Web Toolkit, to provide easy accessible control and visualization to the end
user of the system. The server also runs 3rd party monitoring software to monitor
the health of the basestation computers and software. If a problem is encountered
system administrators are notified.

4 Experiments and Results

To test our design, we have performed 3 experimental deployments. The first was
off the coast of Santa Catalina Island in November 2008. The other two were near
Pt. Fermin in January and February 2009. The heat-map for File transfers (Fig. 4)
is based on results extrapolated from glider surfacing and transferring files to shore
from locations C, D and E. The heat-map for Carrier Detect (Fig.5(a)) shows a

Table 2 Results from Field and Laboratory Tests

Test Maximum Data Rate File Freewave Quality
Distance [km] (KB/sec) Transfers Switching of Link

A - Pt.Fermin ∗ 2.6 Not Measured Not Tested No Poor
B - Pt.Fermin ∗ 5.2 Not Measured Not Tested No Poor
C - Pt.Fermin † 12.3 Not Measured Not Tested Yes Intermittent
D - Pt.Fermin + 9.2 0.1535 Yes No Slow
E - Pt.Fermin 3.5 1.46 Yes No V.Good
L - Lab Tests N.A. 7.883 Yes No V.Good

∗ This test was conducted with a faulty antenna installation at Pt.Fermin
† Connection was made to both Pt. Fermin and Catalina Island. Distance to Catalina was

20 km.
+ Remote operator performed a glider re-tasking via network at this location through

Pt.Fermin
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Fig. 4 File Transfer data rate off Pt. Fermin

Fig. 5 a) Carrier-detect success percentage (CD on time/Total time) b) Link-Layer protocol’s
uptime percentage (Protocol time/CD on time)

percentage of time the base-stations had Carrier-detect with the gliders to the to-
tal time of a surfacing. This metric is based on 4 surfacings. Fig. 5(b) shows a
heat-map based on the percentage of protocol-level Link States to the total Carrier-
detect duration during a given surfacing. This metric gives us an idea of how well
our protocol is performing in real conditions. Observations show that during inter-
mittent communicatios, such as those at C and D, the protocol-link suffers. These
heat-maps are based on simple linear-interpolation of very sparse data with no un-
derlying communication model assumption. Although we have not analyzed the
relationship between sea-state and the communication quality achieved, the average
wave-height was approximately 1m with a dominant period of 6 seconds during the
data-collection period.
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5 Conclusion

This paper outlined the design behind a communication system using long-range
RF-modems, to communicate with AUVs in a coastal area. Field trials using Slocum
gliders indicate promising results and give us valuable insights into improvements in
the design. On the gliders themselves, we add a small computer to interface between
the original glider computer and its Freewave modem. Our communications proto-
col supports datagrams with priority, can maintain in-sequence transmissions,and
has both reliable and un-acknowledged datagram modes. Instead of transmitting all
the data from the glider, we create status packets which contain a snapshot of the
gliders state by parsing its lengthy ASCII transmission. We also utilize the Gum-
stix’s processing power to compress data files before transmission, which provides
us with a typical space saving of approximately 4x. The high data rates our system
achieves in the field (1.46KB/sec) is 6 times faster than Iridium while simultane-
ously transmitting multiplexed glider console information and status packets. This
combined speed increase translates to a 24x improvement, which allows us to send
more data, while also reducing surface times and cutting down on Iridium data-
transfer costs.

Fig. 4, a sparsely interpolated map based on only 3 averaged measurements, im-
plies that fairly high throughputs are possible close to a base-station (<4km), with
a fairly sharp bit-rate drop from 1.46KB/s to approximately 154bytes/sec. This sig-
nificant drop is due to the links becoming more intermittent as carrier detect on the
radio is only available 65% of the time at a distance of 9.2km, while it is more than
86.7% at 3.5km. The measurements of communication performance we present here
are sparse and were collected at four surfacing locations, but they represent charac-
teristic portions of a typical coastal belt that needs coverage. Field tests have shown
that our system allows status packets to be reliably transmitted from distances upto
20km (Glider Surfacing C). We have successfully performed glider re-tasking via
the network from a distance of 9.2km - a feature we will use in the future to enable
mission re-planning based on data gathered by the glider. We have also developed a
central server which allows us to easily collect and visualize data from the glider, or
create and send new mission files through the network.

6 Future Work

Experimental results while promising, show that there is room for improvement.
From Fig.5 (a) and (b) we make the observation that we can improve upon our
protocol, such that its link spans all the time the radio has carrier. We understand
that this is a consequence of protocol choices, which were tuned to obtain good
results at the lab - which as observed, is significantly different from conditions in
the field. We believe local conditions due to waves play a major role in causing
communications disruptions, since the antenna of the Slocum glider is very close to
the waters surface and local waves occlude line-of-sight between radios. We believe
that by using better queue management, introducing variations of re-transmit time
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and packet sizes, based on the link state, can lead to significant improvements in
ensuring we have a much better protocol-level link between the glider and base-
stations. We are also in the process of mapping out the entire region of interest
for link quality. Equipped with such a map, we can then design planners which
incorporate the knowledge of communication link availability to bias the surfacings
of AUVs such that they keep overall operation costs low. Concurrent work [7] in
our lab, used Iridium to perform feature tracking based on ocean model predictions
for the Southern California Bight region. By using our communication system to
perform mission adaptations, we will get a more realistic comparison between cost-
savings using it instead of Iridium.
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Multi-Robot Collaboration with
Range-Limited Communication:
Experiments with Two Underactuated
ASVs�

Filippo Arrichiello, Jnaneshwar Das, Hordur Heidarsson, Arvind Pereira,
Stefano Chiaverini, and Gaurav S. Sukhatme

Abstract. We present a collaborative team of two under-actuated au-
tonomous surface vessels (ASVs) that performs a cooperative navigation task
while satisfying a communication constraint. Our approach is based on the
use of a hierarchical control structure where a supervisory module commands
each vessel to perform prioritized elementary tasks, a behavior-based con-
troller generates motion directives to achieve the assigned tasks, and a ma-
neuvering controller generates the actuator commands to follow the motion
directives. The control technique has been tested in a mission where a set of
target locations spread across a planar environment has to be visited once
by either of the two ASVs while maintaining a relative separation less than a
given maximum distance (to guarantee inter-ASV wireless communication).
Experiments were carried out in the field with a team of two ASVs visiting
22 locations on a lake surface (approximately 30000m2) with static obstacles.
Results show a 30% improvement in mission time over the single-robot case.

1 Introduction

A significant body of literature deals with the motion control of aquatic
vehicles for autonomous navigation [11]. Interest in the field is motivated
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by different applications, e.g., naval system applications, harbor operations,
defense and patrolling of coastal perimeters, and marine biology applications.
Motion control of Autonomous Surface Vessels (ASVs) has been studied in
the context of dynamic positioning for fully actuated [15] and under-actuated
vessels [18], as well as trajectory tracking [14, 1]. Separately, collaboration in
multi-robot teams [10] has been widely studied. In the intersection of these
two areas - motion control of a fleet of ASVs - different approaches have
been proposed, however most of them have only been validated by numerical
simulations [8], or by experiments with a single real vessel and simulating the
others [13]. Here, we focus on the cooperative control for ASVs and present
the results of experiments with a team of two underactuated ASVs in the
field performing a joint mission motivated by environmental monitoring.

We provide a list of target locations to the vessels. They must dynamically
allocate locations among themselves such that each location is visited exactly
once, and all obstacles are avoided. The approach proposed here is applicable
to a scenario with dynamic obstacles and targets since it does not pre-plan a
route. In the course of the mission the ASVs are required to maintain connec-
tivity at all times. Unlike [16] where connectivity is maintained by measuring
signal strength and the mobility controller is a spring-damper system, we
use a layered hierarchical control decomposition which accommodates a dy-
namic environment (targets and obstacles may be added dynamically). When
needed, a leader-follower configuration allows the team to allocate a target
to the vessel closest to the next target, while the other vessel ensures the
communication constraint is maintained. Our results from five field trials at
a lake with a two-ASV team (communication constraint of 60m, in an explo-
ration area of 300m x 100m) show a 30% improvement in exploration time
compared to a single vessel.

We focus on navigation techniques for a realistic environment where sev-
eral obstacles can be found. Thus, we make use of a behavior-based technique
as a guidance control to take advantage of its reactivity to unpredicted con-
ditions [9, 6]. In particular, we present the use of a behavior-based technique
called the Null-Space based Behavioral (NSB) control as a guidance system
for ASVs. The NSB approach has been extensively tested for the control of
autonomous ground robots and results have shown robust control for forma-
tion and spread control for a team of robots [4], escorting an external agent
with a team of robots [2], and the formation control of a fleet of ASVs [7].

2 Problem Description

We require a set of pre-specified locations to be visited by one (and only
one) of the ASVs exactly once. During the execution of the mission, both
ASVs must ensure that their relative distance does not exceed a preset
bound. Needless to say, the vessels must avoid mutual collisions and collisions
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with obstacles in the environment. We decompose the overall mission into
elementary tasks that can be then prioritized and implemented individually;
in particular: 1. Avoid obstacles and inter-robot collisions, 2. Satisfy the
communication constraint, and 3. Navigate to assigned target locations.

While we discuss the details in the next section, broadly speaking each
ASV properly activates and combines these three modes. When the distance
between the vessels is consistently lower than the communication bound, they
are free to choose targets and navigate to them independently. When the dis-
tance is close to the communication range, a supervisory module on each
ASV has to ensure the communication constraint is satisfied. This is done
using a leader-follower policy where one of the vessels (the leader) continues
with its mission, while the other (the follower) has to enforce the separation
constraint adapting its motion to the leader. The navigation task moves each
(single) vessel toward its assigned location. Since the vessels must avoid all
collisions, the obstacle avoidance controller takes evasion action when obsta-
cles or other vessels are within a safety margin.

The targets to be visited are dynamically chosen by the vessels on the basis
of their locations. A communication sub-system ensures that a shared target
and obstacle map are maintained both of which can be updated dynamically
from shore, allowing dynamic missions.

3 Control Strategy

In order to achieve the proposed mission in a cooperative way, the control
architecture has been organized into a three-level hierarchy, as shown in Fig-
ure 1: Supervisor, NSB, and Maneuvering control.

At the highest level, a supervisor is in charge of selecting the active tasks for
the vessel and their reference values, i.e., it activates the obstacle avoidance
behavior when the vessel is close to the other vessel or to a static obstacle, it
defines the next target to be visited and it activates a leader-follower policy
to avoid breaking the communication link. In order to make its decisions,
the supervisor makes use of some information about the vessel position (read
from the vessel’s GPS), the map of the environment, the set of visited and
un-visited locations, and information received from the other vessel’s super-
visor. An intermediate level implements a behavior-based technique, namely
the Null-Space based Behavioral (NSB) control, to simultaneously achieve
multiple tasks with different priority; the NSB, on the basis of the active
tasks and their relative priority, defines motion directive for the vessel (e.g.,
the desired velocity and motion direction). Finally, the lowest-level controller
is a maneuvering control that, taking into consideration the underactuated
actuation system of the vessel, defines the reference commands for the actu-
ators in order to follow the motion directives received by the NSB.
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Fig. 1 Sketch of control architecture for a the team of two under-actuated vessels.

3.1 The Supervisor

The supervisor module on each vessel has the knowledge of the overall mis-
sion. In particular, it knows the target map and, in order to avoid revisiting
the same targets during the course of the mission, it keeps track of targets
visited by the vessel itself or by the other one. When a location is reached and
a new target has to be chosen, the supervisor finds the target nearest to the
current vessel position among the non-visited targets different from the one
currently assigned to the other vessel. Once all the targets have been visited,
the vessels are asked to reach and keep a final restoring configuration.

During the vessels’ motion, the two supervisory modules are in charge of
keeping the communication constraint. To fulfil this constraint, when needed,
they activate a leader-follower policy to cause one vessel to take care of the
communication constraint while the other continues its mission. The choice
of which vessel is the leader and which the follower is negotiated between the
supervisors on the basis of the distances between the vessels and their next
targets. In particular, the vessel that is the closest to its next target becomes
the leader while the other becomes the follower. The leader continues its
mission ignoring the other vessel, while the follower has to control its distance
from the leader while also trying to stay close to its target. The follower is
also allowed to switch to a new target if this is closer than that previously
assigned to it. If the communication link breaks or the distance between the
vessels exceeds a maximum threshold, the leader stops to wait for the follower
moving toward it. Moreover, the supervisory module decides when to activate
the obstacle/collision avoidance. Finally, the supervisory module defines the
priority order of the active tasks.

3.2 The Null-Space Based Behavioral Control

The Null-Space based Behavioral (NSB) control is a behavior-based approach
aimed at controlling the motion of autonomous vehicles in dynamic scenarios.
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In particular, the NSB, whose details can be found in [3, 2], uses a hierarchy-
based structure to simultaneously achieve multiple tasks using a projection
technique to delete the components of the lower priority tasks that would
conflict with the highest ones. Here, the NSB is used as a guidance system
for an ASV that, on the base of the active tasks and of their priority order,
has to define the motion directives for the vessel.

Following the line of behavior-based approaches, the mission of the vessel
is decomposed into elementary tasks. For each task a suitable task function
is defined as σ = f(p), where σ ∈ IRm is the task variable to be controlled,
m is the task function dimension, and p∈IRn is the vessel position.

For each task, the velocity reference for the vessel is specified, starting
from desired values σd(t) of the task function, solving the inverse kinematic
problem at a differential level. Thus, the velocity reference of the generic ith-
task is calculated as vi = J†

i

(
σ̇i,d +Λiσ̃i

)
, where J†

i is the pseudo-inverse of
the task function Jacobian, Λi is a constant positive-definite matrix of gains
and σ̃i is the task error defined as σ̃i =σi,d−σi.

When the mission is composed of multiple tasks, the overall vessel velocity
is obtained by properly merging the outputs of the individual tasks. A velocity
vector for each task is computed as if it were acting alone; then, before adding
the single contribution to the overall vehicle velocity, a lower-priority task
is projected onto the null space of the immediately higher-priority task so
as to remove those velocity components that would conflict with it. If the
subscript i also denotes the priority of the task with, e.g., Task 1 being the
highest-priority one, the overall vessel velocity is given by:

vNSB = v1 +
(
I − J†

1J1

) [
v2 +

(
I − J†

2J2

)
v3

]
, (1)

where
(
I − J†

iJ i

)
represents the null-space projector of the ith-task, i.e., it

filters the velocity components that would conflict with the ith-task.
To achieve the mission described in Sec. 2, three tasks have to be defined:

a)Obstacle-avoidance: This behavior, when active, is always the highest
priority task because its goal is to preserve the integrity of the vessel. In the
presence of an obstacle/vessel in the advancing direction, its aim is to keep the
vessel at a safe distance from it. Thus, its implementation produces as output
a velocity, in the vessel-obstacle direction, that keeps the vessel at a safe
distance from the obstacle. Formally, the task function is σo = ‖p− po‖ ∈ IR
where po is the obstacle position, and Jo = r̂T ∈ IR1×2 is the task Jacobian
where r̂ = p−po

‖p−po‖ is the unit vector aligned with the obstacle-to-vehicle
direction. Defining as σo,d = d desired distance, the task output is

vo = J†
oλ1(d − ‖p − po‖). (2)

Possible motions in this task null-space are all the motions that do not change
the distance from the obstacle. Thus, the null-space projector projects the
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velocity commands of the lower-priority tasks along the tangential direction
of a circle centered in the obstacle and passing through the vessel itself.

b)Move-to-target : Defining the task function as σt = p ∈ IR2, whose Ja-
cobian is J t = I ∈ IR2×2 and assigning the desired value as σt,d = pt, then,
the output of the task is a velocity, in the target direction, proportional to
the distance from the target pt:

vt = Λt (pt − p) (3)

c)Keep the communication constraint : To fulfill the communication con-
straint, a leader follower approach can be applied. The follow-the-leader task
is aimed at keeping the follower (whose position is pf ) at a distance d from
the leader position pl. The task function mathematical definition is analo-
gous to the obstacle avoidance task, while its output is a velocity, in the
leader-to-follower direction, proportional to the difference among desired and
measured distance; moreover, the desired velocity of the leader is added as a
feedforward term:

vf = Λf

(‖pl − pf‖ − d
) pl − pf

‖pl − pf‖ + vl. (4)

3.3 Maneuvering Control

The maneuvering controller is an onboard controller aimed at steering the
vessel along a desired path and moving it with a desired velocity [11, 12].
Receiving motion reference commands from the NSB, the maneuvering con-
troller has to generate the generalized forces applied by the actuators.

Basing on the model for ASV in [11] and considering the underactuated
propulsion system of the vessel (see Figure 2.a), a maneuvering controller is
designed following the approach proposed in [17]. From this approach, the
maneuvering control can be expressed as the sum of a heading autopilot and
a surge control aimed at causing the vessel to follow the velocity reference
commands. The heading autopilot is aimed at controlling the heading of the
vessel to make it move in the desired direction χNSB. In particular, it regu-
lates the propulsion torque and the rudder angle to correct the orientation of
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Fig. 2 a) The ASV motion reference model; b) Two vessels during the experiment.
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the vessel. The surge control has to make the norm velocity of the vessel to
track the value generated by the NSB; however, the vessel has to move at full
speed only when the orientation error is null. Thus, the surge control works
as a PI controller regulating the advancing direction multiplied by a scaling
factor depending on the orientation error. Following the control architecture
of Figure 1, the output of the NSB, that is a velocity vector generated for
a material point, can be geometrically represented through its norm UNSB

and its direction χNSB that are given to the maneuvering control as desired
surge and heading/advancing direction.

4 Experimental Results

In this section the experimental results of the mission execution with the pro-
posed control architecture are illustrated. The platform used for this exper-
iment consists of two Autonomous Surface Vehicles (ASVs) designed by the
University of Southern California’s Robotic Embedded Systems Lab. Each
ASV is an OceanScience QBoat-I hull with a length of 2.13m and a width
of 0.71m at the widest section. Each ASV is equipped with an onboard com-
puter, a wireless bridge, and a navigation package consisting of a GPS unit,
a three-axis accelerometer, a compass, and a rate-gyro; the vessels weighs ap-
proximately 50 kg with instrumentation and batteries. The software for each
vessel was written in C++ running under the linux operating system. Multi-
ple processes manage mission planning, navigation, control and the commu-
nication between the vessels.

The mission for the team of two ASVs was to visit a set of 22 target
locations spread in the Echo Park lake in Los Angeles (see Figure 3). Ad-
ditionally, a communication constraint of a maximum distance of 60m was
to be maintained, and collisions between the vessels and with external static
obstacles (small islands present in the lake) were to be avoided.

The GPS coordinates of the locations to be visited were provided to
the ASVs at the beginning of the experiment. The two vessels had to
autonomously navigate, communicate and cooperate to visit all the lo-
cations while avoiding multiple visits to any location and preserving the

Fig. 3 a) Experiment site at Echo Park Lake, Los Angeles; b) Paths followed by
the vessels during the first experiment, overlaid on the environmental map.
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Fig. 4 Paths followed by the vessels during the second and third experimental
trials at the Echo Park Lake, Los Angeles

communication constraint. Figures 3.b and 4 show the paths followed by
the two vessels at the experimental site in the course of three different trials.
In particular, Figure 3.b shows the obstacles’ positions and the safety areas
of the obstacle avoidance functions (activated only when inside these areas)
overlaid on the environmental map. In this trial is clear that all the locations
were visited while none of them was visited multiple times.

Figure 5.a shows the relative distance between the vessels during the exper-
imental trial of Fig. 3.b. The leader-formation task was activated by the su-
pervisory modules when the relative distance between the vessels was greater
than 50m. While the relative separation was below this value, the vessels
moved independently. Since the leader-follower task is one-dimensional, the
null-space projection of the task allows the system to attempt achieving lower-
priority tasks, thus, the follower can use internal movements of the leader-
follower task (i.e., movements that don’t change the relative distance between
the vessels) to try to achieve lower priority tasks (e.g., move toward the tar-
get). When the distance between the vessels exceeds 60m, the leader stops to
wait for the follower moving toward it. This situation arises when the follower
encounters an obstacle along its path which activates the obstacle avoidance
task with highest priority, thus causing the follower to lag.

A video of the experimental data (GPS and compass readings of the
vessels) is available at http://webuser.unicas.it/arrichiello/video/
collabASV.mpg. The video shows the dynamic behavior of the vessels while
reaching the locations, avoiding collisions and obstacles. Moreover, it shows

http://webuser.unicas.it/arrichiello/video/collabASV.mpg
http://webuser.unicas.it/arrichiello/video/collabASV.mpg
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Fig. 5 a) Plot of the relative distance between the vessels during three field trials.
The leader-follower strategy is activated when the distance is greater than 50 m.
The leader has to stop and wait for the follower when their distance is greater than
60 m; b) Plot of one of the vessels’ desired and measured velocity during the first
400 s of an experiment.

the activation of the leader-follower policy (represented by a change of color
of the vessels) when out form the communication range.

Figure 5.b shows the desired and measured norm of velocity of one of
the vessels during the first 400 s of the mission. It is worth noticing that
the requested velocity is saturated to 1 m/s,moreover the assigned velocity
decreases close to 0 when reaching the assigned location. The more irregular
behavior after the first 300 s is due both to the leader-follower task and to
the obstacle avoidance task.

We have performed several mission trials. The duration of each trial was
between 13 and 14 minutes, during which time all targets were visited, no
target was visited more than once, and the communication constraint was
respected. The same mission has been also executed with a single vessel
to provide a speedup benchmark. The mission with the single vessel (with
the same target locations as in the two vessel case) takes approximately 20
minutes, thus the use of two vessel shows a 30% improvement in mission time
over the single vessel case. While the present system works well, we believe
that in the case of static targets, better results can be achieved by advance
planning the target assignments in order to optimize the execution time. Our
focus in the immediate future is to work with dynamic settings in which
obstacles can be added or detected during the mission execution, and targets
may appear or disappear during run-time. In principle, the control strategy
proposed here will be effective in such settings.

5 Conclusion

In this paper, we presented a collaborative exploration technique for a team
of two under-actuated ASVs designed for marine biology and oceanography
experiments. The control approach, based on a behavior-based technique cou-
pled with a maneuvering controller, was experimentally tested in a lake in
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Los Angeles. The mission consisted of multiple targets that had to be visited
while maintaining the communication link between the vessels, i.e., ensuring
that the relative distance never exceeded a threshold. The robots successfully
navigated to all the targets while avoiding collisions and obstacles, validating
the presented control approach. In the future, we plan to use the presented
techniques for large scale biological sampling experiments in marinas and
lakes with obstacles with two or more ASVs. To extend the proposed tech-
nique to a larger team of ASVs we will start from the technique proposed in
[5] to deal with Mobile Ad-hoc NETworks (MANETs) and ensure the global
connectivity of the team while executing the assigned mission.
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A Simple Reactive Obstacle Avoidance
Algorithm and Its Application in Singapore
Harbor

Tirthankar Bandyophadyay, Lynn Sarcione, and Franz S. Hover

Abstract. Autonomous surface craft (ASC) are increasingly attractive as a means
for performing harbor operations including monitoring and inspection. However,
due to the presence of many fixed and moving structures such as pilings, moorings,
and vessels, harbor environments are extremely dynamic and cluttered. In order to
move autonomously in such conditions ASC’s must be capable of detecting sta-
tionary and moving objects and plan their paths accordingly. We propose a simple
and scalable online navigation scheme, wherein the relative motion of surrounding
obstacles is estimated by the ASC, and the motion plan is modified accordingly at
each time step. Since the approach is model-free and its decisions are made at a
high frequency, the system is able to deal with highly dynamic scenarios. We de-
ployed ASC’s in the Selat Pauh region of Singapore Harbor to test the technique
using a short-range 2-D laser sensor; detection in the rough waters we encountered
was quite poor. Nonetheless, the ASC’s were able to avoid both stationary as well
as mobile obstacles, the motions of which were unknown a priori. The successful
demonstration of obstacle avoidance in the field validates our fast online approach.

1 Introduction

The need for monitoring and securing harbor environments has grown in recent
years, as a result of increased attention to pollution from runoff or other sources,
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natural processes such as sediment transport, water properties, and algal blooms,
as well as security against threats. Harbors, with high density of goods, vessels,
and people, are heavily utilized but fragile infrastructures. Among the world’s har-
bors, Singapore Harbor is recognized as one of the largest in terms of total tonnage
shipped [10], with several hundreds of large ships present at any given time. At the
same time, the city of Singapore is intimately linked with the harbor. Any devel-
opment on land directly affects the harbor. In many ways, Singapore represents the
most important and difficult worldwide harbor environment for monitoring.

Autonomous systems are now at the level of maturity that they can be brought to
bear on the overall needs of harbor observation. Autonomous surface craft (ASC)
such as robotic kayaks are particularly well-suited due to their low unit cost and
high loading capacity; such ASC’s can be used in extremely shallow waters, where
an autonomous underwater vehicle would be impractical physically and acoustic
navigation would be difficult.

Several difficulties dominate autonomous agents in harbor environments. First,
harbors have numerous structures and vessels both small and large which must be
detected. The smaller vessels may not use the Automatic Identification System, or
AIS, to broadcast the ship’s data and are prone to unexpected maneuvers. Larger ves-
sels, while presumably easier to detect at large distances, cannot realistically take
actions to avoid hitting an ASC. Numerous underwater or near-surface obstacles
such as shipwrecks are common in harbors. Above-water structures and vessels can
also endanger communications between the vehicles and other parts of the system.
Secondly, harbors can experience strong tides and tidal currents, which are often
complicated by variable bathymetry. Currents can be predicted and made available
to operators, but sometimes significant deviations occur, perhaps in the form of large
eddies. Autonomous systems have to be able to develop optimized paths and adap-
tive actions that are robust against such disturbances. In this paper, we describe a
series of tests that utilized autonomous kayaks in Singapore Harbor during January
2009, with a focus on the obstacle avoidance problem.

Prior Work on Obstacle Avoidance: Local reactive obstacle avoidance techniques
[1, 2, 3] have been quite popular due to their simplicity and fast computation. Some
works [2, 3], utilize the natural robot-centric polar frame to choose the best direc-
tion to move. While these algorithms plan in position space, others [11, 4] map
the obstacles in the velocity space and choose suitable control parameters to satisfy
kinematic constraints. Velocity obstacles (VO) [6], incorporate the dynamics of ob-
stacle motion into the velocity space. A common way to handle obstacle motion in
known environments is to augment the configuration space by a time axis [5, 7].
When exact motion of the obstacle are unknown, predictive techniques [8, 9] are
used to identify the motion parameters.

Our approach is similar in principle to the VO approach except that it is for-
mulated in position space. By planning in a relative frame, we avoid modeling the
kayak and the obstacle motion individually in the rough sea. A simple linear pre-
diction based on the immediate history is used to determine the relative obstacle
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(a) (b)

Fig. 1 (a) Selat Pauh operational area. (b) A range sensor on the ASC is used for data acqui-
sition in real-time preparation for traffic avoidance

velocity. This keeps the computation load light as the algorithm runs at a high fre-
quency and helps in bounding the uncertainty errors at each step.

2 Working in the Singapore Harbor Environment

Equipment: The ASC’s utilized in Singapore Harbor are each equipped with a GPS
receiver, a compass, and wireless communications gear in the base configuration. To
support the aquisition of evironmental data a number of other sensors were added.
A Blueview blazed array imaging sonar was used to image corals and shipwrecks.
A Velodyne 3-D scanning laser imaged above-water structures including an oil plat-
form. Also, an RDI doppler velocimeter measured the ASC’s speed over ground.
Each ASC has a full-thrust mission duration of about three hours.

For obstacle avoidance, a single SICK 2-D laser scanner was utilized. The range
is 250m and the resolution is on the order of centimeters. We were able to use the
full 10Hz scan rate of the sensor in our algorithm. The obstacle avoidance operation
uses the onboard GPS and compass for waypoint navigation, and the 2-D laser for
obstacle detection. In the remainder of this section, we describe several operational
issues relevant to the Singapore Harbor environment: the effect of strong currents
on navigation and the effect of waves on obstacle detection.

Effect of Ocean Currents on Navigation: It can be observed that ocean currents
greatly affect navigation. The currents we encountered in Singapore Harbor reached
1.6m/s, whereas the maximum speed through water of the kayaks was about 2.4m/s
on a fully charged battery. As seen in Figure 2, the closeness of these two values
means that a simple waypoint-following controller can be unsatisfactory depending
on the goal of the mission. Here the kayak was given four waypoints, effectively
defining a square box to be traversed. The controller, developed for operation in low-
current conditions, gives the kayak one of the desired waypoints to travel towards.
Once the kayak reaches that waypoint, with some error tolerance, the next point of
the square becomes the desired waypoint. In the test shown, significant currents to
the southwest have deformed several of the vehicle paths up to fifteen percent of the
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(a) (b)

Fig. 2 (a) The GPS log data for an ASC being asked to navigate the perimeter of a square
under waypoint control. The distortion of the paths are due to currents. (b) Projections of
a single laser beam onto a constant-radius sheet showing the effects of large roll and pitch
motions of the craft, at about 1Hz.

leg length. If the goal of the mission was to navigate a straight line for data sampling,
this current effect would be unsatisfactory, and a controller with true cross-track
error regulation would be needed. The results from this run also serve to motivate
path and mission planning overall, because the current influences the amount of time
and energy needed to complete each leg.

Effect of Waves on Object Detection Rate: Although utilizing the SICK 2-D laser
has many benefits, it limitations are demonstrated when ocean waves are present.
The unit is fixed on the vehicle, at a height of about 35cm above the waterline.
Figure 2b shows the projected motion of a single laser beam fixed to the vehicle,
and with the vehicle heading ranging from [0 − 90]◦ . The beam spends a fraction
of time below the surface of the water, leading to no return. Other points are well
above the water surface, perhaps yielding a return from the superstructure of a vessel
instead of the desired hull. Figure 3c shows the overall performance of our cluster-
based detection, as a function of range. In relatively calm waters, good hit rates can
be found at about half the specified range of the sensor, but in waves virtually no
hits are obtained outside 20m. The observations are based only on the data that was
obtained during the runs, as we did not do a systematic study of the sensor clustering
characteristics as a control experiment. We note that mounting the unit on a gimbal
could take out some of the roll and pitch effects seen.

3 Online Navigation Approach

The purpose of this work is to devise a motion strategy that enables safe navigation
along a desired direction for an ASC using only local 2-D range readings in the
presence of unknown ocean currents and surface waves from nearby boats. At each
step the ASC estimates the relative obstacle position and motion and subsequently
chooses a direction that avoids collision. The approach is to follow the sense-plan-
act paradigm at each step at a high frequency.

The basic model of the ASC is that of a point with controllable direction and
a maximum powered velocity. A major difference between our application and
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(a)

(b) (c)

Fig. 3 (a) The typical schematic environment with the ASC facing north and surrounded by
boats of varying size. (b) The local information available to the ASC using the 2-D laser. The
ASC must plan its path while avoiding dynamic obstacles. (c) The fraction of boat detections
per second vs. the distance. The higher curve is for a relatively calm day, while the lower
curve is for a choppy day. In the second case, detection beyond 20m was impossible, and
even below the 20m mark, it was less than 20%.

terrestrial robotics is the ability of the uncertain environmental factors, such as wind
and currents, to move the ASC in any arbitrary direction. We model the velocity
vector of the vehicle Vasc by a simple superposition of the velocity arising out of
environmental factors, Vdri f t , and the velocity due to the ASC’s own propulsion,
Vthrust :

Vasc = Vdri f t +Vthrust (1)

We represent the world in terms of clusters, which are determined from the scan
data by a simple thresholding based range segmentation. As detected from the laser
data range and angle data, any one obstacle is considered to be a single cluster, so
that it has a starting point and an end point. Each such terminal point can either
be an occlusion point that occludes the sensor’s line of sight visibility, or a range
point which is the limit of the cluster visible due to the sensor’s range limit ( Fig-
ure 4a). The range points are an artifact of the sensor limitations and do not reflect
information about the obstacle.

In general, the occlusion points represent the shape characteristics of the silhou-
ette and not of the actual object. Due to this, the motion of the occlusion points
do not exactly represent the motion of the object, i.e. the rotational motion of the
object can change the shape of the silhouette and give the occlusion points some



460 T. Bandyophadyay, L. Sarcione, and F.S. Hover

XT

Obs1

O1E

O1S

O2E

R2E

Obs2

Dmax O′
(T+ΔT )

O(T+ΔT )

ObsT
Obs(T+ΔT )

XT

OTtravel

XT XT+ΔT

OT

O′
T+ΔT

travel

(a) (b) (c)

Fig. 4 (a) Both the end points O1S and O1E of the cluster for Obs1 are occlusion points
and can be used as reliable features in a short time duration. R2E is a range point and does
not provide any distinctive information about the obstacle; (b) Occlusion point travel due to
curvature. O(T+ΔT ) is the actual point, while O′

(T+ΔT ) is the detected point. (c) Occlusion
point travel due to visual discontinuity.

velocity. However, the occlusion points can act as distinctive features of the obsta-
cle, however, under the following conditions:

Low obstacle rotation rate: In open water, the translational velocity of many
moving objects is quite high compared to their rotational speed. Due to this,
the velocity of the occlusion point closely approximates the linear velocity of the
moving objects:

Vocc/asc = Vobs/asc +ωobs × rocc/obs ≈ Vobs/asc

Here Vocc/asc is the relative velocity of the occlusion point with respect to the
ASC, Vobs/asc is the actual velocity of the obstacle with respect to the ASC, ωobs

is the rotation rate of the boat, and rocc/obs is the radius vector from a reference
frame on the obstacle to the occlusion point.

Small radius of curvature: The occlusion points may travel along the physical
object surface due to its curvature. The distance error in occlusion point, however,
is usually much smaller than the actual travel if the radius of curvature is small
compared to the distance from the sensor. In Figure 4b let the obstacle move as
shown relative to the sensor. If the radius of curvature is small, the actual distance
discrepancy is small, and OT+ΔT OT ≈ O′

T+ΔT OT

Limited sharp edges: Depending on the inherent shape of the obstacle, the oc-
clusion points may jump a large distance. Figure 4c shows such a case. This
sudden jump gives an erroneous measure of the motion of the obstacle. Running
the detection at high frequency and maintaining a short motion history helps the
algorithm recover from such an error which is unavoidable unless the obstacle is
fully modeled.

Following these assumptions and ignoring the obstacle rotation, the obstacle
motion is estimated simply as the average motion of the two occlusion points:
Vobs = (Vocc,s +Vocc,e)/2.



A Simple Reactive Obstacle Avoidance Algorithm 461

XT

Goal

RΔT

V �

XT

Obs

HObs

RASC

Os

Oe

XT

Obs

Goal

HObs
Vthrust V �

(a) (b) (c)

Fig. 5 In the stationary case, the dilation of the obstacle creates forbidden zones in the head-
ing of the ASC.

3.1 Navigation Algorithm

In general, the ASC has an underlying objective such as waypoint navigation which
generates a desired heading. Our algorithm modifies the heading command in light
of nearby moving obstacles for collision avoidance. The higher level planning that
generates the desired heading command is responsible for avoiding local minima,
as the local reactive approach fails to address it.

We plan in the position space rather than velocity space due to the unreliability
in velocity measurements of the ASC as well as the obstacles. Since the motion of
the ASC and the environment are not modeled, we extrapolate the current velocity
measurements in a simple linear model for a short duration ΔT . The position space
in the planning horizon ΔT becomes the reachable set RΔT which is the set of all
positions that the ASC can reach in time ΔT using this linear model. Using the
simplified motion model in the previous section, we can determine directions that
will cause collision with nearby obstacles. Each obstacle corresponds to one or two
continuous sets of directions, termed as forbidden headings, that should be avoided.
We denote the forbidden heading for a given obstacle Obs, by HObs.

Stationary case: In Figure 5, RΔT shows the reachable region. The optimal veloc-
ity V ∗ vector towards the goal position is shown in Figure 5a. The obstacle is repre-
sented by the occlusion points, Oe and Os. Let the ASC have a bounding radius of
RASC. To accommodate the size of the ASC, we extend the cluster by this measure.
Without having to consider the whole obstacle, the Minkowski sum to represent the
obstacle in the configuration space is reduced to dilating the occlusion points by
RASC. The heading that the ASC must avoid in order to prevent collision is as shown
in Figure 5b by the arc HObs. The decision of moving past Oe or Os is made by
choosing the shortest path to the goal. In general, the final choice of Vthrust once the
HObs is established depends on the mission preferences. The corrected ASC heading
is taken towards the corresponding endpoint of HObs. The same approach holds for
multiple obstacles with the introduction of multiple forbidden regions.
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Fig. 6 (a&b) Velocity of the ASC with respect to the obstacle Vasc/obs is the vector sum of
uncontrollable velocity components affecting the obstacle and the ASC, and the controlled
speed. The reachable state RΔT after ΔT is the circle shown; (c-e) The relative velocity of
the ASC with respect to the obstacle is used to translate the reachable set. The forbidden
heading regions are shown in red. (c) Scenario when |Vthrust | < |Vext |; (d) Scenario when
|Vthrust | > |Vext |; (e) Forbidden regions for multiple moving obstacles.

Dynamic case: As discussed earlier in (Equation 1), environmental factors such
as wind and current can introduce an additional velocity Vdri f t to the ASC. Also
many of the obstacles in a harbor-like environment are mobile contributing to the
dynamic environment seen by the craft. The velocities of these obstacles are un-
known a priori and have to be deduced from the local range information. Let us take
the case of a single obstacle moving with unknown velocity Vobs, while the ASC
drifts with the velocity Vdri f t . As the sensing is done in the egocentric frame of the
ASC, it is impossible to distinguish between these. Let Vext represent the uncontrol-
lable component of the ASC velocity towards the obstacle, i.e. the combined effect
of the ASC drift and the obstacle motion Vobs, Vext = Vdri f t −Vobs. Note that the ASC
can only control Vthrust ; using the onboard sensors to measure the obstacle velocity
would give us Vext +Vthrust . The net ASC velocity with respect to the obstacle and
the reachable set RΔT , is then given by:

Vasc/obs = Vext +Vthrust

XT+ΔT = XT +VextΔT +VthrustΔT

For a constant estimate of Vext in the duration ΔT , RΔT is shown in Figure 6.
The choice of the planning horizon ΔT depends on two factors: accuracy of ve-

locity estimation, and the distance to the nearest obstacle. If the predicted motion is
considered reliable, the ASC can plan for a much longer time step with confidence.
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(a) (b)

Fig. 7 (a) Selat Pauh Jan 14 ocean current forecast. The operational area is shown by the
green polygon. The current direction is shown by the arrows, and the color shows the magni-
tude (red being of the order 1.6m/s). Image courtesy: N. Patrikalakis (CENSAM). (b) SICK
ld-1000 scanning laser being used in rough waters on Jan 14, for obstacle detection.

On the other hand, if the motion model is highy unpredictable or if the data is spo-
radic, it is advisable to plan for a shorter horizon. Given ΔT , choosing the maximum
Vthrust is usually desirable from the point of view of the mission. However, in cases
where the obstacle is too close, RΔT is further bounded by the minimum distance to
the obstacle in consideration, i.e., Vthrust = min(Vthrust max,dist(asc,obs)/ΔT ).

Estimating Vext: From our velocity definitions, we have Vext = Vasc −Vobs −Vthrust

where Vasc −Vobs = Vasc/obs = −ṙ. Here, r is the range vector from the ASC to the
obstacle, and ṙ is the vector of the time rates of change of r’s components over
time. Vthrust is estimated from the thrust command on the vehicle or a water velocity
sensor, in union with the compass heading. In the absence of these estimates, the
physical thrust can be briefly turned off, forcing Vthrust = 0. Note that this use of
Vthrust should not be confused with the circle radius in defining the forbidden an-
gles described in previously. Here it is used to describe an actual measurement or
estimate of controlled velocity.

4 Experiments at Selat-Pauh

Selat Pauh was the test site utilized during the January 2009 experiments ( Figure 1).
Selat Pauh is located off the southern coast of Singapore where a significant amount
of ship traffic is seen. In addition, the site has numerous stationary structures, such
as buoys and oil rigs, and there are strong current fluctuations daily. Overall, this
area is ideal for testing and observing the harbor environment.

Using the theory described, a number of obstacle avoidance tests were completed
as summarized in (Figure 8). Current predictions provided for the experiment date,
January 14, and a deployment photo are shown in Figure 7.

The weather conditions were challenging and tended towards strong winds and
a choppy sea. Detection quality was on a par with that shown in the lower curve
of Figure 3c, and this explains why the ASC only took avoidance action at a short
range. However, as shown, the online approach was successful even under these
dismal circumstances. The algorithm ran at 10Hz, on a Mini-ITX with 1GB RAM.
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(a) (b)

Fig. 8 (a) Avoiding a stationary boat (b) Avoiding a moving obstacle

In Figure 8 the GPS position logs (the blue points) of the ASC are broken into
two time sets for clarity. The red points are the laser hits from the ASC plotted in
the global frame. A simple waypoint based controller was used to navigate from the
Start to Goal with known GPS locations. Since the percentage of detection is so low,
20%, we averaged the laser data over a moving window of 1sec before applying the
obstacle detection algorithm, improving the detection rate significantly.

In Figure 8a the boat was kept stationary. We see that initially the ASC follows
the V ∗ direction to go straight towards the goal before it detects an obstacle at a
distance of about 20m. The ASC motion is then modified to go around the boat
and as soon the the obstacle is safely cleared, it executes a new V ∗ direction. In the
second run Figure 8b, the boat actively obstructs the path of the ASC, moving from
top right corner of the plot to right in front of the kayak, from the side. The ASC
detects the obstacle and modifies its motion accordingly. Such close range dynamic
obstacle avoidance requires fast online algorithms like the one proposed.

5 Conclusion

In large-scale autonomous vehicle testing in Singapore Harbor, we have found that
strong currents and heavy traffic are serious robustness concerns. Autonomous ve-
hicles need to have more available speed and substantially increased energy storage
in order to perform meaningful missions in these waters. Path planning for known
current and robust control to reject unknown currents are also critical. We have
made specific progress in obstacle avoidance which, as described here, is appro-
priate for day-to-day use to avoid fixed and slowly-moving obstacles. The main
features of our algorithm are that it is neither probabilistic nor model-based, and
that it is posed in position space; as a result, it scales seamlessly to situations with
many objects, and with very low computational cost. In turn, our simple approach re-
quires good confidence in the range data and obstacle detection, and for this we have
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successfully employed a clustering algorithm. The avoidance behavior is demon-
strated for detection rates under 20%.

In future work, we plan to test avoidance of faster moving obstacles and to use
vessel motions reported by AIS. The algorithm can be extended to formations, and
including range information in the forbidden regions could lead to addtional trajec-
tories that may be useful.
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Part XI
Planetary Robotics



Model Predictive Control for Mobile
Robots with Actively Reconfigurable
Chassis

P. Michael Furlong, Thomas M. Howard, and David Wettergreen

Abstract. Actively reconfigurable chassis enable planetary mobile robots to
access more varieties of terrain. While typical approaches for exploiting such
mechanisms reply on feedback control, it is beneficial to consider actively
controlled elements at planning time rather than during motion execution.
In this paper we present an approach for extending work in model-predictive
trajectory generation to actively reconfigurable chassis. The motion planner
uses a kinematic motion model and a terrain shape model to determine se-
quences of actions that minimize a cost function over vehicle attitude by
modifying the shape of the velocity, curvature, and chassis configuration pro-
files. Simulation and field results are presented demonstrating the benefits of
this technique on a prototype mobile robot for lunar excavation.

1 Introduction

As exploration of our universe continues, it becomes necessary to navigate in
challenging, cluttered terrain to examine geologic records, search for records
of microorganisms, and potentially discover life. In such environments, ob-
stacles cannot entirely be avoided, they must be traversed in a manner that
minimizes the risk to the platform. Adjustable chassis improve the mobile
robots ability to overcome harsh terrain by shifting the center of gravity to
maximize stability.

Most modern platforms with actively reconfigurable chassis adjust their
configuration via feedback control, maximizing a stability criterion on the
current state of the vehicle. A potentially better solution is to generate tra-
jectories using a predictive model of vehicle motion or stability that includes
the active chassis freedoms.

A potentially better, safer solution is to generate inputs and trajectories
based on a prediction of vehicle motion and configuration articulation through
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the environment. Deliberative planning allows a greater understanding of
traversability and enables improved route selection decisions.

1.1 Related Work

Related work spans research on exploiting vehicles with reconfigurable chassis
and research on the generation of trajectories for a robot that optimizes some
cost function.

Iagnemma et al. present an optimization technique for externally recon-
figurable four-wheeled vehicles that maximizes stability over rough terrain
[5]. Schenker et al. incorporates that technique into a system for planning
vehicle configurations at different points in the trajectory [10]. Ishigami et al.
[6] modifies the technique in [4] to incorporate models of wheel slip to deter-
mine minimal slip paths that exploit the steering capabilities of the robot.
Nakamura et al. [9] show that repositioning the center of mass of the vehicle
improves the static stability while reducing energy consumption of the vehicle
during traverse.

The work of Howard and Kelly [4] employs optimization procedures to
produce trajectories that minimize terminal state position error and generates
trajectories that account for predictive motion models of the vehicle as well as
models of the terrain the vehicle has to cross. Farritor, Hacot and Dubowksy
[2] use a genetic algorithm to combine pre-scripted action modules to produce
plans that are then evaluated for feasibility and vehicle safety. While the
approach does account for vehicle physics it deals with actions sampled from
the configuration space of the vehicle and not the continuum of the command
profile parameterization.

Mobile robot stability is addressed by Diaz-Calderon and Kelly [1],
Schenker et al. [10], and Iagnemma et al. [5] by examining the relationship
between the center of mass of the vehicle and the edges of the polygon of
support. Messuri and Klein [8] as well as Hirose, Tsuagoshi, and Yoneda [3]
determine the stability of the vehicle as a function of the energy require to
induce a tip over.

1.2 Discriminators

While the results of this work are similar to the control approaches developed
by [2, 6], it is distinct in two ways. First, the sidearm angle command profiles
are produced through continuum optimization rather than the action-library
based approach of [2]. As such the resulting trajectory is inherently feasible
as the presented technique optimizes the inputs to the control system in-
stead of sampled actions of the vehicle. Our approach differs from [6] in that
it searches the local continuum and optimizes a criterion based on vehicle
stability instead of minimizing slip.
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2 Technical Approach

The trajectory optimization technique presented in this paper is an exten-
sion of model-predictive trajectory generation for mobile robots with actively
reconfigurable chassis. This section presents an overview of the posture opti-
mization trajectory generation technique, a discussion of the predictive mo-
tion model and the cost functions applied in this work.

2.1 Active Posturing

Actively reconfigurable chassis enable mobile robots to adjust their center
of mass to improve traction and achieve a more stable configuration. Mobile
robots such as Scarab [12] and the Sample Return Rover [7] are able to inde-
pendently adjust the independent chassis wheel bases by setting the sidearm
angle. Actively adjustable wheel bases enable posturing of the robot body in
a ways that are not available to fixed chassis robots (Figure 1).

2.2 Model Predictive Trajectory Generation

Typical motion planning or navigation tasks simply require that a mobile
robot move from one pose to another. Often there are no constraints imposed
on the internal configuration of the vehicle over the course of the trajectory.
Given a potentially infinite number of chassis configurations, the problem

(a) Raised Chassis (b) Nominal Configuration (c) Lowered Chassis

(d) Chassis Lean Left (e) Chassis Lean Right

Fig. 1 Articulation capabilities of the Scarab mobile robot. Symmetrical values
for the sidearm chassis angles enables the body to raised (a) to avoid small ob-
stacles or lowered (c) to reduce the risk of tip over. Asymmetrical sidearm chassis
angles enables the body to be postured left (d) and right (e) to achieve more stable
configurations on rocks and slopes.
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Fig. 2 The above diagram illustrates tiered optimization for trajectory genera-
tion with posture optimization. The inner layer generates trajectories that satisfy
boundary state constraints with the posture parameters determined by the outer
layer. The outer layer optimizes the posture parameters by maximizing the stability
of the vehicle over the candidate trajectory x́(t)

becomes continuum search for the optimal chassis configuration along the
trajectory that satisfies the boundary state constraints.

The presented approach is an extension of model-predictive trajectory gen-
eration that optimizes vehicle posture in addition to satisfying boundary state
constraints. It leverages parameterized profiles to describe continuous inputs
in order to reduce the scope of the continuum search. For a mobile robot with
an actively reconfigurable chassis as shown in Figure 1, inputs can be defined
for the curvature (κ(p,x, t)), linear velocity (v(p,x, t)), and sidearm angles
(σleft(p,x, t), σright(p,x, t)), where p is the parameterization describing the
shape of the inputs.

2.2.1 Tiered Optimization

An overview of the tiered optimization technique is shown in Figure 2. The
boundary state constraints are satisfied in the inner loop by correcting the
curvature and velocity command profile parameters using a model-predictive
trajectory generator. The posture optimization is governed by the outer loop,
which modifies the commanded sidearm angles based on the accumulated
attitude of the generated trajectory.

The outer layer of the optimization determines parameters satisfying the
relation:

ẋ = f(x, κ, v, σleft, σright) (1)

p = arg min
p

G(
∑

t

f(xt−1, κ, v, σleft(p,x, t), σright(p,x, t))Δt) (2)
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The cost functional G scores the execution of the controls parameterized
by p. Gradient descent is used to determine the minimum cost setting of
the chassis sidearm control parameters. The inner layer of the optimization
is the constrained form of the model-predictive trajectory generator in [4]
to produce continuous trajectories which consider the shape of the sidearm
control profiles. In this formulation, the inputs associated with steering and
velocity along the trajectory are not assumed to be independent of those
governing the configuration of the chassis. As the configuration iteratively
adjusts, traction can improve, motion over rough terrain can alter, and the
inputs required to satisfy the boundary state constraints may change.

2.2.2 Predictive Motion Model

The predictive motion model is used to estimate the vehicle state response
to the control inputs. One such example is a predictive motion model based
on the Scarab mobile robot used for the experiments described in Section 3.
It has a mass of approximately 300kg, has a maximum speed of 0.04 m/s,
and is assumed to be quasi-static. The kinematic model is an adaptation of
the work for a planetary rover [11] that represents Scarab through a series
of Denavitt-Hartenberg Parameters. To represent the configuration of the
chassis, the passive major chassis angle (β) and the angles of the chassis side
arms (σleft, σright) are included in the vehicle state (x). The passive chassis
angle, roll, pitch, and elevation were determined as the vehicle moved through
the environment using the technique described in [11].

2.2.3 Cost Function

The outer optimization layer for the chassis sidearm angles maximizes the
vehicle stability. A standard tool for kinematically representing vehicle sta-
bility is the stability polygon. The stability polygon is the convex hull of the
contact points of the vehicle with the ground. The cost function optimized
for vehicle stability is the sum over the trajectory of the vehicle of the dis-
tance between the center of the stability polygon and the intersection of the
projected center of mass with the stability polygon (Figure 3).

As the projection of the center of mass of the vehicle gets closer to the edges
of the stability polygon the vehicle comes closer to tipping over. If the centre
of mass is outside the polygon then the gravity vector pulls the vehicle away
from its contact points inducing tip over. Minimizing the distance from the
centre of the support polygon, which maximizes the perpendicular distance
to the edges, increases the stability of the vehicle. Maximizing the distance of
the centre of mass from the edges of the support polygon is proportional to
maximizing the normalized energy stability criterion as described in [3]. Be-
cause of the computational simplicity that the distance-to-edge cost function
was chosen over energy margin based cost functions.
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Fig. 3 The stability polygon of the vehicle with the vehicle center of mass projected
onto the convex hull of the contact points of the wheels with the ground. The cost
function used in the active chassis optimization minimizes the distance between the
intersection of the gravity vector and the center of the stability polygon.

3 Experiments and Results

The experiments in this paper were designed to demonstrate the ability for
the tiered optimization technique to improve the stability margin for the
mobile robot operating in natural environments. The experiments were con-
ducted first in simulation and then on the robotic platform described below.

The target platform for these experiments was Scarab [12], a four-wheeled
planetary rover with an actively reconfigurable chassis built at the Robotics
Institute’s Field Robotics Center (Figure 4). For the simulation and field

Fig. 4 Scarab, a four-wheeled prototype lunar prospector with an independent
articulating chassis. In this configuration, the robot has exploited the articulating
chassis to minimize roll of the body, thereby limiting exposure to tip over.
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Fig. 5 The cost of the simulated run of the vehicle. The absolute roll experienced
by Scarab with and without posture optimization is show in (a). The changes to
the sidearm angle as a function of optimization iteration are shown in (b).

experiments, the freedoms of each active chassis elements were constrained
such that the wheelbase was between 0.94m and 1.20m.

3.1 Simulation Experiments

In order to test the ability for the posture optimization to maximize stability
over the perceived environment a hill was chosen for this experiment as it
most resembles the terrain that is expected to be encountered during crater
wall navigation. Unlike the field experiment the trajectory generator was
given an omniscient view of the terrain.

For consistency with the latter field experiments, the absolute roll of the
vehicle is used instead of the stability margin. This is due to the lack of
sensing of the major bogie angle on the target platform, which prevents direct
computation of the stability criterion.

Figure 5 shows that the reconfigurable chassis provides a trajectory with
roll that is consistently lower than that of the fixed chassis. On average the
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Fig. 6 The roll of the vehicle while driving up a slope. The orange line represents
the roll of the vehicle using the active chassis while the blue line represents the roll
of the vehicle using a fixed chassis.

roll of the vehicle with the active chassis is twenty-eight percent of the roll of
the vehicle with the fixed chassis. Figure 5 shows the settings of the chassis
sidearm angles as the cost of the trajectory is reduced. Over one hundred
iterations were required for the sidearm angle parameters to converge, this
can be reduced by increasing the step size of the gradient descent algorithm
used to optimize the parameters.

3.2 Field Experiments

The field experiments were conducted in a natural terrain similar to the
previously described simulation experiments. Instead of assuming perfect
knowledge of the terrain shape, an active range sensing perception system was
used. A trimesh representing the terrain shape was estimated by processing
the observed point cloud. The triangulated meshes were used for planning tra-
jectories and simulating executions of planned actions. For this experiment,
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the predictive motion model was assumed to be entirely kinematic, al-
though generally any model of dynamics or wheel/terrain interaction could be
applied.

As in the previous experiment, vehicle roll was taken as an indicator of
stability. In this experiment the robot was position on a slope and two trajec-
tories were planned and executed. The first trajectory assumed a fixed, nom-
inal chassis configuration. The second trajectory optimized the input profiles
governing the vehicle posture. Each motion plan execution originated from
the same initial state, as verified by the onboard inertial navigation system.

Figure 6 present the vehicle roll for fixed and adaptive chassis while driving
over the varied terrain over two different courses. On average, the predictively
controlled chassis reduces the roll of the vehicle body while traversing the
sloped terrain.

4 Conclusion

The presented technique optimizes wheelbase inputs for a mobile robot with
an actively reconfigurable chassis to improve its stability. Increased stability is
important on slopes or when traversing rough or uneven terrain. By reasoning
deliberatively about actions taken, the reachability of stable configurations
and the consequences of these actions can be determined. Separating the
trajectory generation and posture optimization with a tiered approach can
efficiently determine solutions which satisfy the two-point boundary value
problem while optimizing an underconstrained portion of the system. While
this technique produces only locally optimal solutions in the continuum the
low-order parameterized functions resist problems of numerous local optima.

There are several logical extensions to the work presented in this paper.
Uncertainty in the terrain model must be addressed and it is recommended
that the trajectory generator be coupled with a online system that adjusts
the vehicle’s configuration to maximize instantaneous stability. Next is to
integrate a higher fidelity predictive motion model that simulates the effect
of wheel/terrain interaction and a dynamic (rather than kinematic) vehicle
model. The application of actively reconfigurable chassis trajectory optimiza-
tion to sampling-based navigators is important because it obviates the need
to sample the space of chassis sidearm inputs. Lastly, this technique can be
used in a motion planning structure to generate edges that consider the shape
of the terrain and the configuration of the active chassis.
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Turning Efficiency Prediction for Skid Steer
Robots Using Single Wheel Testing

Daniel Flippo, Richard Heller, and David P. Miller

Abstract. To date, most field robots use wheels as their means of locomotion (es-
pecially true of planetary exploration robots). In many cases these robots are re-
quired to travel significant distances, with limited power, and over rough terrain. All
of which make wheels a major component contributing to their performance. It is
through experimentation and iteration that effective wheel design, for a given rover
in a given mission, can be achieved. To do this, the SWEET (Suspension and Wheel
Evaluation and Experimentation Testbed) simulates the rover environment using a
single wheel methodology. The wheels currently being tested belong to the SR2
skid steer Mars rover designed and built at the University of Oklahoma. Simulating
a skid steer turn with SWEET is achieved by varying the spinning rate of the plat-
form under the wheel, which is rotating at a certain rate, and recording the forces
incurred. These forces interact in such a way that the relevant mobility properties for
a rover can be predicted. This experimentation method allows for cheap and timely
iterative single wheel design.

1 Introduction

Compared with automotive wheels very little research has been done in the area
of interplanetary wheel design. To fill the gap in the understanding of rover wheel
design and wheel to soil interaction, testing machines have been designed by various

Daniel Flippo
University of Oklahoma, Norman OK, 73069
e-mail: baldflippo@gmail.com

Richard Heller
University of Oklahoma, Norman OK, 73069
e-mail: richardheller@ou.edu

David P. Miller
University of Oklahoma, Norman OK, 73069
e-mail: dpmiller@ou.edu

A. Howard et al. (Eds.): Field and Service Robotics 7, STAR 62, pp. 479–488.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

baldflippo@gmail.com
richardheller@ou.edu
dpmiller@ou.edu


480 D. Flippo, R. Heller, and D.P. Miller

institutions. In 1971, NASA tested a single Lunar Rover Vehicle wheel on a testing
device called a dynamometer system [6] and now uses devices such as the variable
terrain tilt platform (VTTP), at JPL, to gain a better understanding of entire rover
systems in a sloped environment. The VTTP is a 16 x 16 ft table that can tilt up to 25
degrees and can be left bare or covered with terrain [4] but is meant to incorporate
the total rover assembly and is used in a design validation role rather than an iterative
design role. At the Massachusetts Institute of Technology a testing device (FSRL)
tests a single driven wheel through different mediums to better understand wheel
to soil interaction [3]. A similar device is used at Tohoku University to refine rover
steering and other parameters [9]. Other comparable devices test wheels for Earth’s
terrain are [5, 8, 2]. The University of Oklahoma’s testing apparatus named SWEET
[1] is unique in that it allows for true turn testing.

All these test beds allow the simulation of aspects of real-life operations. Full
assembly test beds are more difficult and expensive to use since they require the full
rover, a full compliment of wheels, and much more space. Issues with the wheel
design may also be conflated with other aspects of the rover design when a full
system is tested, making iterative improvement of the wheel more difficult. Single
wheel testing machines, on the other hand, allow a designer to iteratively design
a wheel in a much less costly and timelier fashion than full assembly testing. For
these single wheel testing machines to be of any use, the data that they give must
have some significance in the real world. Their performance in the single wheel
testing machine must transfer to predict the behavior exhibited on a multi-wheel
rover doing typical maneuvers in field conditions.

Skid steering turn performance is an example of a typical maneuver, beyond the
domain of most single wheel test systems. If it can be demonstrated that a model can
transform data from a single wheel test to predict the turning efficiency of a rover,
then skid steer turning is one more behavior that can be studied and improved upon
cheaply and thoroughly using the single wheel testing method. This paper describes
a method to test skid steer rover wheels on a single wheel test apparatus and then
predict its real world turning performance on a skid steer rover. The predictions are
then compared to full assembly tests fitted with four identical wheels to the one
tested.

2 Theory of Single Wheel to Full Assembly Correlation

Skid steering is an unintuitive process in that there are multiple forces, due to the
lateral sliding, that must take place for a skid steer rover to turn. When a rover
initiates a turn its rotation (in the X −Y plane) will accelerate up to a certain spin
rate Ω (Fig. 1) at which point it will stabilize and the moment about its center (Mo)
will equal zero.

ΣMo = 0 . (1)

Σ(FyRcos(Θ))−Σ(FxRsin(Θ)) = 0 . (2)

Fy = Fx tan(Θ) . (3)
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Fig. 1 Skid Steer Force Body Diagram

Equation 3 describes a relationship between Fx and Fy at the turning equilibrium
point and is dependent upon the rover geometry (Θ ). If the rover were slender (Fig.
2-a) thenΘ would be larger than π

4 and Fx would be much smaller than Fy. IfΘ =
π
2 then Fy = ∞. This would mean that no matter how much force a wheel could
exert on the ground the rover’s spin rate Ω would always be zero. If, on the other
hand,Θ were equal to zero, as in Fig. 2-b, then Fy (which is really the net force of
power and friction) would be equal to zero. This configuration is better known as
Ackerman steering which means that the wheels have no lateral slip and if there is
no longitudinal slip then the turning rate can be calculated by eq. 4.

Ω =
ωr
R

,Fy = 0 . (4)

where ω is the wheel angular velocity in radians per second, r is the wheel ra-
dius, and R is the distance from the center of the wheel to the center of rotation of
the rover.

Equation 4 refers to the ideal turning rate ΩIDEAL without longitudinal slipping
for an Ackerman steering geometry. To calculate ΩIDEAL for a skid steer rover
(Θ �= 0), Θ must be taken into account and is reflected in eq. 5. ΩIDEAL refers
to the theoretical maximum a skid steer rover can spin, but Fy, at ΩIDEAL, is still
not zero.

ΩIDEAL =
ωr
R

cos(Θ),Fy �= 0 . (5)

To find the value of ΩFy=0, which is the spin rate at which there is no longer a
net force in the Y direction, the longitudinal velocity (Vy)(Fig. 2b) of the ground un-
der the wheel must be equal to the velocity of the wheel rim (ωr) therefore making
Fy = 0 (no slip). Equation 10 explains this relationship. Loose soils that cause more
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viscous friction, such as sand, will alter the slope of the force curves and decreasing
the ΩPredicted and ΩFy=0 values.

Vy = ωr . (6)

Vy = cos(Θ)Vground . (7)

Vground =ΩR . (8)

ωr =ΩRcos(Θ) . (9)

ΩFy=0 =
ωr

Rcos(Θ)
=
ωr
Rx

. (10)

For the right front wheel of a rover pivoting in the counter clockwise direction,
the ground must move under it in the opposite direction (−Ω rad

sec ) and the relation-
ship of the forces on the wheel, as the spin rate (Ω ) of the ground under the wheel

Fig. 2 a) Skid Steer Geometry Configurations; b) Skid Steer Kinematics

Fig. 3 Force vs Spin Rate Example
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increases, can be shown in illustration 3. When the simulated rover’s spin rate (Ω )
is equal to zero the wheel being tested rotates (ω) but does not move. This causes
a force in the Y direction which is just the kinetic friction (Fy = μkN) between the
wheel and ground. For a blank wheel on smooth ground there is no Fx at Ω = 0,
but for a treaded wheel Fx could be non-zero which will be one value to focus on
when testing new wheels. As the spin rate of the ground under the wheel, increases
Fx increases while Fy decreases until they intersect. This meeting point would rep-
resent the equilibrium spin rate (ΩPredicted) of a square rover (Θ = π

4 ). To find the
equilibrium point, of a rectangular rover, eq. 3 adds the needed constraint between
Fx and Fy. For the SR2 [7] roverΘ = .8477 rad when combined with eq. 3 simplifies
to eq. 11.

Fy = 1.133Fx . (11)

In essence what we are doing is operating the wheel and the ground under the
wheel independently, by varying the ground speed (Ω ) while keeping the wheel
spin rate (ω) constant, and observing the behavior of the forces acting on the wheel.
When the forces satisfy eq. 11 the correspondingΩ is the predicted rover spin rate.
In Fig. 3 this relationship gives a point just right of the cross point and corresponds
to aΩPredicted value which is the predicted spin rate of a rover fitted with four wheels
with the same orientation, relative to the rover center, and identical tread to the wheel
tested.

It should be noted how a rover’s geometry affects this relationship. As Θ in-
creases above π

4 the rover is more slender (Fig. 2) which makes turns less efficient
and ΩPredicted becomes smaller. If, on the other hand, Θ decreases its ΩPredicted

value increases until Θ = 0 and ΩPredicted = ωr
R which is an Ackerman steering

geometry.

3 Validation Experiments

To do single wheel testing the Suspension and Wheel Experimentation and Evalu-
ation Testbed (SWEET) is used. The testbed (Fig. 4) has a 10 x 10 ft footprint and
a weighted drop down test leg, incorporating a driven wheel and a six-axis, force
torque sensor which stays stationary in the X and Y directions but allows movement
along the Z-axis via a counterbalance system.

SWEET differs from most testbeds in that the table can move in the X and Y
directions underneath the test stand, as well as rotate in the X ,Y -plane. This added
advantage gives the apparatus the unique ability to measure forces and torques in a
true turn allowing the study of skid steer turning.

SWEET was programmed to simulate a skid steer turn and fitted with a .109
meter diameter blank wheel on simple carpet (Fig. 4). Parameters were set to mimic
our in-house four wheel skid steer rover’s (SR2 [7]) geometry and loading. The test
variables were wheel spin rates (ω = .3, .4, and .5 rad

sec ) and turn rates (Ω = 0, -.01,
-.02 ....... -.12 rad

sec ) with 5 trials of each. Post processing, of the data, was done with
several C programs that averaged all trials, performed 2nd and 3rd order regression
curve fitting, and calculated ΩSWEET Predicted .
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Fig. 4 a) SWEET Testbed; b) SR2 rover spin rate testing

Fig. 5 Results for ω = .3 rad
sec

The results, for SWEET’s skid steer turn test, are shown in Figs. 5, 6, and 7.
SR2 (Fig. 4) was then fitted with four blank wheels and turned on the same carpet

to validate the results. Tests were done for three different wheel speeds (ω =.3, .4,
and .5 rad

sec ) measuring the spin rate of the rover during the test (by measuring the
angle between an onboard laser level mark and the initial position and dividing by
the elapsed time), which are given in table 1 along with ΩSW EET Predicted and per-
centage error. These results show a definite validation of the SWEET single wheel
test within 3%.

Table 1 ΩSR2 and ΩSW EET Predicted results in rad
sec

ω ΩSR2 ΩSW EETPredicted Error
0.3 -.042 -.042 0%
0.4 -.056 -.057 1.8%
0.5 -.066 -.064 3.0%
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Fig. 6 Results for ω = .4 rad
sec

Fig. 7 Results for ω = .5 rad
sec

4 Skid Steer Experiments with Non-blank Wheels

In considering a non-blank wheel, particularly a directional patterned wheel such as
Fig. 8 there is a possibility of a force along the X axis induced by the tread pattern.
If the wheel is mounted on the correct side then the additional force will benefit
the turning efficiency by offsetting the frictional force produced by the turn. The
theoretical ideal turning rate for a directional treaded wheel has to include any Vx

produced by the tread.

Vt = Vy cos(Θ)+Vx sin(Θ) . (12)
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Fig. 8 a) Kinematic explanation of treaded wheel; b)Measuring α on a treaded wheel

Vy = ωr . (13)

Vt =ΩR . (14)

ΩIDEAL =
1
R

(ωr cos(Θ)+Vx sin(Θ)) . (15)

if ΩIDEAL were related to the tread design only (such as a bolt screwing into a nut)
and ignored any soil interaction Vx would be a function of ω ,α, and r (equation 16
and Fig. 8). Which would give the ΩIDEAL in equation 17.

Vx =
ωr

tan(α)
. (16)

ΩIDEAL =
ωr
R

(
cos(Θ)+

sin(Θ)
tan(α)

)
. (17)

Two directional patterned wheels, with diameter of .102 meters (Fig. 8b), were
tested in SWEET. Figures 9 and 10 show the performance of the two oppo-
sitely patterned wheels dubbed ’left’ and ’right’ which correspond to their proper

Fig. 9 Results for right treaded wheel rotating at ω = .3 rad
sec in the right front position
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Fig. 10 Results for left treaded wheel rotating at ω = .3 rad
sec in the right front position

Table 2 ΩSR2 and ΩPredicted results for treaded wheels

Wheel ΩSR2 ΩPredicted Error
Left -.0367 -.0374 1.9%
Right -.0454 -.0496 9.25%

orientation on the rover. Again the tests were run simulating the right front side of a
rover turning in a counter-clock-wise fashion. The tests were run on padded carpet,
and not a hard surface, to focus on how the tread itself interacts with the surface and
the treads affect on turning performance. Figure 10 shows the results of a left wheel
in that position producing aΩSW EET Predicted value of -.037 rad

sec while the right wheel
gives a ΩPredicted value of -.050 rad

sec (table 2). The left wheel can be visualized as
trying to screw itself to the right fighting against the turn when placed on the right
side, the right wheel is trying to screw itself left benefiting the turn.

5 Conclusions

This paper discusses and demonstrates a method that allows the results from a single
wheel test to be used to predict turning efficiency for a full assembly skid steer
rover. Three different wheels were tested and predicted turn rates were within 10%
of full assembly tests which probably can be refined by increasing the sample size.
Future work will be to test on sand and other terrain, test and evaluate interesting
wheel types, and iterate tread design on conventional wheels to better ascertain a
wheel’s performance on different media all of which without the cost and time of
full assembly tests.
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Field Experiments in Mobility and Navigation 
with a Lunar Rover Prototype 

David Wettergreen, Dominic Jonak, David Kohanbash, Scott Moreland,  
Spencer Spiker, and James Teza* 

Abstract. Scarab is a prototype rover for lunar missions to survey resources, par-
ticularly water ice, in polar craters.  It is designed as a prospector that would use a 
deep coring drill and apply soil analysis instruments.  Its chassis can transform to 
stabilize its drill in contact with the ground and can also adjust posture to ascend 
and descent steep slopes. Scarab has undergone field testing at lunar analogue 
sites in Washington and Hawaii in an effort to quantify and validate its mobility 
and navigation capabilities.  We report on results of experiments in slope ascent 
and descent and in autonomous kilometer-distance navigation in darkness. 

1   Introduction 

To discover and measure 
the resources of the moon, 
robotic systems will have  
to survive extremes from 
blazing sunlight to frigid 
darkness as well as dust, 
vacuum, and isolation.  
Scarab is a prospecting 
rover developed to perform 
the necessary science opera-
tions to locate volatiles and 
validate in situ resource 
utilization methods. [5] 
(Fig. 1) It is a terrestrial 
concept vehicle designed to 
deploy a deep coring drill 
and to transport soil analysis instruments.  The vehicle design employs a passive 
kinematic suspension with active posture adjustability.  Its chassis can lower to 
stabilize a coring drill in contact with the ground and can also adjust to control 

                                                           
David Wettergreen 
Carnegie Mellon University, 5000 Forbes Avenue. Pittsburgh, PA 15213,  
e-mail: dsw@ri.cmu.edu 

Fig. 1 Scarab lunar rover prototype on unconsoli-
dated sandy soil in eastern Washington 
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roll, meaning rotation about its longitudinal axis, by independently adjusting its 
side-frames. This allows it to drive cross-slope and turn switchbacks to better as-
cend and descend unconsolidated soil. 

Scarab is intended to operate on and within lunar craters, particularly in polar 
regions.  Because the interior slopes and crater floor are sometimes in shadow, or 
in some cases in permanent darkness, active sensing methods are needed for ter-
rain modeling and autonomous navigation. Scarab employs laser range scanners 
with autonomous navigation algorithms to build models of the surrounding terrain 
to detect obstacles and then determine efficient and safe paths. 

In this paper we review results from field experiments at Moses Lake Dunes, 
Washington and Mauna Kea, Hawaii to measure and verify the prototype rover’s 
ability to meet the demands of a lunar polar crater prospecting mission. 

2   Rover Configuration 

Scarab was conceived as a work machine with a serialized mission: drive, charge 
batteries, drill, charge again, analyze soil samples, charge and repeat.  The number 
of repetitions might be 25, leading to 25 kilometers of traverse, 25 cores, and 25 
sites surveyed.  For some craters, 100 repetitions might be more desirable to char-
acterize the environment and resources. 

There are many factors effecting the rover configuration but the drill mecha-
nism and its operation dominate.  The requirement to transport and stabilize a deep 
coring drill literally became central to the design while requirements for ascent 
and descent in cratered terrain shaped many aspects and fine details. 

Drilling requires a stiff platform into which thrust loads, torques and vibrations 
are transmitted and hole alignment is maintained. Placement of the drill in line 
with the vehicle’s center-of-mass maximizes the mass that can be applied in down 
force. (Fig. 2) Drilling operations receive three benefits of this feature; first, low-
ering the chassis allows the full stroke of the drill to be used in the soil resulting in 
mass savings overall. Secondly, the rover can lean and therefore re-stabilize and 
place the rover center-of-mass over the drill core. Lastly, under low gravity condi-
tions, the drill torques are counteracted by the increased leverage arm created by 
spreading the rover wheelbase.  

The rationale for the vehicle weight and size is based on the 1 m long, 3 cm di-
ameter drill that is likely to be employed in a lunar mission.  Not only does the 
rover have to support the drill but also it must provide sufficient weight against 
which the drill can react its downward thrust and torque about the bit. Drill thrusts 
are expected to reach 250 N and 50 Nm torque. The system weight on lunar sur-
face must react drilling 250 N downforce and maintain 150 N on wheels for stabil-
ity against uplift and spin, therefore total weight on lunar surface must be greater 
than 400 N.  The weight in lunar gravity (400 N / 1.622 m/s2 = 250 kg) leads to a 
minimum 250 kg vehicle mass.  [1] 
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The Scarab rover’s chas-
sis and suspension was de-
signed around the drill. This 
component of the payload is 
significant in mass (50 kg) 
and imposes forces on the 
chassis during transport and 
while interacting with the 
ground. 

Scarab's chassis allows it 
to passively conform to the 
terrain. The suspension has 
active and passive elements 
for improved traction on 
slope terrain. The active ele-
ment, as previously dis-
cussed with respect to drill-
ing, allows the rover to level 
the body, leading to in-
creased stability and traction 
efficiency. The passive ele-
ment, sometimes called an 
averaging (or differencing) 
linkage provides a mechani-
cal release allowing the two 
rover suspension side-frames 
to pivot independently.  

The averaging linkage 
ensures the body is pitch-
averaged between the rocker 
arms. Scarab's body has 
three contact points. On ei-
ther side, the body is con-
nected to the pivot in the 
rocker arms. On top, the 
body hangs from the differ-
encing linkage. This linkage 
runs across the top of the 
body and also connects to 
the rocker arms. Scarab ac-
tively controls its roll using 
the rocker arms by changing 
the height of each side inde-
pendently, thus controlling 

 Table 1 Scarab Rover Specifications 

 Mass   280 kg 
 2740 N Earth surface  Weight  
 450 N Lunar surface 

 Locomotion speed  3 - 6 cm/s 
 Wheel diameter  65 cm 
 Track width  1.4 m 

 0.8 - 1.4 m  Wheelbase 
 1.2 m nominal 
 1:1.0 low stance 
 1:1.2 nominal stance 

 Aspect ratio 
 (track/wheelbase)  

 1:1.7 high stance 
 CG planar location  On geometric center 

 0.48 m low stance 
 0.64 m nominal stance 

 CG height 

 0.74 m high stance 
 56° low stance 
 43° nominal stance 

 Static pitch-over 

 30° high stance 
 61° low stance 
 53° nominal stance 

 Static roll-over 

 49° high stance 
 Maximum straddle  0.55 m 
 Minimum straddle  0.00 m (ground contact) 

Fig. 2 Scarab rover configuration showing placement 
of sensors, avionics, and payload. There are drive 
motors in each of four wheels and two linkages for 
adjusting sideframe height.  An averaging linkage al-
lows all four wheels to maintain ground contact in 
rough terrain. 
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the roll. In contrast the pitch is passive. Scarab's wheels conform to the terrain, 
which rotates the rocker arms and swivels the differencing linkage. The linkage is 
constructed such that the body is forced to move up or down by half the angle be-
tween the two rocker arms. As the center-of-mass of the rover is located midway be-
tween the side frames, equal loading occurs on all four wheels even on drastically 
uneven terrain. 

3   Mobility Experiments 

Testing Scarab in the field has been critical in proving the concept for lunar mobil-
ity and quantifying performance. Experiments have been conducted in numerous 
conditions with several findings of importance. However it is understood that con-
tinuing experimentation is needed to provide the data for a fully validated per-
formance model and, most important, to enable extrapolation of terrestrial results 
to the lunar environment. 

Moses Lake Sand Dunes in Washington was chosen as a test site for its varied 
terrain (slopes, pits, etc.), low moisture content, varied soil types (strengths, size 
distribution) and wide open space.  These qualities provided grounds for mobility 
traction testing and long distance dark navigation traverses.  Steep slope as-
cent/descent in loose soil and tests of new slope climbing techniques and algo-
rithms were the focus of these field tests in June 2008. 

Another lunar analogue site, located on Mauna Kea, Hawaii, is at high altitude 
with dry, deep, basaltic volcanic ash allows repeated mobility and navigation ex-
periments. The soil composition and mechanical properties at this site were ideal 
for the regolith sampling hardware experiments. The objectives of these tests in 
November 2008 were to demonstrate roving, drilling, sample acquisition, process-
ing and analysis. The rover was able to autonomously traverse kilometers of rough 
terrain, inspect a drill site, drill to 1 m depth, process the core samples and analyze 
the composition of the captured soil and demonstrate extraction of water from soil.  

Characterization of Scarab as a system for difficult terrain mobility was  
first quantified in the laboratory in statics tests and in sandboxes. [1] The inde-
pendently actuated rocker arms of the Scarab rover allow for actively controlled 
center-of-mass shifting.  The JPL Sample Return Rover has similar capability [2].  
Benefits of this feature include decreased slip during cross-slope maneuvers. 
Scarab was tested normal to the slope and leaning to maintain vertical posture 
with cross-slope of 10˚, 15˚and 20˚. A surveying total station tracked a prism on 
the rover to millimeter accuracy and recorded instantaneous slip measurements. 

The outcome, expressed as percentage downhill 
slip with respect to cross-slope distance, appears 
in Table 2. 

The considerable decrease in downhill slip 
(2.5x at 20˚incline) arises from increased trac-
tion due to equalization of wheel loading in 
highly cohesive soils and edging effects of the 

Table 2 Downhill Slip 

Slope Normal Leaning Change 

10˚ 6% 2% -4% 

15˚ 22% 8% -14% 

20˚ 37% 15% -22% 
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wheel profile in frictional soils. The significance of this outcome lies in the ability 
to descend and navigate steeper slopes with while maintaining adequate control 
authority. 

A widely used metric for measuring the total tractive ability of a vehicle is 
drawbar pull. This is the value the vehicle can pull in a specified material while 
maintaining forward progress. The maximum drawbar pull value corresponds to 
the inflection in the load/slip curve where the soil fails and the wheel enters the 
high slip regime. This value is informative when comparing different designs and 
also used for determining the slope a vehicle can ascend for the specified material. 
Drawbar pull experiments were conducted in Washington and Hawaii to evaluate 
of the effects of rover mass properties, wheel design, and soil properties on trac-
tive performance. (Fig. 3)  Both the drawbar pull value and power values derived 
from this test are used as metrics to determine performance.  

The key observations are the range of tractive values that occur with changing 
soil properties. For high bearing strength materials, the level of looseness and 
compaction does result in slightly varied traction and power (shear strength and 
sinkage respectively). The overall mass also has little effect on the normalized 
drawbar pull value (percentage of vehicle weight) although with extremely low 
bearing strength materials, this does not hold true as a result of excessive sinkage. 
The shear strength comes from cohesiveness and internal friction. As a result, the 
drawbar pull values can be representative of slopes achievable for only highly co-
hesive material as the normal loading of the surface is constant throughout testing. 
The most significant effect on traction has resulted in wheel design. Experiments 
involving different traction surfaces, wheel diameter and ground pressures have 
shown a large range of drawbar pull values. Differences of 50% have been achiev-
able through traction surface/grouser modifications. Lowering ground pressure 
and reducing sinkage has moderate effects on traction but results in large differ-
ences in driving power (up to 50% during experiments). Drawbar pull tests per-
formed as lab and field experiments have highlighted wheel design as a leading 

element in tractive and 
power design require-
ments. (Table 3.) This is 
important because wheel 
design is generally inde-
pendent of the suspension 
design and can be opti-
mized for traction and 
power efficiencies.  

Active control meth-
ods can also lead to  
increased tractive per-
formance. Techniques 
such as “inch-worming” 
can increase the mobility 

Fig. 3 Drawbar pull experimental setup.  Weight is 
added to the sled with the rover in motion while slip is 
continuously monitored. 
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of a rover. (Fig. 4) To be-
gin the cycle of inch-
worming, the body lowers 
while expanding the 
wheelbase and rolling the 
front wheels forward while 
the rear wheels remains 
static. In the second half of 
the cycle, the body raises 
and the wheel base short-
ens while the rear wheels 
rolls forward and the front 
wheels remains static. 
Non-rotating wheels pro-
vide a fixed point of reac-
tion with no slipping. To 
achieve these benefits, 
Scarab's inch-worming al-
gorithm relies on eliminating the compaction resistances on two of the four 
wheels, by remaining static with respect to ground, for a resulting net tractive in-
crease.  Experimentally we have found that the inch-worming technique is best 
suited when wheels become entrenched under high slip. It allows the rover to 
move forward (or back up) out of this situation. 

 
Table 3 

Soil Depth Lunar Wheel Rubber Tire Difference

Locomotion Power 7.5 cm 100W, 100W w/grouser 158W 0.58

5.0 cm 95W 160W 0.68

2.5 cm 95W 103W 0.08

1 cm 98W 117W 0.19

Maximum Drawbar 
Pull

7.5 cm 23%, 32% w/grouser 28% 0.18, 0.28
Pull

5.0 cm 24% 32% 0.25

2.5 cm 32% 39% 0.18

1 cm 33% 50% 0.34
 

 
Actively-positioned center-of-mass can also increase steepness of slopes tra-

versable: distributing the load amongst the rover’s wheels leads to more efficient 
traction.  Center-of-mass shifting (body leaning) was tested and heading slip, the 
slip in the commanded direction with respect to the commanded velocity, showed 
increase the steepness of slopes ascendable.  The experiments were conducted 
with a 25˚ angle attack from the horizontal. This value was determined  

Fig. 4 Conventional rolling versus inch-worming 
where one wheel pair is synchronized to the side-
arm expansion/contraction and the other reacts 
forces into the ground. 
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experimentally to have adequate uphill progress and low slip. It was shown that 
with the transformable suspension of the Scarab rover, slopes of 20˚loose, dry, 
volcanic ash can be ascended with low risk. 

4   Navigation Experiments 

Scarab navigates autono-
mously on kilometer 
scales. A route planning 
algorithm generates in-
termediate goals (typically 
with 100 m spacing) and 
the operator may specify 
multiple goals, Scarab 
will reach each goal in  
order. 

Scarab uses an on-
board inertial measure-
ment device (Honeywell 
HG1700) and optical 
ground speed sensor to 
enable it to estimate po-
sition and velocity with 
1 - 3 % error on distance 
traveled. (Fig. 5)  Laser ranging provides measurements to build models of the 
surrounding terrain to detect obstacles and then determine efficient and safe paths. 
(Fig. 6) 

 
Scarab periodically 

scans the terrain using a 
laser rangefinder devel-
oped by Neptec Design 
Group. [3]  Previous 
autonomous rovers have 
used stereo cameras for 
high density terrain ob-
servations with low 
power. [7]  In the scenario 
that Scarab addresses, po-
lar lunar craters, there will 
be significant areas of 
slope and crater floor in 
shadow and in some 
cases, perpetual darkness 

Fig. 5 Scarab navigating in darkness. Laser scanner per-
ceives terrain ahead and an underbody optical velocity 
sensor detects slip. 

Fig. 6 Mesh terrain model used to represent obstacles
and to evaluate and refine the path.  Modeling and 
evaluation iterate to navigate to the goal. 
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so active sensing devices 
are required. Scarab ac-
quires a scan after ap-
preciable driving (more 
than 3 m) or turning 
(greater than 10°) or af-
ter time has elapsed 
(more than 100 sec). The 
sensor produces a dense 
array of ranges and takes 
several seconds, so mo-
tion must stop to avoid 
warping the data. The 
navigation algorithms 
assume a static world, 
meaning the terrain does 
not change between 
scans. Each 3D cloud of 
range points is incorpo-
rated into the terrain 
model. The range points 
are filtered (to remove 
noise and artifacts) and 
transformed into the ve-
hicle's coordinate frame. 
Coarse data reduction on 
the point cloud is ap-
plied and the point cloud 
is transformed into a 
mesh. The mesh is then 
further reduced to elimi-
nate redundant data. Fi-
nally the mesh is aligned 
with prior data to gener-
ate the terrain model that 
is used to identify obsta-
cles and select the best 
path to the goal. Many 
candidate vehicle mo-
tions are evaluated in  
the near- and far-field. 
The near-field analysis 
involves simulating  
vehicle motion on the 

Fig. 7 Autonomous descent into a large pit.  Rendered 
views are terrain model with path of rover at rim, in-
termediate, and viewing the floor.  Images show rover 
during descent.  Scarab discovered a moderate slope 
and reached the floor autonomously. 
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mesh to identify collision and slope hazards and assess their severity. The far-field 
analysis applies heuristic search to estimate the progress each potential move will 
make toward the goal. A cost function combines safety in the near-field with pro-
gress in the far-field. 

Our experimental approach has been to conduct 1 km traverses in a variety of 
terrains with progressive improvements to algorithms.  At both the Moses Lake 
and Mauna Kea sites, Scarab autonomously completed the following objectives: 
travel over 3 km, perform 2 night traverses and simulate crater descent. Traverses 
are kilometer scale and performed after sunset, they account for most of the total 
distance traveled at each site.  Crater descent was conducted with a long (100 m) 
traverse that included descending a steep (10°) slope.  

Scarab completed a total of 3.6 km in 27 traverses in Washington. The first 
dark traverse was 1.2 km with 4 interventions due to sensor faults and one due to a 
controller error. These faults are recoverable; they do not jeopardize the rover and 
are easily resolved by resetting a device. A second dark traverse used an alterna-
tive navigation algorithm [4] and completed 1.1 km with two interventions due to 
localization errors. 

Scarab traveled 3.0 km in 20 traverses at Mauna Kea, most of this was accom-
plished during the two overnight traverses. The first dark traverse was split into 
two parts; after 199 m the traverse was paused for logistic reasons and later Scarab 
resumed for an additional 779 m before stopping due to a software error. The sec-
ond overnight traverse was also split in two; the first part was 312 m and stopped 
on a software error, the second was 989 m and ended with a CANBus fault. All of 
these errors are recoverable remotely. 

At each site, Scarab autonomously completed a simulated crater descent using 
available analogue terrain. At Moses Lake, Scarab drove into a 9 m deep pit with 
10°-20°sloped sides. (Fig. 7) This was safely accomplished including two undirected 
switchback maneuvers. At Mauna 
Kea, Scarab repeatedly drove down 
a winding drainage channel. The 
route was over 100 m long and de-
scended over 25 m with an average 
grade of about 10°. 

Traverse termination conditions 
for both field tests are shown in 
Chart 1. No interventions were re-
quired to stop the vehicle from 
driving into a hazard (zero emer-
gency stops). At Moses Lake, most 
traverses (15 of 25) ended with a 
recoverable fault. On Mauna Kea 
the navigation method had im-
proved and most traverses ended 
by reaching the goal (8 of 20) or 

Chart 1 Termination conditions in 
autonomous navigation experiments. 
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stopping the traverse for other reasons (6 of 20). Recoverable faults are those that 
could be remotely corrected and thus would not be mission ending in a lunar  
scenario.  

These results are far from perfect but indications are that reliability is improv-
ing and will reach the level of previous planetary rover prototypes. 

5   Conclusion 

The Scarab rover has been uniquely configured for the transport and stabilization 
of a coring drill and associated soil analysis instruments.  The benefits of central-
mounting and active body height and roll control are apparent in deployment of 
the drill and improved ability to ascend and descend cross-slope. 

Field experimentation has quantified drawbar pull and slope climbing ability as 
well as power required for these activities under a variety of soil and terrain condi-
tions.  Field demonstrations have also proven the capability of the laser-based 
navigation system for kilometer-scale autonomous traverse, including autonomous 
descent into a crater.  In total the mobility and navigation requirements for a lunar 
surface prospecting mission have been demonstrated in analogue terrain. 

Acknowledgments. We gratefully acknowledge the contributions of our technical team and 
the assistance of Phillipe Ayoub, Paul Bartlett, Deborah Sigel, John Thornton, Chuck 
Whittaker, and William Whittaker. This research was supported by NASA under grants, 
NNX07AE30G, John Caruso, Project Manager, and NNX08AJ99G, Robert Ambrose, Pro-
gram Scientist. 

References 

1. Bartlett, P., Wettergreen, D., Whittaker, W.: Design of the Scarab Rover for Mobility 
and Drilling in Lunar Cold Traps. In: International Symposium on Artificial In-
telligence, Robotics and Automation in Space (iSAIRAS), Los Angeles (February 2008) 

2. Iagnemma, K., Rzepniewski, A., Dubowsky, S., et al.: Mobile robot kine-matic recon-
figurability for rough-terrain. In: SPIE 2000 (2000) 

3. http://www.neptec.com/Neptec_TriDAR.html 
4. Pedersen, L., et al.: Dark Navigation: Sensing and Rover Navigation in Per-manently 

Shadowed Lunar Craters. In: iSAIRAS, Los Angeles (February 2008) 
5. Sanders, G., et al.: In Situ Resource Utilization (ISRU) Program. In: AIAA Aerospace 

Sciences, Orlando (January 2009) 
6. Spudis, P.: Ice on the Moon. The Space Review (November 2006) 
7. Wettergreen, D., et al.: Long-distance Autonomous Survey and Mapping in Robotic In-

vestigation of Life in the Atacama. In: iSAIRAS, Los Angeles (February 2008) 
8. Wettergreen, D., et al.: Design and Experimentation of a Rover Concept for Lunar Cra-

ter Resource Survey. In: AIAA Aerospace Sciences, Orlando (January 2009) 



Rover-Based Surface and Subsurface Modeling
for Planetary Exploration

Paul Furgale, Tim Barfoot, and Nadeem Ghafoor

Abstract. We develop and test a technique for the creation of coupled surface and
subsurface models. Images from a stereo camera are used to estimate the motion
of a rover that is collecting ground penetrating radar (GPR) data. The motion es-
timate and raw sensor data are used to build two novel data products: (1) A three-
dimensional, photorealistic surface model coupled with a ribbon of GPR data, and
(2) a two-dimensional, topography-corrected GPR radargram with the reconstructed
surface topography plotted above. Each result is derived from only the onboard sen-
sors of the rover, as would be required in a planetary exploration setting. These
techniques were tested using data collected in a Mars analogue environment on De-
von Island in the Canadian High Arctic. GPR transects were gathered over polygo-
nal patterned ground similar to that seen by the Phoenix lander on Mars. Using the
techniques developed here, scientists may remotely explore the interaction of the
surface topography and subsurface structure as if they were on site.

1 Introduction

The use of ground penetrating radar (GPR) together with a stereo camera on plan-
etary exploration rovers has been proposed several times [1, 7] and is now in de-
velopment for the European Space Agency’s (ESA) ExoMars project (2014) [22].
Used together, surface and subsurface imaging will aid in the search for liquid wa-
ter and evidence of life. The ESA mission proposes using the stereo camera for site
selection and survey, while the GPR will then be used to characterize the subsurface
stratigraphy, and to select sites for drilling.
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Despite this interest, there are still several open issues regarding the use of GPR
on a rover platform:

1. Rovers must be able to deliver information about the surface (topography, sub-
strate particle size distribution, and/or the presence of any existing outcrops) that
enables the operator to give local geologic context to the subsurface data. The
location of the GPR traverse must be known with respect to the surface data
captured by the rover, so that the scientific interpretation of the data is as close
as possible to a direct (human) site survey.

2. For a more complete interpretation of GPR data, the radargram (i.e., the two-
dimensional subsurface profile) should be corrected for topography (e.g., [15]).
As planetary exploration rovers have no access to a global positioning system
(GPS) equivalent, topographic profiles must be generated using other onboard
sensors.

3. A flight-ready GPR antenna must satisfy size, mass and power consumption con-
straints and the integration must minimize interference from the rover’s motors
and metal chassis.

This paper addresses items 1 and 2 by using stereo imagery to enhance the GPR
data. Stereo cameras have been deployed on the Mars Exploration Rovers and are
planned for both the Mars Science Laboratory (2011) and the ExoMars Mission
(2014) [22]. Visual odometry (VO)[17, 20, 3, 11]—full 6-degree-of-freedom mo-
tion estimation using a stereo camera as the primary sensor—is central to the work
described in this paper. Our visual odometry algorithm produces motion estimates
with accuracy between 0.5% and 5.3% of distance traveled.

On Earth, producing a site survey using GPR on rough terrain involves several
manual steps:

1. Place fiduciary markers (e.g., flags) along the intended transect and survey their
locations (e.g., using differential global positioning (DGPS)).

2. Drag the antenna along the transect at a constant speed to collect many GPR
traces, manually inserting a mark into the data to note the time at which the
antenna passes each fiduciary marker.

3. Linearly interpolate these manually-generated markers to correct the horizontal
spacing of the GPR traces along the transect.

4. If the surface is not flat, correct the vertical offset of the GPR traces using surface
topography manually collected with a DGPS (Step 1).

5. Concatenate the corrected traces into a raster image called a radargram.

Our technique uses a VO estimate to fully automate this procedure. Further, we pro-
duce two novel data products that may be used to explore the interaction of surface
topography and subsurface structure: (1) A three-dimensional, photorealistic surface
model coupled with a ribbon of GPR data, and (2) a two-dimensional, topography-
corrected GPR radargram with the reconstructed surface topography plotted above.

These techniques have been tested using data gathered at two sites near the
Haughton-Mars Project Research Station (HMPRS) on Devon Island, Nunavut,
Canada. The sites exhibit polygonally patterned ground, a periglacial landform often
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indicative of subsurface ice deposits [16]. Stereo images were captured during GPR
transects and our integrated surface/subsurface modeling techniques were applied
to the resulting data.

The rest of the paper is organized as follows. Our coupled surface and subsurface
modeling system is described in Section 2. Sections 3 and 4 outline our field tests on
Devon Island and the associated results. Our conclusions are provided in Section 5.

2 Integrated Surface and Subsurface Modeling

This section will describe our integrated surface/subsurface modeling system. Data
flow through the main processing blocks of our system can be seen in Figure 1. The
images captured from a calibrated stereo camera are first undistorted and rectified.
This process accounts for lens distortion and aligns the images as if they came from
perfect pinhole cameras with parallel optical axes.

Our algorithm uses Speeded-Up Robust Features (SURF)—an algorithm to detect
and describe scale-and-rotation-invariant features [4]—for both matching (across
stereo pairs) and tracking (over time). This is a class of feature pioneered by Lowe
[14]. Lowe’s Scale-Invariant Feature Transform (SIFT) algorithm has been used pre-
viously for object recognition [14], simultaneous localization and mapping [6], and
visual odometry [3]. SURF is a similar algorithm that is much faster to compute
because it uses integral images to approximate the operations used by SIFT to find
and describe features. After two consecutive stereo pairs have been matched, fea-
tures are tracked between frames. Feature descriptor matches between the consec-
utive left images are used as candidate tracks. We use a version of RANSAC [5] to
simultaneously reject outlier feature tracks and produce a coarse motion estimate
that is used to initialize our maximum likelihood solution.

Our maximum likelihood solution is similar to the one developed by Matthies
[18] and deployed on the Mars Exploration Rovers [17]. At each timestep, N tracked
features pass the outlier rejection stage. For each feature i, we triangulate the three-
dimensional location of the point in each of the two consecutive stereo images. This
results in a pair of points pi1

1 and pi2
2 . As the world is assumed to be rigid, we now

SURF Scale/rotation 
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Feature descriptor based 
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Fig. 1 An overview of the major processing blocks of our system.
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seek the rotation C12 and translation ρ21
1 that align these two point clouds. This

results in the objective function, J, which we seek to minimize:

J(C12,ρ21
1 ) :=

1
2

N

∑
i=1

(
pi1

1 − (C12pi2
2 +ρ21

1

))T
Wi
(
pi1

1 − (C12pi2
2 +ρ21

1

))
(1)

where Wi is a weighting matrix. We use the inverse covariance of ε i := pi1
1 −(

C12pi2
2 +ρ21

1

)
for Wi, and thus J is a Mahalonabis distance, and finding the vari-

ables that minimize J also maximizes the joint likelihood of all the data. For further
details, please refer to [8].

The motion estimates between each consecutive pair of images are then stacked
up to give an estimate of the rover’s entire traverse. As the robot is rigid, we obtain
the transformation from the camera frame to the GPR frame through calibration,
and so the visual odometry estimate also gives us the position of the GPR at each
point along the traverse. Knowing the position of the camera and the GPR, we can
transform all of the raw data into a common coordinate frame, F−→0. This gives us
the following intermediate data products, all expressed in F−→0:

1. an estimate of the rover’s position for each stereo image,
2. the sparse points used to compute the motion estimate,
3. larger point clouds for each stereo image obtained from dense stereo processing,
4. the position of the GPR at each data collection point.

These intermediate results are used to build the higher-level data products described
below.

2.1 Three-Dimensional Surface and Subsurface Model

The first data product is a photorealistic, three-dimensional model of the surface,
coupled with a model of the subsurface. Point sets derived from dense-stereo pro-
cessing are aligned using the VO motion estimate [21]. The resulting point cloud
is meshed and mapped with texture from the original images [2]. The GPR scan
is modeled as a ribbon running under the surface mesh. The known transforma-
tion between the stereo camera and the GPR antenna is used to couple the surface
and subsurface models. The resulting coupled model allows geologists to inspect a
three-dimensional representation of the transect and explore the interaction of the
surface morphology and the subsurface scan.

2.2 Two-Dimensional Topography-Corrected Radargram

The second data product is a two-dimensional, topography corrected radargram. The
position and attitude of the antenna at each GPR trace is interpolated from the VO
estimate. This estimate is used in place of the DGPS survey to perform both the
horizontal correction and the vertical correction. The profile of the surface below
the antenna is estimated by fitting a spline to feature locations along the transect as
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Fig. 2 Sparse surface points and the spline fit along the GPR antenna’s path. This section is
a polygon trough from transect poly-2AS-1.

shown in Figure 2. The spline improves on the topographic correction as it is able
to capture narrow features over which the rover may drive.

3 Field Testing

The experiments described in this paper were conducted on Devon Island in the
Canadian High Arctic, as part of the Haughton-Mars Project. The Haughton-Mars
Project Research Station (HMPRS) is situated just outside the northwest area of
the Haughton impact crater, which is located at 75◦22′ N latitude and 89◦41′ W
longitude. Our experiments were conducted approximately 10 kilometers northeast
of HMPRS near Lake Orbiter. This site was selected based on ongoing research into
the polygonal terrain it hosts. Image sequences from the stereo camera and GPR
data were logged at two sites:

1. The Lake Orbiter Transects: Five straight-line transects were taken at the Lake
Orbiter site (Figure 3(a)). Each transect is approximately 60 meters long.

2. The Mock Rover Transect: One transect, approximately 357 meters long, at a
site that had not been previously studied (Figure 3(b)).

In our experiments, a rover was simulated using a pushcart equipped with rover
engineering sensors (i.e., stereo camera, inclinometers, sun sensor, wheel odome-
ters), a ground-penetrating radar, an on-board computer, and two independent GPS
systems (one Real-Time Kinematic) used for ground-truth positioning (see Fig-
ure 4). Although this was not an actuated rover, our focus in this work is on prob-
lems of estimation, and thus it was entirely sufficient as a means to gather data.
The GPR (and cart) we used was a Sensors&Software Noggin 250 MHz system [1].
Efforts were made to minimize the effect of the rover body on the GPR data qual-
ity (e.g., using plastic parts where possible). The stereo camera was a Point Gray
Research Bumblebee XB3 with a 24 cm baseline and 70◦ field of view, mounted ap-
proximately 1 m above the surface pointing downward by approximately 20◦. Each
image of the stereo pair was captured at 1280 × 960 pixel resolution.
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1C

2B2A

50m

(a) The Lake Orbiter Transects.
75◦29′35′′N, 89◦52′57′′W .

(b) The Mock Rover Transect.
75◦28′56′′N, 89◦52′11′′W .

Fig. 3 Locations and transects on Devon Island, Nunavut, Canada used for field testing our
integrated surface/subsurface modeling technique.

Fig. 4 The rover platform
used for field testing.

4 Results

The visual odometry algorithm described in Section 2 was used to process all data
collected at the Lake Orbiter site. We used a real-time kinematic GPS unit as ground-
truth for our motion estimate. We determine the initial heading through a least-
squares fit of the estimated track to the GPS for a small number of poses at the start
of the traverse. These poses are then discarded and are not used when evaluating the
linear position error. This is similar to the method used by [19].

The results are shown in Table 1, which lists the distance traveled and errors for
all datasets collected. On the short Lake Orbiter transects (50 to 60 meters), position
errors ranged from 0.5% to 5.3% of distance traveled. The results of the estimation
on the Mock Rover Transect are plotted in Figure 4. This estimate accumulated
1.63% position error over this 357.3 meter traverse.

Our results approach those reported by other frame-to-frame VO algorithms
[10, 20], and we believe this class of algorithm is suitable for applications such as
this, which require a motion estimate over a short distances. To use VO over longer
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Fig. 5 Track plots of GPS
and the VO estimate for
the 357 meter Mock Rover
Transect.
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Table 1 Visual Odometry motion estimate results.

Transect Distance Traveled (m) Linear Error (m) Percent Error Number of Images

Mock Rover 357.30 5.83 1.63% 4818
poly-1AS-1 54.23 2.87 5.29% 333
poly-1BN-1 59.63 0.68 1.14% 316
poly-1BS-1 60.06 1.24 2.06% 317
poly-1CN-1 60.67 1.98 3.26% 327
poly-2AN-1 51.49 1.04 2.01% 270
poly-2AS-1 50.16 0.25 0.51% 263
poly-2BN-1 49.47 1.16 2.34% 260
poly-2BS-1 49.05 0.96 1.96% 258

distances, the work of Konolige et al. offers insights into increasing performance,
albeit at the cost of increased computational complexity [11].

4.1 Coupled Surface/Subsurface Models

The complete coupled surface/subsurface model of the Mock Rover Transect is
shown in Figure 6. The texture-mapped triangle mesh of the surface is displayed
above the ribbon of GPR data. The model may be inspected using a Virtual Reality
Modeling Language viewer and rendered from any viewpoint.

Polygonal terrain—a network of interconnected trough-like depressions in the
ground—is a landform commonly found throughout the polar regions of both Earth
[13] and Mars [12]. In terrestrial environments, these features are often indica-
tive of subsurface ice bodies termed ice wedges [16]. As noted by Hinkel et al.
[9], ice wedges “produce exceedingly complex, high amplitude hyperbolic reflec-
tions” (p.187) due to the conical shape of the emitted GPR pulse. As a result,
while ice wedges themselves are roughly triangular in shape—wider at the top and
progressively narrowing with depth—their appearance on a radargram more resem-
bles an inverted hyperbola.

Figure 7 shows the entire corrected GPR radargram produced from data collected
at the Mock Rover site. Points A-C illustrate three such examples of hyperbolic
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Fig. 6 Screenshots of the coupled surface/subsurface model.
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Fig. 7 GPR transect corrected for topography with surface profile plotted above.

subsurface reflections detected within the radargram. At these and other locations
along the transect, the hyperbolic reflectors are found immediately beneath the
troughs as indicated by small V-shaped depressions in the stereo camera surface
profile. Because polygon troughs are the most obvious surface expression of ice
wedge locations [16], the successful coupling of our surface/subsurface model is
further supported.

5 Conclusion and Future Work

We have presented a coupled surface/subsurface modeling method for planetary
exploration. Our method uses only a stereo camera and a ground penetrating radar
unit to produce:
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1. An estimate of the rover’s trajectory over the course of the traverse.
2. A photorealistic three-dimensional surface/subsurface model.
3. Topography-corrected GPR traces plotted with a two-dimensional profile of the

surface along the transect.

The models and corrections allow operators to work remotely, surveying the
data as if they were on site. Currently, there are several manual steps in terres-
trial GPR site surveying. Our approach allows GPR collection to be carried out in
an automated manner, on a rover, thereby enabling planetary exploration. Subsur-
face stratigraphy can be examined in the context of the surface morphology, a key
scientific technique used by field geologists to identify sites worthy of further study.

We collected our data in a Mars analogue environment at sites of scientific in-
terest. Visual odometry estimates were produced for approximately 800 meters of
traverse. The coupled models were generated using only the types of sensors that
are slated to fly on future rover missions, such as ExoMars.

As mentioned in Section 1, a flight rover’s metal chassis and interference from
the motors may corrupt the GPR signal. Our future work will include a return to
Devon Island in July, 2009 to address this issue by direct comparison of GPR data
collected with and without an actuated rover platform.
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Gérossier, Franck 151
Geyer, Christopher 113
Ghafoor, Nadeem 499
Giesbrecht, Jared L. 137
Goi, Hien K. 137
Green, Colin J. 69
Grocholsky, Ben 183
Guarnieri, Michele 45
Gunn, Chris 411

Hada, Yasushi 365
Hagiwara, Tetsuo 25
Harrison, Alastair 219
Hebert, Martial 103
Heidarsson, Hordur 433, 443
Heller, Richard 479
Hirose, Shigeo 3, 25, 45
Hover, Franz S. 455
Howard, Ayanna M. 91
Howard, Thomas M. 69, 469



510 Author Index

Iagnemma, Karl 59
Ichioka, Youichi 45
Iwama, Narumi 45

Jakuba, Michael 275
Jonak, Dominic 489
Jones, Burton 433
Jones, Burton H. 263
Julian, Brian J. 319

Kalmari, Jouko 35
Kantor, George 307
Kearney, M.P. 401
Kelly, Alonzo 69
Kimura, Akihiro 45
Kohanbash, David 489
Komma, Philippe 79
Koyanagi, Eiji 365
Kubokawa, Hiroshi 45
Kulovesi, Jakke 35

Leonard, John J. 331
Li, Peggy P. 263

Maeyama, Shoichi 365
Marjovi, Ali 341
Marques, Lino 341
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